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LIMIT POINT ANALYSIS OF THE BROWDER SPECTRUM FOR
OPERATOR MATRICES

AYMEN BAHLOUL1

Abstract. In this paper, we investigate the limit point set of the Browder spectrum
for upper triangular operator matrices M on Banach spaces. Utilizing the robust
tools and comprehensive framework of local spectral theory, we offer a detailed
analysis of this spectral feature. We establish that the relationship between the
accumulation points of the Browder spectrum σBr(M) of M and those of its diagonal
entries is encapsulated by the equation:

Acc σBr(M) ∪ WAcc σBr
=

3⋃
i=1

AccσBr(Ai),

where WAcc σBr
denotes a specific union of ”holes“ in Acc σBr(M), comprising sub-

sets within the intersection
⋂3

i=1 Acc σBr(Ai). Furthermore, we delineate sufficient
conditions under which the limit points of the Browder spectrum for a 3 × 3 upper
triangular block operator matrix are precisely characterized as the union of the
limit points of the spectra of its diagonal entries. Our findings significantly advance
the understanding of the spectral properties of operator matrices, offering crucial
insights into their structure within the context of local spectral theory. Moreover,
this work extends and refines the results of A. Tajmouati et al., as presented in
[17], contributing to the ongoing development and enhancement of operator matrix
theory.

1. Introduction

Browder operators and their associated derivative sets serve as generalizations
of Fredholm and semi-Fredholm operators, as well as their derivative sets, within
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the framework of linear operators. This area has been extensively explored in the
literature, leading to numerous significant advancements. For a deeper understanding,
readers are encouraged to consult the references [4, 9].

In recent years, operator matrix theory has gained substantial attention in both
pure and applied mathematics. As a result, numerous researchers have focused on the
spectral properties of 2 × 2 upper triangular block operator matrices, including works
by [1–7, 10, 17, 18]. This area of study is closely tied to the exploration of Browder
operators and the development of local spectral theory.

In the field of mathematical physics, many linear evolution equations can be refor-
mulated as a Cauchy problem governed by 3×3 block operator matrices. For example,
such reformulations are common in equations arising from linear thermo-viscoelasticity
[14] and fluid dynamics [15]. Our motivation for this paper is to investigate why the
results presented by A. Tajmouati et al. [17] remain valid for 3 × 3 upper triangular
operator matrices derived from systems of linear evolution equations.

Accordingly, after considering on the direct sum of Banach spaces, the following
bounded 3 × 3 upper triangular operator matrix

M :=

 A1 B1 C1
0 A2 B2
0 0 A3

 .

This raises an important question.
Under what conditions on the entries of the operator matrices M can we obtain

a relation between the limit point set for the Browder spectrum of M and the limit
point set for the Browder spectrum of the operator entries Ai, 1 ≤ i ≤ 3, in the form:

Acc σBr(M) ⊆
3⋃

i=1
Acc σBr(Ai)?

To address this question, we propose leveraging the results of A. Tajmouati et al.
in [17] after reducing the matrix form M into the the form of block 2 × 2 operator
matrix

M :=
(

X Y

Z A3

)
,

where X :=
(

A1 B1
0 A2

)
, Y :=

(
C1
B2

)
and Z :=

(
0 0

)
.

While this approach might appear somewhat contrived and limited in scope, it is
critical to refine our analysis to achieve more comprehensive and significant results. To
achieve the best of this paper, our main objective in this work is to extend the results
obtained by A. Tajmouati et al. in [17] to the case of the 3 × 3 block operator matrix.
Specifically, we found some sufficient conditions on the entries of the operator matrices
M to assure our interest and to prove an improvement in the theory of operators
matrices and a continuation and an amelioration of the results of A. Tajmouati et al.
in [17].
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The paper’s remaining sections are arranged as follows. In Section 2, we collect
certain notes and required terminology throughout the paper and we remember some
classic definitions introducing Browder’s operator theory. The purpose of the work
presented in Section 3 is dedicated to investigate the limit point set for Browder
spectrum of a bounded 3 × 3 upper triangular operator matrix M. After checking
that the assertion Acc σBr(M) ⊆ ⋃3

i=1 Acc σBr(Ai) is always true, we investigate the
local spectral theory to prove that

Acc σBr(M) ∪
[[

Svep(A∗
1) ∪ Svep(A∗

2)
]

∩ Svep(A3)
]

=
3⋃

i=1
Acc σBr(Ai)

for all bounded linear operators B1, B2 and C1. In addition, we impose sufficient
conditions on Ai, for i = {1, 2, 3} under which the following equality Acc σBr(M) =⋃3

i=1 Acc σBr(Ai) is guaranteed. Furthermore, we prove that the passage from
Acc σBr(M) to ⋃3

i=1 Acc σBr(Ai) can be presented as well:

Acc σBr(M) ∪ WAcc σBr
=

3⋃
i=1

Acc σBr(Ai),

where WAcc σBr
is the union of certain holes in Acc σBr(M), that occur to be subsets of⋂3

i=1 Acc σBr(Ai). Finally, we give sufficient conditions to reassure our desired equality.

2. Preliminaries

In this section, we revisit several well-known definitions and mathematical tools
that are essential for the subsequent discussions. Throughout this paper, E denotes
an infinite-dimensional complex Banach space, and T ∈ L(E), where L(E) represents
the set of bounded linear operators on E. We will use the following notations and
concepts:

� T ∗ : the adjoint of T ;
� N(T ) : the null space of T ;
� R(T ) : the range of T ;
� α(T ) = dimN(T ) : the dimension of the null space of T ;
� β(T = codimR(T )) : the codimension of the range of T ;
� σ(T ) : the spectrum of T .

Let us consider Υ a given subset of C. The following notations will be clarified:
� Acc Υ : the set of all points of accumulation of Υ;
� IsoΥ : the set of all isolated points of Υ;
� Υc : the complement of Υ;
� ∂Υ : the boundary of Υ;
� Υ : the closure of Υ;
� ηΥ : the polynomially convex hull of Υ.

Before passing to introduce the notion of Browder operators and their derivative
sets, the local spectral theory of linear operators on a Banach space is discussed in the



1630 A. BAHLOUL

following basic results, which will be utilized in the rest of this work. For additional
details, we may refer to [12,13].

Definition 2.1. Let T ∈ L(E).
T is said to have the single-valued extension property (SVEP for short) at τ ∈ C if

for every open neighborhood Fτ of τ , the constant function g ≡ 0 is the only analytic
solution of the equation:

(λI − T )g(λ) = 0, for all λ ∈ Fτ .

We denote by Svep(T ), the open set of τ ∈ C where T fails to have SVEP at τ .

Remark 2.1. We would like to note also that T has SVEP if Svep(T ) = ∅.

Now, we introduce an important class of operators which involves the concept of
Fredholm theory.

Definition 2.2. Let E be a Banach space, we define the following.
(i) The set of upper semi-Fredholm operators on E as:

Φ+(E) = {T ∈ L(E) : α(T ) < +∞ and R(T ) is closed in E}.

(ii) The set lower semi-Fredholm operators on E as:
Φ−(E) = {T ∈ L(E) : β(T ) < +∞ and R(T ) is closed in E}.

Accordingly to Definition 2.2, the set of Fredholm operators on E is defined by:
Φ(E) :=Φ+(E) ∩ Φ−(E)

:={T ∈ L(E) : β(T ) < +∞, R(T ) is closed in E and β(T ) < +∞}.

Before moving to introduce some sets of Browder operators, the following quantities
will be omitted for T ∈ L(E):

• the ascent of T , denoted by a(T ) and defined as:
a(T ) := inf{q ∈ N : N(T q) = N(T q+1)};

• the descent of T , denoted by d(T ) and defined as:
d(T ) := inf{q ∈ N : R(T q) = R(T q+1)}.

Before proceeding further, we introduce the following definition.

Definition 2.3. (i) Set of upper semi-Browder operators on E is defined as:
Br+(E) := {T ∈ L(E) : T ∈ Φ+(E) : a(T ) < +∞}.

(ii) Set of lower semi-Browder operators on E is defined as:
Br−(E) := {T ∈ L(E) : T ∈ Φ−(E) : d(T ) < +∞}.

(iii) Set of Browder operators on E is defined by:
Br(E) :=Br−(E) ∩ Br+(E)

:={T ∈ L(E) : T ∈ Φ(E), a(T ) < +∞ and d(T ) < +∞}.
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Continuing in this context, we introduce the definitions of the upper semi-Browder
spectrum, the lower semi-Browder spectrum, and the Browder spectrum.

Definition 2.4. Let T ∈ L(E). Then, we define the following spectra:
σBr+(T ) := {τ ∈ C : τI − T ̸∈ Br+(E)} − upper semi-Browder spectrum of T,

σBr−(T ) := {τ ∈ C : τI − T ̸∈ Br−(E)} − lower semi-Browder spectrum of T,

σBr(T ) := {τ ∈ C : τI − T ̸∈ Br(E)} − Browder spectrum of T.

Remark 2.2. (i) It is important to point out that σBr+(T ) = σBr−(T ∗) and σBr−(T ) =
σBr+(T ∗), where T ∗ ∈ L(E∗) and σBr(T ) = σBr+(T ) ∪ σBr−(T ). This proves that
σBr(T ) = σBr(T ∗).

(ii) On the basis of Theorem 3.52 in [4], we have:
σBr(T ) = σBr+(T ) ∪ Svep(T ∗) = σBr−(T ) ∪ Svep(T ).

At the moment, we introduce the following upper triangular block 3 × 3 operator
matrix defined on the direct sum of Banach spaces E ⊕ F ⊕ G as well:

M :=

 A1 B1 C1
0 A2 B2
0 0 A3

 .

Each operator entry of such kind of operator matrix is bounded and act on their
corresponding spaces as:

A1 : E → E, A2 : F → F , A3 : G → G,
B1 : F → E, B2 : G → F , C1 : G → E.

Considering the case of infinite dimensions, it is widely acknowledged that the in-
clusion, σ(M) ⊂ ⋃3

i=1 σ(Ai), can be strict. Many mathematicians have drawn the
attention to study the defect set

(⋃3
i=1 σ̃(Ai)

)
\ σ̃(M), where σ̃ goes through various

types of spectra.
The subsequent analysis requires a crucial conclusion that stems from the following

theorem, whose formulation is inspired by the framework developed in [9].

Theorem 2.1. Let (A1, A2, A3) ∈
(
L(E),L(F ),L(G)

)
. Then,

σBr(M) ∪
[[

Svep(A∗
1) ∪ Svep(A∗

2)
]

∩ Svep(A3)
]

=
3⋃

i=1
σBr(Ai),

for every B1 ∈ L(F, E), B2 ∈ L(G, F ) and C1 ∈ L(G, E).

3. Main Results and Proofs

In order to obtain our first result. We start by introducing the following diagonal
operator matrix denoted by Md expressed as well: Md := diag (A1, A2, A3).

Our first lemma reads as follows.
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Lemma 3.1. Let (A1, A2, A3) ∈
(
L(E),L(F ),L(G)

)
. Then, for every B1 ∈ L(F, E),

B2 ∈ L(G, F ) and C1 ∈ L(G, E) we have:

σBr(M) ⊆ σBr(Md) =
3⋃

i=1
σBr(Ai).

Proof. We start with the following factorization of the operator matrices M 1
k

written
as follows:

M 1
k

:= D1 M D2, for every k ∈ N∗(3.1)

where: D1 :=

 I 0 0
0 kI 0
0 0 kI

 and D2 :=

 I 0 0
0 1

k
I 0

0 0 1
k
I

 .

Since ∥M1/k − Md∥ → 0 as k → +∞, and given that the Browder spectrum σBr is
upper semi-continuous (see Theorem 2 in [16]), it follows that σBr(M) ⊆ σBr(Md).

The second equality is evident. □

Currently, we express the following proposition which will be widely used in the
sequel.

Proposition 3.1. Presume that:
(i) (A1, A2, A3) ∈

(
L(E),L(F ),L(G)

)
;

(ii) (B1, B2, C1) ∈
(
L(F, E),L(G, F ),L(G, E)

)
.

Then, we have:

Acc σBr(M) ⊆ Acc σBr(Md) =
3⋃

i=1
Acc σBr(Ai).

Proof. It is obvious that Acc σBr(Md) = ⋃3
i=1 Acc σBr(Ai), since we have σBr(Md) =⋃3

i=1 σBr(Ai). Without loss of generality, let consider 0 ̸∈ ⋃3
i=1 Acc σBr(Ai), then, there

exists α > 0 such that τI − A1, τI − A2 and τI − A3 are Browder operators for every
τ , 0 < |τ | < α. Furthermore, according to Lemma 3.1, we get τI − M is Browder for
every τ , 0 < |τ | < α. This concludes that 0 ̸∈ Acc σBr(M). □

The presented example illustrates that the inclusion Acc σBr(M) ⊆ ⋃3
i=1 Acc σBr(Ai)

can indeed be strict, meaning that the accumulation points of the Browder spectrum
of M may not coincide with the union of those of its diagonal entries.

Example 3.1. Let A1, A2, A3, C1 ∈ L(ℓ2) be defined by:
A1ek = A2ek = ek+1, B1 = B2 = 0, C1 = e0 ⊗ e0, A3 = A∗

1,

where {ek}k∈N is the canonical orthonormal basis of the Hilbert space ℓ2.
It is well known that σBr(A1) = σBr(A2) = {τ ∈ C : |τ | ≤ 1}, hence

Acc σBr(A1) = Acc σBr(A2) = {τ ∈ C : |τ | ≤ 1}.



LIMIT POINTS FOR BROWDER SPECTRUM OF OPERATOR MATRICES 1633

Since the operator matrix M constructed from these entries is unitary, it follows
that Acc σBr(M) ⊆ {τ ∈ C : |τ | = 1}. This implies that 0 /∈ Acc σBr(M), although
0 ∈ ⋃3

i=1 Acc σBr(Ai).
We also remark that the operator A3 = A∗

1 does not possess the Single-Valued
Extension Property (SVEP).

In what follows, we introduce the following definition and we state our next lemma
which plays a crucial role in proving our next result.
Definition 3.1. Let T ∈ L(E). We say that the operator T has the property (Bra)
at τ ∈ C if τ ̸∈ Acc σBr(T ).
Lemma 3.2. If any three of operators A1, A2, A3, and M have the property (Bra) at
0, then the fourth does as well.

Proof. (i) If the operators A1, A2 and A3 have the property (Bra) at 0, then, according
to Proposition 3.1, M has the property (Bra) at 0.

(ii) If the operators A1, A2 and M have the property (Bra) at 0, this means 0 ̸∈
Acc σBr(A1), 0 ̸∈ Acc σBr(A2) and 0 ̸∈ Acc σBr(M). Hence, there exists α > 0 such
that τI − A1, τI − A2 and τI − M are Browder operators for every τ , 0 < |τ | < α.
Thus, by combining Proposition 3.5 in [8] and Corollary 5 in [11], we obtain that
τI − A3 is Browder operator for every τ , 0 < |τ | < α, that is 0 ̸∈ Acc σBr(A3).

(iii) If the operators A2, A3 and M have the property (Bra) at 0, then A1 has also
the property (Bra) at 0. We adopt the same reasoning treated in the previous case.

(iv) If A1, A3 and M have the property (Bra) at 0, then A2 has the property (Bra)
at 0. The proof is similar to (ii). □

Our next aim in this section is to prove our first main result by means of localized
SVEP. This theorem will guide us to a sufficient condition that guaranties the desired
equality shown in Corollary 3.1.
Theorem 3.1. Assume that:

(i) (A1, A2, A3) ∈
(
L(E),L(F ),L(G)

)
;

(ii) (B1, B2, C1) ∈
(
L(F, E),L(G, F ),L(G, E)

)
.

Then, we have:

Acc σBr(M) ∪
[[

Svep(A∗
1) ∪ Svep(A∗

2)
]

∩ Svep(A3)
]

=
3⋃

i=1
Acc σBr(Ai).

Proof. Theorem 2.1 shows that

σBr(M) ∪
[[

Svep(A∗
1) ∪ Svep(A∗

2)
]

∩ Svep(A3)
]

=
3⋃

i=1
σBr(Ai),

for every B1 ∈ L(F, E), B2 ∈ L(G, F ) and C1 ∈ L(G, E). Hence,
3⋃

i=1
Acc σBr(Ai) =

{
σBr(M) ∪

[
(Svep(A∗

1) ∪ Svep(A∗
2)) ∩ Svep(A3)

]}
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∩
{ 3⋃

i=1
Iso σBr(Ai)

}c

.(3.2)

In addition, it is obvious that[
(Svep(A∗

1) ∪ Svep(A∗
2)) ∩ Svep(A3)

]
⊆

3⋃
i=1

Acc σ(Ai) ⊆
3⋃

i=1
Acc σBr(Ai)(3.3)

and [
(Svep(A∗

1) ∪ Svep(A∗
2)) ∩ Svep(A3)

]
=
[

(Svep(A∗
1) ∪ Svep(A∗

2)) ∩ Svep(A3)
]

∩
{ 3⋃

i=1
Iso σBr(Ai)

}c

.(3.4)

First, we need to demonstrate that{
σBr(M) ∪

[[
Svep(A∗

1) ∪ Svep(A∗
2)
]

∩ Svep(A3)
]}

∩
{ 3⋃

i=1
IsoσBr(Ai)

}c

⊆Acc σBr(M) ∪
[[

Svep(A∗
1) ∪ Svep(A∗

2)
]

∩ Svep(A3)
]
.

As a matter of fact, let τ ̸∈ Acc σBr(M)∪
[[

Svep(A∗
1) ∪ Svep(A∗

2)
]

∩ Svep(A3)
]

. With-
out loss of generality, we can suppose that τ = 0. Hence, 0 ̸∈ Acc σBr(M) and
0 ̸∈

[[
Svep(A∗

1) ∪ Svep(A∗
2)
]

∩ Svep(A3)
]

. Thus, there exists α > 0 such that τI −M

is Browder for every 0 < |τ | < α. Therefore, for every 0 < |τ | < α, τI − A3 is lower
semi-Browder operator and τI − A1 is upper semi-Browder operator. Consequently,
0 ̸∈

[
Acc σBr+(A1) ∩ Acc σBr+(A2)

]
∪ Acc σBr−(A3). On the other side

0 ̸∈
[[

Svep(A∗
1) ∪ Svep(A∗

2)
]

∩ Svep(A3)
]
.

There are two possible cases.
• Case 1: 0 ̸∈ Svep(A∗

1) ∩ Svep(A3).
� 0 ∈ σBr(A∗

1) ∩ σBr(A3).
We keep into account that σBr(A∗

1) = Svep(A∗
1) ∪ σBr−(A∗

1). So, if 0 ∈ σBr(A∗
1) then

0 ∈ σBr−(A∗
1). Since 0 ̸∈ Acc σBr+(A1) = Acc σBr−(A∗

1), we obtain that 0 is an isolated
point of σBr−(A∗

1). Furthermore, Svep(A∗
1) ⊆ σBr(A∗

1) = σBr−(A∗
1) ∪ Svep(A∗

1), thus
∂Svep(A∗

1) ⊆ σBr−(A∗
1). Since σBr(A∗

1) = Svep(A∗
1) ∪ σBr−(A∗

1) and 0 ∈ IsoσBr−(A∗
1).

Therefore, 0 is an isolated point of σBr(A1) = σBr(A∗
1). On the other side, if 0 ∈

σBr(A3) then 0 ∈ σBr−(A3). As 0 ̸∈ Acc σBr−(A3), it follows that 0 ∈ IsoσBr−(A3).
This shows that 0 ∈ IsoσBr(A3).

� 0 ̸∈ σBr(A∗
1) ∩ σBr(A3).

If 0 ̸∈ σBr(A∗
1) ∩ σBr(A3). Then, 0 ̸∈ σBr(A∗

1) = σBr(A1) and 0 ̸∈ σBr(A3). Hence,
0 ̸∈ Acc σBr(A1) and 0 ̸∈ Acc σBr(A3). This proves that 0 ̸∈ Acc σBr(A2). So either
0 ̸∈ σBr(A2) or 0 ∈ IsoσBr(A2), i.e., 0 ̸∈ σBr(M) or 0 ∈ IsoσBr(A2).

• Case 2: 0 ̸∈ Svep(A∗
2) ∩ Svep(A3).
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We adopt the same reasoning treated in the first case. It suffices to replace A1 by
A2.

On the basis of Proposition 3.1, (3.2), (3.3) and (3.4), we get:
3⋃

i=1
Acc σBr(Ai) =

{
σBr(M) ∪

[
(Svep(A∗

1) ∪ Svep(A∗
2)) ∩ Svep(A3)

]}
∩
{ 3⋃

i=1
Iso σBr(Ai)

}c

⊆ Acc σBr(M) ∪
[

(Svep(A∗
1) ∪ Svep(A∗

2)) ∩ Svep(A3)
]

⊆
3⋃

i=1
Acc σBr(Ai).

Thus, we complete the proof. □

Taking into account the previous theorem, the following corollary provides a suffi-
cient condition which ensures that Acc σBr(M) = ⋃3

i=1 Acc σBr(Ai) for every bounded
operators (B1, B2, C1) ∈

(
L(F, E),L(G, F ),L(G, E)

)
.

Corollary 3.1. Suppose that:
(i) (A1, A2, A3) ∈

(
L(E),L(F ),L(G)

)
;

(ii)
[
Svep(A∗

1) ∪ Svep(A∗
2)
]

∩ Svep(A3) = ∅.

Then, for every B1 ∈ L(F, E), B2 ∈ L(G, F ) and C1 ∈ L(G, E) we have:

Acc σBr(M) =
3⋃

i=1
Acc σBr(Ai).

Remark 3.1. The above result makes it easy to confirm that the limit point set of the
Browder spectrum of the operator matrix M is the union of the limit point set of the
Browder spectrum of its diagonal entries if A3 has SVEP or A∗

1 and A∗
2 have SVEP.

The efficacy of the previously presented result is illustrated by the following example,
which serves as a direct application of Corollary 3.1.

Example 3.2. Let consider Su the simple unilateral shift operator defined on ℓ2(N).
We define also the following operators as follows:

A1 := (Su ⊕ Su
∗) + 2I, A2 := Su ⊕ Su

∗ and A3 := (Su ⊕ Su
∗) − 2I.

Then,
σBr(A1) := {τ ∈ C : 0 ≤ |τ − 2| ≤ 1} ,

σBr(A2) := {τ ∈ C : 0 ≤ |τ | ≤ 1} ,

σBr(A3) := {τ ∈ C : 0 ≤ |τ + 2| ≤ 1} .

It follows that:
Svep(A1) := {τ ∈ C : 0 ≤ |τ − 2| < 1} ,

Svep(A2) := {τ ∈ C : 0 ≤ |τ | < 1} ,

Svep(A3) := {τ ∈ C : 0 ≤ |τ + 2| < 1} .
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Consequently,
[
Svep(A∗

1) ∪ Svep(A∗
2)
]

∩ Svep(A3) = ∅. This proves that

Acc σBr(M) =
3⋃

i=1
Acc σBr(Ai).

The next two lemmas are the key to our second main outcome and are founded
in [17]. We consider two compact subsets U,V ⊆ C such that U ⊆ V.

Lemma 3.3. Assume further that ∂V ⊆ U. Then, ∂AccV ⊆ AccU.

Lemma 3.4. Assume further that η(U) = η(V). Then, η(AccU) = η(AccV).

Finally, we are in a position to prove the following theorem which says that
the passage from ⋃3

i=1 Acc σBr(Ai) to Acc σBr(M) is the punching of some set in⋂3
i=1 Acc σBr(Ai).

Theorem 3.2. Imply that:
(i) (A1, A2, A3) ∈

(
L(E),L(F ),L(G)

)
;

(ii) (B1, B2, C1) ∈
(
L(F, E),L(G, F ),L(G, E)

)
.

Then, we obtain:

Acc σBr(M) ∪ WAcc σBr
=

3⋃
i=1

Acc σBr(Ai),

where WAcc σBr
is the union of certain holes in Acc σBr(M), that occur to be subsets

of ⋂3
i=1 Acc σBr(Ai).

Proof. First notice that the inclusion

Acc σBr(M) ∪
{ 3⋂

i=1
Acc σBr(Ai)

}
⊆

3⋃
i=1

Acc σBr(Ai)

holds for every B1 ∈ L(F, E), B2 ∈ L(G, F ) and C1 ∈ L(G, E).
The reverse inclusion follows from the following equivalence:

τ /∈ Acc σBr(M) ∪
{ 3⋂

i=1
Acc σBr(Ai)

}
⇔ τ ∈ {Acc σBr(M)c ∩ Acc σBr(A1)c} or τ ∈ {Acc σBr(M)c ∩ Acc σBr(A2)c}

or τ ∈ {Acc σBr(M)c ∩ Acc σBr(A3)c}
⇔ τ ∈ Acc σBr(A1)c and τ ∈ Acc σBr(A2)c and τ ∈ Acc σBr(A3)c (Lemma 3.2)

⇔ τ /∈
3⋃

i=1
Acc σBr(Ai).

We deduce that

(3.5) Acc σBr(M) ∪
{ 3⋂

i=1
Acc σBr(Ai)

}
=

3⋃
i=1

Acc σBr(Ai).
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Moreover, getting inspired by the proof of Theorem 2.6 in [18] and by applying
Lemmas 3.3 and 3.4, we get

∂

( 3⋂
i=1

σBr(Ai)
)

⊆σBr(M),

η (Acc σBr(M)) =η

( 3⋃
i=1

Acc σBr(Ai)
)

.(3.6)

Consequently, (3.6) proves that the passage from Acc σBr(M) to ⋃3
i=1 Acc σBr(Ai) is

the filling in certain of the holes in Acc σBr(M). But,
(⋃3

i=1 Acc σBr(Ai)
)
\Acc σBr(M)

is contained in ⋂3
i=1 Acc σBr(Ai), according to (3.5). This shows that the filling in

certain of the holes in Acc σBr(M) should take place in ⋂3
i=1 Acc σBr(Ai). □

Nevertheless, we have the following corollary.

Corollary 3.2. Suppose that:
(i) (A1, A2, A3) ∈

(
L(E),L(F ),L(G)

)
;

(ii) ⋂3
i=1 Acc σBr(Ai) has no interior points.

Then, for every B1 ∈ L(F, E), B2 ∈ L(G, F ) and C1 ∈ L(G, E) we have:

Acc σBr(M) =
3⋃

i=1
Acc σBr(Ai).

We would like to finish this work with the following question.

Question 3.3. Let consider the following bounded full 3 × 3 block operator matrix

M̂ :=

 A1 B1 B2
C1 A2 B3
C2 C3 A3

 .

The following question is being asked: what are the conditions that will be placed
on the input parts of the operator matrices M̂ to achieve that

Acc σBr(M̂) =
3⋃

i=1
Acc σBr(Ai)?

4. Conclusion

In this paper, we investigated the accumulation points of the Browder spectrum
for 3 × 3 upper triangular operator matrices acting on Banach spaces. By applying
the tools of local spectral theory, we established a precise relationship between the
accumulation set of the matrix and those of its diagonal entries. In particular, we
described the structure of a supplementary set of “holes” that appear within the
intersection of the accumulation points of the diagonal Browder spectra, allowing us
to characterize the accumulation behavior of the full matrix spectrum. Our results
provide a refined description that extends the work of A. Tajmouati et al. [17] by
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considering a more general setting and offering a deeper analysis of the spectral
accumulation structure. This contribution enhances the understanding of spectral
properties of operator matrices and may serve as a foundation for further developments
in the theory.

Acknowledgements. I would like to express my sincere gratitude to the editor and
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contributed to improving the clarity and overall quality of this paper.
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