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MULTIVALUED FG-CONTRACTION MAPPINGS ON DIRECTED
GRAPHS

HEMANT KUMAR NASHINE1,2 AND ZORAN KADELBURG3

Abstract. In this paper, we study generalized FG-contraction conditions for a
pair of mappings defined on a family of subsets of a metric space endowed with a
directed graph, and discuss coincidence and common fixed point results relaxing the
continuity of mappings. The given notions and results are exemplified by suitable
models. We apply our results to the problem of existence of solutions of a Fredholm
integral inclusion.

1. Introduction and Preliminaries

Fixed point theory plays an important role not only in solving problems arising in
science and technology but also other problems that come in various parts of life, by
converting the problem into operator form. In the last decades, various approaches
and techniques have been applied to get the solution. In particular, the concept of
graph theory has been applied by Jachymski and Jozwik [10] to obtain fixed points of
mappings acting on metric spaces equipped with directed graph. Gwozdz-Lukawska
and Jachymski [9] discussed such problems for finite families of mappings.

We start recalling the terminology given in Jachymski [11].
Let (X, d) be a metric space and let ∆ denote the diagonal ofX×X. Let G = (vG, eG)

be a directed graph where the set vG of its vertices coincides with X, and the set eG
of edges contains all loops, that is, ∆ ⊆ eG. In addition, assume that the graph G has
no parallel edges. The triplet (X, d,G) is then called a directed graph metric space.
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If u and v are vertices of G, then a path in G from u to v is a finite sequence
{ui}, i ∈ {0, 1, 2, . . . , k}, of vertices such that u0 = u, uk = v and (ui−1, ui) ∈ eG for
i ∈ {1, 2, . . . , k}.

Recall that a graph G is called connected if there is a directed path between any
two vertices, and it is called weakly connected if G is connected, where G denotes the
undirected graph obtained from G by ignoring the direction of edges.

Fixed point results for single-valued mappings on directed graph metric spaces were
first obtained by Jachymski in [11] and further generalized by various researchers.
Some multivalued results of this kind were given by Abbas et al. in [1–3]. We recall
some basic notions.

Let (X, d) be a metric space and CB(X) be the class of all nonempty closed and
bounded subsets of X. The Pompeiu-Hausdorff metric induced by d is the mapping
H : CB(X)× CB(X)→ [0,+∞) defined by

H(Z,W ) = max{sup
v∈W

d(v, Z), sup
u∈Z

d(u,W )},

for Z,W ∈ CB(X), where d(u,W ) = inf{d(u, v) : v ∈ W}.

Lemma 1.1 ([14]). Let (X, d) be a metric space. If Z,W ∈ CB(X) are such that
H(Z,W ) < ε, then for each v ∈ Z there exists an element u ∈ W such that d(v, u) < ε.

Definition 1.1 ([1]). Let (X, d,G) be a directed graph metric space and let Z and
W be two nonempty subsets of X. Then we say that:

(a) there is an edge between Z and W if there is an edge between some u ∈ Z and
v ∈ W ;

(b) there is a path between Z and W if there is a path between some u ∈ Z and
v ∈ W ;

(c) the graph G is said to be set-transitive if, for all Z,W, V ∈ CB(X), whenever
there is a path between Z and W and there is a path between W and V , then
there is a path between Z and V .

Definition 1.2 ([12]). Let P,Q : CB(X) → CB(X) be two multivalued mappings.
A set Z ∈ CB(X) is said to be a coincidence point of P and Q, if P (Z) = Q(Z). A
set Z ∈ CB(X) is said to be a fixed point of P if P (Z) = Z. The maps P , Q are said
to be weakly compatible if they commute at their coincidence points.

We will denote by Coin(P,Q) the set of all coincidence points of P and Q and by
Fix(P ) the set of all fixed points of P .

A collection Λ ⊂ CB(X) is said to be complete if for any sets Z,W ∈ Λ, there is
an edge between Z and W .

Recall [1] that the space (X, d,G) is said to have property (P ∗), if for any sequence
{Zn} in CB(X) with Zn → Z as n→ +∞ (in the sense of Pompeiu-Hausdorff metric),
the existence of an edge between Zn and Zn+1 for each n ∈ N, implies that there is a
subsequence {Znk

} of {Zn} with an edge between Znk
and Z for k ∈ N.
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The aim of this paper is to prove some coincidence and common fixed point re-
sults for a pair of (not necessarily continuous) multivalued generalized graphic FG-
contractive mappings defined on the family of closed and bounded subsets of a directed
graph metric space. These results extend and strengthen various comparable results
in the existing literature (see, e.g., [1–7, 14, 19]). Application to Fredholm-type inte-
gral inclusions is presented. For basic notions in metrical fixed point theory see, e.g.,
[8, 13].

2. Generalized Graphic FG-Contractions

Parvaneh et al. [16] introduced and used the following classes of functions, modifying
Wardowski’s approach in [20].

F is the set of all functions F : R+ → R such that
(F1) F is strictly increasing;
(F2) for each sequence {ξn} ⊆ R+, limn→+∞ ξn = 0 if and only if limn→+∞ F(ξn) =

−∞.
Gβ is the set of pairs (G, β), where G : R+ → R and β : [0,+∞)→ [0, 1), such that

(Gβ1) for each sequence {ξn} ⊆ R+, lim supn→+∞G(ξn) ≥ 0 if and only if
lim supn→+∞ ξn ≥ 1;

(Gβ2) for each sequence {ξn} ⊆ [0,+∞), lim supn→+∞ β(ξn) = 1
implies limn→+∞ ξn = 0;

(Gβ3) for each sequence {ξn} ⊆ R+, ∑+∞
n=1 G(β(ξn)) = −∞.

Definition 2.1. Let (X, d,G) be a directed graph metric space. The pair (P,Q) of
maps P,Q : CB(X)→ CB(X) is said to be a generalized graphic FG-contraction if

(i) for every Z ∈ CB(X) there is a path between Z and P (Z), as well as between
Q(Z) and Z, and

(ii) there exist F ∈ F and (G, β) ∈ Gβ such that for all Z,W ∈ vG, with a path
between them and P (Z) 6= P (W ),
(2.1) F(H(P (Z), P (W ))) ≤ F(Θ(Z,W )) +G(β(Θ(Z,W )))
holds, where

Θ(Z,W ) = max
{
H(Q(Z), Q(W )), H(P (Z), Q(Z)), H(P (W ), Q(W )),
1
2 [H(P (Z), Q(W )) +H(P (W ), Q(Z))]

}
.

Theorem 2.1. Let (X, d,G) be a directed graph metric space and P,Q : CB(X) →
CB(X) be a pair of mappings. Assume the following conditions hold:

(i) P (CB(X)) ⊆ Q(CB(X));
(ii) the graph G is set-transitive;
(iii) (P,Q) is a generalized graphic FG-contraction pair;
(iv) Q(CB(X)) is a complete subspace of (CB(X), H), and
(v) G is weakly connected and property (P ∗) holds.

Then Coin(P,Q) 6= ∅.
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Proof. Let Z0 ∈ CB(X) be arbitrary. Using (i), choose Z1 ∈ CB(X) such that
P (Z0) = Q(Z1). Proceeding in this way, if Zn ∈ CB(X) is chosen, we choose
Zn+1 ∈ CB(X) such that P (Zn) = Q(Zn+1) for n ∈ N. Since there is a path between
Zn and P (Zn) and there is a path between P (Zn) = Q(Zn+1) and Zn+1, it follows by
(ii) that there is a path between Zn and Zn+1 for each n ∈ N.

Assume that P (Zn) 6= P (Zn+1) for all n ∈ N. (If not, then P (Zn) = P (Zn+1) is true
for some n, which implies that Q(Zn+1) = P (Zn), and hence Zn+1 ∈ Coin(P,Q).)

As there is a path between Zn and Zn+1, due to (iii), we have that

F(H(Q(Zn+1), Q(Zn+2))) = F(H(P (Zn), P (Zn+1)))(2.2)
≤ F(Θ(Zn, Zn+1)) +G(β(Θ(Zn, Zn+1))),

where

Θ(Zn, Zn+1) = max


H(Q(Zn), Q(Zn+1)), H(P (Zn), Q(Zn)),
H(P (Zn+1), Q(Zn+1)),
1
2 [H(P (Zn), Q(Zn+1)) +H(P (Zn+1), Q(Zn))]


= max


H(Q(Zn), Q(Zn+1)), H(Q(Zn+1), Q(Zn)),
H(Q(Zn+2), Q(Zn+1)),
1
2 [H(Q(Zn+1), Q(Zn+1)) +H(Q(Zn+2), Q(Zn))]


≤ max

{
H(Q(Zn), Q(Zn+1)), H(Q(Zn+1), Q(Zn+2)),
1
2 [H(Q(Zn+2), Q(Zn+1)) +H(Q(Zn+1), Q(Zn))]

}
= max{H(Q(Zn), Q(Zn+1)), H(Q(Zn+1), Q(Zn+2))}.

Therefore,

F(H(Q(Zn+1), Q(Zn+2)))
≤F(max{H(Q(Zn), Q(Zn+1)), H(Q(Zn+1), Q(Zn+2))})

+G(β(max{H(Q(Zn), Q(Zn+1)), H(Q(Zn+1), Q(Zn+2))}))
≤F(H(Q(Zn), Q(Zn+1))) +G(β(H(Q(Zn), Q(Zn+1)))),

that is,

F(H(Q(Zn+1), Q(Zn+2))) ≤ F(H(Q(Zn), Q(Zn+1))) +G(β(H(Q(Zn), Q(Zn+1)))),

for all n ∈ N. We conclude that

F(H(Q(Zn), Q(Zn+1)))
≤F(H(Q(Zn−1), Q(Zn))) +G(β(Θ(Zn−1, Zn)))
≤F(H(Q(Zn−2), Q(Zn−1))) +G(β(Θ(Zn−1, Zn))) +G(β(Θ(Zn−2, Zn−1)))
...

≤F(H(Q(Z0), Q(Z1))) +
n∑
i=1

G(β(Θ(Zn−1, Zn))),
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that is,

F(H(Q(Zn), Q(Zn+1))) ≤ F(H(Q(Z0), Q(Z1))) +
n∑
i=1

G(β(Θ(Zn−1, Zn))),

for all n ∈ N. By the properties of (G, β) ∈ Gβ, limn→+∞ F(H(Q(Zn), Q(Zn+1))) =
−∞ and by (F2), limn→+∞H(Q(Zn), Q(Zn+1)) = 0.

Next we claim that the sequence {Q(Zn)} is a Cauchy one. Suppose the contrary,
which means that there exists an ε > 0 and two increasing sequences of integers {p(`)}
and {q(`)}, q(`) > p(`) > ` such that H(Q(Zp(`)), Q(Zq(`))), H(Q(Zq(`)+1), Q(Zp(`)−1))
and H(Q(Zq(`)), Q(Zp(`)−1)) tend to ε as `→ +∞. Due to (iii) with Z = Zp(`)−1 and
W = Zq(`), we have

F(H(Q(Zp(`)), Q(Zq(`)+1))) =F(H(P (Zp(`)−1), P (Zq(`))))(2.3)
≤F(Θ(Zp(`)−1, Zq(`))) +G(β(Θ(Zp(`)−1, Zq(`)))),

where
Θ(Zp(`)−1, Zq(`))(2.4)

= max


H(Q(Zp(`)−1), Q(Zq(`))), H(P (Zp(`)−1), Q(Zp(`)−1)),
H(P (Zq(`)), Q(Zq(`))),
1
2 [H(P (Zp(`)−1), Q(Zq(`))) +H(P (Zq(`)), Q(Zp(`)−1))]

 .
= max


H(Q(Zp(`)−1), Q(Zq(`))), H(Q(Zp(`)), Q(Zp(`)−1)),
H(Q(Zq(`)+1), Q(Zq(`))),
1
2 [H(Q(Zp(`)), Q(Zq(`))) +H(Q(Zq(`)+1), Q(Zp(`)−1))]

 .
Taking the limit as `→ +∞ in (2.4), we have

lim
k→+∞

Θ(Zp(`)−1, Zq(`)) = max{ε, 0, 0, 1
2(ε+ ε)} = ε.

Taking the limit as `→ +∞ in (2.3) we get
F (ε) ≤ F (lim sup

`→+∞
H(Q(Zp(l)), Q(Zq(`)+1))

≤ lim sup
`→+∞

F(Θ(Zp(`)−1, Zq(`))) + lim sup
`→+∞

G(β(Θ(Zp(`)−1, Zq(`)))),

≤ F(ε) + lim sup
`→+∞

G(β(Θ(Zp(`)−1, Zq(`)))),

which further implies
lim sup
`→+∞

G(β(Θ(Zp(`)−1, Zq(`)))) ≥ 0.

Using the properties of functions G and β, we get lim sup`→+∞ β(Θ(Zp(`)−1, Zq(`))) = 1
and lim`→+∞Θ(Zp(`)−1, Zq(`)) = 0, which is in contradiction with ε > 0. Hence
{Q(Zn)} is a Cauchy sequence in Q(CB(X)). Due to (iv), Q(Zn)→ D as n→ +∞
for some D ∈ CB(X). In addition, Q(C) = D for some C ∈ CB(X).

We argue that P (C) = Q(C). If not, then, since there is a path between Q(Zn+1)
and Q(Zn) by the property (P ∗), there exists a subsequence {Q(Znk+1)} of {Q(Zn+1)}
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such that there is a path between Q(C) and Q(Znk+1) for every k ∈ N. As there is a
path between C and Q(C) and there is a path between Q(Znk+1) = P (Znk

) and Znk
,

we have that there is a path between C and Znk
. Using condition (iii), we get that

F(H(P (C), Q(Znk+1))) = F(H(P (C), P (Znk
)))(2.5)

≤ F(Θ(C,Znk
)) +G(β(Θ(C,Znk

))),

where

Θ(C,Znk
)

= max
{
H(Q(C), Q(Znk

)), H(P (C), Q(C)), H(P (Znk
), Q(Znk

)),
1
2 [H(P (C), Q(Znk

)) +H(P (Znk
), Q(C))]

}

= max
{
H(C,Q(Znk

)), H(P (C), Q(C)), H(Q(Znk+1), Q(Znk
)),

1
2 [H(P (C), Q(Znk

)) +H(Q(Znk+1), Q(C))]

}
.

There are the following four possibilities.
• Θ(C,Znk

) = H(Q(C), Q(Znk
)). From (2.5),

F(H(P (C), Q(Znk+1))) = F(H(P (C), P (Znk
))) +G(β(H(Q(C), Q(Znk

)))).

Passing to the upper limit as k → +∞ gives

F(H(P (C), Q(C))) ≤ F(H(Q(C), Q(C))) +G(β(H(Q(C), Q(C)))),

which is a contradiction.
• When Θ(C,Znk

) = H(P (C), Q(C)), then

F(H(P (C), Q(C))) ≤ F(H(P (C), Q(C))) +G(β(H(P (C), Q(C)))).

Therefore, G(β(H(P (C), Q(C)))) ≥ 0, which implies that β(H(P (C), Q(C)) ≥ 1,
which is a contradiction.
• Θ(C,Znk

) = H(Q(Znk+1), Q(Znk
)). From (2.5),

F(H(P (C), Q(Znk+1))) = F(H(Q(Znk+1), Q(Znk
))) +G(β(H(Q(Znk+1), Q(Znk

)))).

Passing to the upper limit as k → +∞, we have

F(H(P (C), Q(C))) ≤ F(H(Q(C), Q(C))) +G(β(H(Q(C), Q(C)))),

which is a contradiction.
• Θ(C,Znk

) = H(P (C), Q(Znk
)) +H(Q(Znk+1), Q(C))

2 . From (2.5),

F(H(P (C), Q(Znk+1))) =F
(
H(P (C), Q(Znk

)) +H(Q(Znk+1), Q(C))
2

)

+G

(
β

(
H(P (C), Q(Znk

)) +H(Q(Znk+1), Q(C))
2

))
.
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Passing to the upper limit as k → +∞ gives

F(H(P (C), Q(C))) ≤F
(
H(P (C), Q(C)) +H(Q(C), Q(C))

2

)

+G

(
β

(
H(P (C), Q(C)) +H(Q(C), Q(C))

2

))

=F
(
H(P (C), Q(C))

2

)
+G

(
β

(
H(P (C), Q(C))

2

))

<F (H(P (C), Q(C))) +G

(
β

(
H(P (C), Q(C))

2

))
,

by the properties of (G, β) ∈ Gβ, which is a contradiction.
Thus, in all cases we have P (C) = Q(C), that is, C ∈ Coin(P,Q). �

Theorem 2.2. Let all of the conditions of Theorem 2.1 be satisfied. Then the following
hold.

(1) If Coin(P,Q) is a complete subgraph of X, then H(P (C), P (D)) = 0 for all
C,D ∈ Coin(P,Q).

(2) If, moreover, P and Q are weakly compatible, then they have a unique common
fixed point in CB(X).

(3) Fix(P ) ∩ Fix(Q) is a complete subgraph of X if and only if P and Q have a
unique common fixed point in CB(X).

Proof. Following the proof of Theorem 2.1, Coin(P,Q) 6= ∅.
In order to show (1), suppose that C,D ∈ Coin(P,Q). Assume on contrary that

H(P (C), P (D)) 6= 0. Due to (iii),
(2.6) F(H(P (C), P (D))) ≤ F(Θ(C,D)) +G(β(Θ(C,D))),
where

Θ(C,D) = max
{
H(Q(C), Q(D)), H(P (C), Q(C)), H(P (D), Q(D)),
1
2 [H(P (C), Q(D)) +H(P (D), Q(C))]

}

= max
{
H(P (C), P (D)), H(P (C), P (C)), H(P (D), Q(D)),
1
2H(P (C), P (D)) +H(P (D), P (C))

}
= H(P (C), P (D)).

Thus,
F(H(P (C), P (D))) ≤ F(H(P (C), P (D))) +G(β(H(P (C), P (D))))

by the properties of (G, β) ∈ Gβ, a contradiction. Hence, we have derived that (1)
holds.

In order to show (2), we start with Fix(Q) ∩ Fix(P ) 6= ∅. If Y = P (C) = Q(C),
then we have Q(Y ) = QP (C) = PQ(C) = P (Y ), which shows that Y ∈ Coin(P,Q).
Thus, H(P (C), P (Y )) = 0 (by (1)). Hence Y = P (Y ) = Q(Y ), that is, Y ∈
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Fix(P ) ∩ Fix(Q). As Coin(P,Q) contains exactly one element, the same is true for
Fix(P ) ∩ Fix(Q).

Finally, we show (3). Assume that Fix(P ) ∩ Fix(Q) is a complete subgraph of
X. In order to show that it contains only one element assume that there exist
C,D ∈ Fix(P ) ∩ Fix(Q) with C 6= D. By the assumption, there exists an edge
between C and D. Due to (iii),

F(H(C,D)) = F(H(P (C), P (D))) ≤ F(Θ(C,D)) +G(β(Θ(C,D))),

where

Θ(C,D) = max
{
H(Q(C), Q(D)), H(P (C), Q(C)), H(P (D), Q(D)),
1
2H(P (C), Q(D)) +H(P (D), Q(C))

}

= max
{
H(C,D), H(C,C), H(D,D), 1

2[H(C,D) +H(D,C)]
}

= H(C,D).

Thus,
F(H(C,D)) ≤ F(H(C,D)) +G(β(H(C,D))),

which is a contradiction. Hence, C = D. Conversely, if Fix(P ) ∩ Fix(Q) contains
exactly one element, then since eG ⊇ ∆, Fix(P ) ∩ Fix(Q) is a complete subgraph
of X. �

Remark 2.1. (a) Taking F(ξ) = G(ξ) = ln ξ and β(ξ) = k ∈ (0, 1) (obviously F ∈ F
and (G, β) ∈ Gβ), Theorems 2 and 3, as well as Corollary 1 from the paper [3] follow
as special cases of our results. In particular, all the results mentioned in Remark 1 of
[3] can also be considered as corollaries of our results.

(b) Several other results can be obtained from Theorems 2.1 and 2.2 by taking
various other possible choices for functions F, G and β. We formulate just that,
taking F (ξ) = −1/

√
ξ and G(ξ) = ln ξ, the condition (2.1) reduces to

H(P (Z), P (W )) ≤ Θ(Z,W )[
1−

√
Θ(Z,W ) ln β(Θ(Z,W ))

]2 .
In particular, taking β(ξ) = const ∈ (0, 1) and denoting ln β = −τ < 0, the previous
condition further reduces to

(2.7) H(P (Z), P (W )) ≤ Θ(Z,W )[
1 + τ

√
Θ(Z,W

]2 .
Example 2.1. Let X = {α, β, γ} = vG, eG = {(α, α), (β, β), (γ, γ), (α, β), (α, γ), (β, γ)}
and d : X ×X → [0,+∞) be defined by

d(α, β) =1
3 , d(α, γ) = d(β, γ) = 3

4 ,

d(u, u) =0 for u ∈ X and d(u, v) = d(v, u) for u, v ∈ X.
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Then (X, d,G) is a directed graph metric space. Consider the following mappings
P,Q : CB(X)→ CB(X):

P (Z) =

{α}, if Z ⊆ {α, β},
{α, β}, otherwise;

Q(Z) =


{α}, if Z = {α},
{α, β}, if Z ∈ {{β}, {α, β}},
{α, β, γ}, otherwise.

Concerning conditions (i)-(v) of Theorem 2.1, just condition (iii) has to be checked in
cases when P (Z) 6= P (W ). We will use version (2.7) with τ = 1√

3 . The only possible
such cases are when Z ⊆ {α, β}, W 3 γ or vice versa (they are symmetric, so just
the first one will be considered).

In this case, P (Z) = {α}, P (W ) = {α, β}, Q(Z) =

{α}, if β /∈ Z,
{α, β}, if β ∈ Z

, Q(W ) =

{α, β, γ}. Hence, H(P (Z), P (W )) = 1
3 , Θ(Z,W ) = H(P (W ), Q(W )) = 3

4 , and thus

Θ(Z,W )
[1 + τ

√
Θ(Z,W ]2

=
3
4[

1 + 1√
3

√
3
4

]2 = 1
3 = H(P (Z), P (W )),

and condition (2.7) holds true.
Hence, by Theorem 2.1, Coin(P,Q) 6= ∅ (in fact, {α} is the unique coincidence

point of P and Q). Since also conditions of Theorem 2.2 are satisfied, this is also the
unique common fixed point of these mappings.

Remark 2.2. The presented example is a simplified version of Example 1 from the
paper [3]. In a similar way, a simplified version of Example 2 from this paper can be
constructed, showing that it is not necessary that the graph (vG, eG) be complete in
order to obtain conclusions using results of this kind.

If Q = (identity map on CB(X)) in (2.2), then we have the following consequence
of Theorem 2.1 and Theorem 2.2.

Corollary 2.1. Let (X, d,G) be a set-transitive directed graph metric space. Assume
that P : CB(X)→ CB(X) satisfies the following:

(a) there is a path between Z and P (Z) for each Z in CB(X);
(b) there exist F ∈ F and (G, β) ∈ Gβ and for all Z,W ∈ X such that there is a

path between Z and W , and P (Z) 6= P (W ),
F(H(P (Z), P (W ))) ≤ F(Θ(Z,W )) +G(β(Θ(Z,W ))),

holds, where

Θ(Z,W ) = max
{
H(Z,W ), H(Z, P (Z)), H(W,P (W )),
1
2 [H(Z, P (W )) +H(W,P (Z))]

}
;

(c) G is weakly connected and property (P ∗) holds.
Then we have the following conclusions:
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(i) P has a fixed point;
(ii) if Fix(P ) is a complete subgraph of X, then H(C,D) = 0, for all C,D ∈

Fix(P );
(iii) Fix(P ) is a complete subgraph of G if and only if Fix(P ) has exactly one

element.

Assuming that the mappings P and Q are defined just on the subset of CB(X)
containing all singleton subsets of X (which is equivalent to assuming that they are
defined on X), we obtain the following corollary of Theorems 2.1 and 2.2.

Corollary 2.2. Let (X, d,G) be a set-transitive directed graph metric space and P,Q :
X → CB(X) be a pair of mappings. Assume the following conditions hold:

(i) P (X) ⊆ Q(X);
(ii) for every u ∈ X, there is a path between {u} and Pu, as well as between Qu

and {u};
(iii) there exist F ∈ F and (G, β) ∈ Gβ such that for all u, v ∈ X such that there is

a path between {u} and {v} and Pu 6= Pv,

F(H(Pu, Pv)) ≤ F(Θ(u, v)) +G(β(Θ(u, v)))

holds, where

Θ(u, v) = max
{
H(Qu,Qv), H(Pu,Qu), H(Pv,Qv),
1
2 [H(Pu,Qv) +H(Pv,Qu)]

}
;

(iv) G is weakly connected and property (P ∗) holds, and
(v) Q(X) is a complete subspace of (CB(X), H).

Then there exists u ∈ X such that Pu = Qu. Moreover,
(1) if Coin(P,Q) is a complete subgraph of X, then H(Pu, Pv) = 0 for all u, v ∈

Coin(P,Q).
(2) if Coin(P,Q) is a complete subgraph of X and P and Q are weakly compatible,

then Fix(P ) ∩ Fix(Q) contains exactly one element;
(3) Fix(P )∩Fix(Q) is a complete subgraph of X if and only if it contains exactly

one element.

Finally, assuming that the mapping P is defined just on X, we obtain the following
from Corollary 2.1.

Corollary 2.3. Let (X, d,G) be a set-transitive complete directed graph metric space
and P : X → CB(X) be a mapping. Assume the following conditions hold.

(a) There is a path between {u} and Pu for each u ∈ X.
(b) There exist F ∈ F and (G, β) ∈ Gβ so that for all u, v ∈ X such that there is

a path between them, and Pu 6= Pv,

F(H(Pu, Pv)) ≤ F(Θ(u, v)) +G(β(Θ(u, v)))
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holds, where

(2.8) Θ(u, v) = max
{
d(u, v), δ(u, Pu), δ(v, Pv), 1

2[δ(u, Pv) + δ(v, Pu)]
}
.

(c) The graph G is weakly connected and satisfies the property (P ∗).
Then we have the following conclusions.

(i) There is a point u ∈ X such that Pu = {u}.
(ii) If Fix(P ) is a complete subgraph of X, then it contains exactly one element.

Here, in (2.8), for u ∈ X and Z ⊆ X,
δ(u, Z) = sup

v∈Z
d(u, v) = H({u}, Z).

3. Application

In this section we are going to apply the obtained results to the problem of existence
of solutions for a Fredholm-type integral inclusion. Problems of this kind were treated
by several researchers, see, e.g., [15, 17,18].

Consider the integral inclusion

(3.1) v(t) ∈ γ(t) +
∫ b

a
M(t, s, v(s)) ds, t ∈ J = [a, b],

where γ ∈ X = C[a, b] is a given function, M : J × J × R → CB(R) is a given
set-valued mapping and v ∈ X is the unknown function. Here, X = C[a, b] is the
standard Banach space of continuous real functions with the maximum norm. We
will consider the space X as endowed with the partial order � introduced by

u � v ⇐⇒ u(t) ≤ v(t), for all t ∈ J,
where u, v ∈ X. We will say that u and v are comparable if u � v or v � u holds.

Consider the following assumptions.
(I) For each v ∈ X, the mapping Mv : J2 → CB(R), given by Mv(t, s) =

M(t, s, v(s)), is continuous.
(II) For fixed v ∈ X and for any sequence {mn} with mn(t, s) ∈ Mv(t, s), there

exists a subsequence {mni
} of {mn} such that {mni

} converges for all t, s ∈ J
towards a function m with m(t, s) ∈ Mv(t, s) as i → +∞ and, moreover, for
every t ∈ J ,

∫ b
a mni

(t, s) ds→
∫ b
a m(t, s) ds, as i→ +∞.

(III) For every v ∈ X there is a function mv, such that mv(t, s) ∈ Mv(t, s) for
t, s ∈ J and

v(t) ≤ γ(t) +
∫ b

a
mv(t, s) ds, t ∈ J.

(IV) There exists τ > 0 such that for all comparable u, v ∈ X and for all mu,mv

with mu(t, s) ∈Mu(t, s) and mv(t, s) ∈Mv(t, s) for t, s ∈ J ,

(3.2) |mu(t, s)−mv(t, s)| ≤
1

b− a
|u(t)− v(t)|

[1 + τ
√
|u(t)− v(t)|]2
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holds for all t, s ∈ J .

Theorem 3.1. Let the assumptions (I)–(IV) hold. Then the integral inclusion (3.1)
has a solution in X.

Proof. Let P : X → CB(X) be the operator given by

Pv =
{
u ∈ X : u(t) ∈ γ(t) +

∫ b

a
M(t, s, v(s)) ds, t ∈ [a, b]

}
.

Obviously, v ∈ X is a solution of the inclusion (3.1) if and only if v is a fixed point of
operator P .

We first check that the operator P is well-defined. Indeed, let v ∈ X be arbitrary.
By (I), the set-valued operator Mv : J2 → CB(R) is continuous (w.r.t. Pompeiu-
Hausdorff metric on CB(R)). From the Michael’s selection theorem, it follows that
there exists a continuous function mv : J2 → R such that mv(t, s) ∈Mv(t, s) for each
(t, s) ∈ J2. Hence, the function u(t) = γ(t)+

∫ b
a mv(t, s) ds belongs to Pv, i.e., Pv 6= ∅.

Since γ and Mv are continuous on J , resp. J2, their ranges are bounded and hence
Pv is bounded.

Let v ∈ X be fixed, {υn} be a sequence in Pv and υn → υ ∈ X. Then, there exists
a sequence of functions {mn} such that mn(t, s) ∈Mv(t, s) for t, s ∈ J , and

υn(t) = γ(t) +
∫ b

a
mn(t, s) ds, t ∈ J.

By hypothesis (II), there exists a subsequence {mni
} of {mn} such that {mni

}
converges for all t, s ∈ J towards a function m as i → +∞, and, for every t ∈
J,
∫ b
a mni

(t, s) ds →
∫ b
a m(t, s) ds, as i → +∞. As Mv(t, s) is closed for all t, s ∈ J ,

then m(t, s) ∈Mv(t, s) for all t, s ∈ J2. Besides,

υ(t) = lim
i→+∞

υni
(t) = γ(t) +

∫ b

a
m(t, s) ds, t ∈ J.

Thus, υ ∈ Pv and we have proved that images of P are closed subsets of X.
Hence, P : X → CB(X).
Consider the graph G with vG = X and eG = {(u, v) ∈ X2 : u � v }. We have to

check the conditions of Corollary 2.3.
(a) The assumption (III) assures that there is a path between {v} and Pv for each

v ∈ X.
(b) To see that P is a generalized graphic FG-contraction, let u, v ∈ X be compa-

rable. Then, using the assumption (IV) and the fact that the function ξ 7→ ξ

[1+τ
√
ξ]2
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is increasing (which is easy to check), we get that

sup
ϕ∈Pu

d(ϕ, Pv) = sup
ϕ∈Pu

inf
χ∈Pv

d(ϕ, χ)

= sup
ϕ∈Pu

inf
χ∈Pv

max
t∈J
|ϕ(t)− χ(t)|

= sup
mu∈Mu

inf
mv∈Mv

max
t∈J

∣∣∣∣∣
∫ b

a
[mu(t, s)−mv(t, s)] ds

∣∣∣∣∣
≤ sup

mu∈Mu

inf
mv∈Mv

max
t∈J

∫ b

a
|mu(t, s)−mv(t, s)| ds

≤ 1
b− a

max
t∈J

∫ b

a

|u(t)− v(t)|
[1 + τ

√
|u(t)− v(t)|]2

ds

≤ 1
b− a

· maxt∈J |u(t)− v(t)|
[1 + τ

√
maxt∈J |u(t)− v(t)|]2

∫ b

a
ds

= d(u, v)
[1 + τ

√
d(u, v)]2

.

Similarly, one can see that

sup
χ∈Pv

d(χ, Pu) ≤ d(u, v)
[1 + τ

√
d(u, v)]2

.

Therefore, we have

H(Pu, Pv) ≤ d(u, v)
[1 + τ

√
d(u, v)]2

≤ Θ(u, v)
[1 + τ

√
Θ(u, v)]2

.

Taking F(ξ) = − 1√
ξ
, G(ξ) = ln ξ and β(ξ) = e−τ ∈ (0, 1), we get that P is a

generalized graphic FG-contraction (see the inequality (2.7)).
(c) Let {un} be a sequence in X with un → u as n → +∞ and let un � un+1 for

each n ∈ N. Then obviously un � u, i.e., (un, u) ∈ eG holds for all n ∈ N.
Thus, P satisfies all the conditions of Corollary 2.3, and so P has a fixed point,

that is, the integral inclusion (3.1) has a solution in X = C[a, b]. �

Remark 3.1. Using other possibilities for F ∈ F an (G, β) ∈ Gβ, the inequality (3.2)
in the contractive condition (IV) of Theorem 3.1 can take various other forms. For
example, taking F(ξ) = G(ξ) = ln ξ and β : [0,+∞) → [0, 1) satisfying (Gβ2) and
(Gβ3) (with G = ln), (3.2) is replaced by

|mu(t, s)−mv(t, s)| ≤
1

b− a
|u(t)− v(t)| · β(|u(t)− v(t)|), t, s ∈ J.
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In particular, taking β(ξ) = k
b−a , with k ∈ (0, 1), we get that the following inequality

is required:

(3.3) |mu(t, s)−mv(t, s)| ≤
k

b− a
|u(t)− v(t)|, t, s ∈ J.
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