JORDAN HIGHER DERIVATIONS ON PRIME HILBERT C*-MODULES

SAYED KHALIL EKRAMI

Abstract. Let \mathcal{M} be a Hilbert C^{*}-module. A sequence of linear mappings $\left\{\varphi_{n}\right.$: $\mathcal{M} \rightarrow \mathcal{M}\}_{n=0}^{+\infty}$ with $\varphi_{0}=I$, is said to be a Hilbert C^{*}-module Jordan higher derivation on \mathcal{M}, if it satisfies the equation

$$
\varphi_{n}(\langle a, b\rangle a)=\sum_{i+j+k=n}\left\langle\varphi_{i}(a), \varphi_{j}(b)\right\rangle \varphi_{k}(a),
$$

for all $a, b \in \mathcal{M}$ and each non-negative integer n. In this paper, we show that, if \mathcal{M} is prime, then every Hilbert C^{*}-module Jordan higher derivation $\left\{\varphi_{n}\right\}_{n=0}^{+\infty}$ on \mathcal{M}, is a Hilbert C*-module higher derivation on \mathcal{M}. As a consequence, we show that every Hilbert C^{*}-module Jordan derivation on \mathcal{M}, is a Hilbert C^{*}-module derivation on \mathcal{M}.

1. Introduction

The notion of a Hilbert C*-module initiated as a generalization of a Hilbert space in which the inner product takes its values in a C^{*}-algebra (see [13]). Let \mathcal{A} be a C^{*}-algebra. An inner product \mathcal{A}-module is a complex linear space \mathcal{M} which is a left \mathcal{A}-module with compatible scalar multiplication $\lambda(a x)=(\lambda a) x=a(\lambda x)(\lambda \in \mathbb{C}, x \in$ $\mathcal{M}, a \in \mathcal{A})$, together with an \mathcal{A}-valued inner product $(x, y) \mapsto\langle x, y\rangle: \mathcal{M} \times \mathcal{M} \rightarrow \mathcal{A}$ such that for each $x, y, z \in \mathcal{M}, \alpha, \beta \in \mathbb{C}$ and $a \in \mathcal{A}$,
(i) $\langle x, x\rangle \geq 0$ and the equality holds if and only if $x=0$;
(ii) $\langle\alpha x+\beta y, z\rangle=\alpha\langle x, z\rangle+\beta\langle y, z\rangle$;
(iii) $\langle a x, y\rangle=a\langle x, y\rangle$;

[^0](iv) $\langle x, y\rangle^{*}=\langle y, x\rangle$.

It follows from the above conditions that $\langle x, x\rangle$ is a positive element in C^{*}-algebra \mathcal{A}, the inner product is conjugate-linear in its second variable and $\langle x, a y\rangle=\langle x, y\rangle a^{*}$ for all $x, y \in \mathcal{M}$ and $a \in \mathcal{A}$. An inner product \mathcal{A}-module \mathcal{M} which is complete with respect to the norm $\|x\|_{\mathcal{M}}=\|\langle x, x\rangle\|_{\mathcal{A}}^{\frac{1}{2}}$ is called a Hilbert \mathcal{A}-module or a Hilbert C^{*}-module over the C^{*}-algebra \mathcal{A}. For example, every C^{*}-algebra \mathcal{A} is a Hilbert \mathcal{A}-module under the \mathcal{A}-valued inner product $\langle a, b\rangle=a b^{*}(a, b \in \mathcal{A})$. Every complex Hilbert space is a left Hilbert \mathbb{C}-module. The notion of a right Hilbert \mathcal{A}-module can be defined similarly.
A Hilbert C^{*}-module \mathcal{M} is said to be prime, if for elements a, b of $\mathcal{M},\langle a, \mathcal{M}\rangle b=0$ implies that $a=0$ or $b=0$. Equivalently, \mathcal{M} is called prime, if for elements a, b of \mathcal{M}, validity the equation $\langle a, x\rangle b=0$ for all $x \in \mathcal{M}$, implies that $a=0$ or $b=0 . \mathcal{M}$ is said to be semiprime, if $\langle a, \mathcal{M}\rangle a=0$ implies that $a=0$. Trivially any prime Hilbert C^{*}-module \mathcal{M} is semiprime.

Let \mathcal{M} and \mathcal{N} be Hilbert C^{*}-modules over a C^{*}-algebra \mathcal{A}. A mapping $T: \mathcal{M} \rightarrow \mathcal{N}$ is said to be adjointable, if there exists a mapping $S: \mathcal{N} \rightarrow \mathcal{M}$ such that $\langle T(x), y\rangle=$ $\langle x, S(y)\rangle$ for all $x \in D_{T} \subseteq \mathcal{M}, y \in D_{S} \subseteq \mathcal{N}$. The unique mapping S is denoted by T^{*} and is called the adjoint of T. It is well known that any adjointable mapping $T: \mathcal{M} \rightarrow$ \mathcal{N} is \mathcal{A}-linear (that is $T(a x+\lambda y)=a T(x)+\lambda T(y)$ for all $x, y \in \mathcal{M}, a \in \mathcal{A}, \lambda \in \mathbb{C}$) and bounded.

A linear mapping $\psi: \mathcal{M} \rightarrow \mathcal{M}$ is called a Hilbert C^{*}-module derivation on \mathcal{M}, if it satisfies the equation

$$
\psi(\langle a, b\rangle c)=\langle\psi(a), b\rangle c+\langle a, \psi(b)\rangle c+\langle a, b\rangle \psi(c),
$$

for all $a, b, c \in \mathcal{M}$. ψ is called a Hilbert C^{*}-module Jordan derivation on \mathcal{M}, if it satisfies the equation

$$
\psi(\langle a, b\rangle a)=\langle\psi(a), b\rangle a+\langle a, \psi(b)\rangle a+\langle a, b\rangle \psi(a)
$$

for all $a, b \in \mathcal{M}$. Note that every Hilbert C*-module derivation is a Hilbert C*-module Jordan derivation. But the converse is not true in general.
Remark 1.1. Every adjointable mapping $\psi: \mathcal{M} \rightarrow \mathcal{M}$ satisfying $\psi^{*}=-\psi$ is a Hilbert C^{*}-module derivation. Infact if $\psi^{*}=-\psi$, then $\langle\psi(a), b\rangle c+\langle a, \psi(b)\rangle c=0$ for all $a, b, c \in \mathcal{M}$. Moreover

$$
\begin{aligned}
\langle\psi(\langle a, b\rangle c), x\rangle & =\left\langle\langle a, b\rangle c, \psi^{*}(x)\right\rangle=\langle a, b\rangle\left\langle c, \psi^{*}(x)\right\rangle=\langle a, b\rangle\langle\psi(c), x\rangle \\
& =\langle\langle a, b\rangle \psi(c), x\rangle
\end{aligned}
$$

for all $a, b, c, x \in \mathcal{M}$ which implies that $\psi(\langle a, b\rangle c)=\langle a, b\rangle \psi(c)$ for all $a, b, c \in \mathcal{M}$.
Example 1.1. Let $M_{2}(\mathbb{C})$ be the C^{*}-algebra of 2×2 complex matrices. The mapping $\psi: M_{2}(\mathbb{C}) \rightarrow M_{2}(\mathbb{C})$ defined by

$$
\psi(A)=\left[\begin{array}{lr}
a_{21} & a_{22} \\
-a_{11} & -a_{12}
\end{array}\right]
$$

for all $A=\left[a_{i j}\right] \in M_{2}(\mathbb{C})$, is a Hilbert C^{*}-module derivation on $M_{2}(\mathbb{C})$.
A sequence of linear mappings $\left\{\varphi_{n}: \mathcal{N} \rightarrow \mathcal{N}\right\}_{n=0}^{+\infty}$, with $\varphi_{0}=I$ (the identity mapping on \mathcal{M}) is called a Hilbert C^{*}-module higher derivation on \mathcal{M}, if it satisfies the equation

$$
\varphi_{n}(\langle a, b\rangle c)=\sum_{i+j+k=n}\left\langle\varphi_{i}(a), \varphi_{j}(b)\right\rangle \varphi_{k}(c),
$$

for all $a, b, c \in \mathcal{M}$ and each non-negative integer n.
Example 1.2. Let ψ be a Hilbert C^{*}-module derivation on \mathcal{M}. Then the sequence $\left\{\varphi_{n}\right\}_{n=0}^{+\infty}$ of linear mappings on \mathcal{M} defined by $\varphi_{0}=I$ and

$$
\varphi_{n}(\langle a, b\rangle c)=\sum_{\substack{i+j+k=n \\ 0 \leq i, j, k \leq n}} \frac{1}{i!j!k!}\left\langle\psi^{i}(a), \psi^{j}(b)\right\rangle \psi^{k}(c),
$$

for all $a, b, c \in \mathcal{M}$ and each non-negative integer n (in which $\psi^{0}=I$), is a Hilbert C^{*}-module higher derivation on \mathcal{M}. The four terms of this Hilbert C^{*}-module higher derivation are

$$
\begin{aligned}
\varphi_{0}(\langle a, b\rangle c)= & \langle a, b\rangle c, \\
\varphi_{1}(\langle a, b\rangle c)= & \langle\psi(a), b\rangle c+\langle a, \psi(b)\rangle c+\langle a, b\rangle \psi(c), \\
\varphi_{2}(\langle a, b\rangle c)= & \frac{1}{2}\left\langle\psi^{2}(a), b\right\rangle c+\frac{1}{2}\left\langle a, \psi^{2}(b)\right\rangle c+\frac{1}{2}\langle a, b\rangle \psi^{2}(c) \\
& +\langle\psi(a), \psi(b)\rangle c+\langle\psi(a), b\rangle \psi(c)+\langle a, \psi(b)\rangle \psi(c), \\
\varphi_{3}(\langle a, b\rangle c)= & \frac{1}{6}\left\langle\psi^{3}(a), b\right\rangle c+\frac{1}{6}\left\langle a, \psi^{3}(b)\right\rangle c+\frac{1}{6}\langle a, b\rangle \psi^{3}(c) \\
& +\frac{1}{2}\left\langle\psi^{2}(a), \psi(b)\right\rangle c+\frac{1}{2}\left\langle\psi^{2}(a), b\right\rangle \psi(c)+\frac{1}{2}\left\langle\psi(a), \psi^{2}(b)\right\rangle c \\
& +\frac{1}{2}\left\langle a, \psi^{2}(b)\right\rangle \psi(c)+\frac{1}{2}\langle\psi(a), b\rangle \psi^{2}(c)+\frac{1}{2}\langle a, \psi(b)\rangle \psi^{2}(c) \\
& +\langle\psi(a), \psi(b)\rangle \psi(c) .
\end{aligned}
$$

A sequence of linear mappings $\left\{\varphi_{n}: \mathcal{M} \rightarrow \mathcal{N}\right\}_{n=0}^{+\infty}$, with $\varphi_{0}=I$, is called a Hilbert C^{*}-module Jordan higher derivation on \mathcal{N}, if

$$
\varphi_{n}(\langle a, b\rangle a)=\sum_{i+j+k=n}\left\langle\varphi_{i}(a), \varphi_{j}(b)\right\rangle \varphi_{k}(a),
$$

for all $a, b \in \mathcal{M}$ and each non-negative integer n.
When $\left\{\varphi_{n}\right\}_{n=0}^{+\infty}$ is a Hilbert C*-module higher derivation (Jordan higher derivation), φ_{1} is a Hilbert C^{*}-module derivation (Jordan derivation). Trivially every Hilbert C^{*}-module higher derivation is a Hilbert C^{*}-module Jordan higher derivation. But the converse is not true in general.

The classical result due to Herstein [11] was extended for higher derivations by Haetinger [9], who proved that every Jordan higher derivation on a prime ring of characteristic different from two is a higher derivation. Further, Ferrero and Haetinger
[8] established that on a 2-torsion free semiprime ring every Jordan triple higher derivation, is a higher derivation. In this paper we prove that if \mathcal{M} is a prime Hilbert C^{*}-module, then every Hilbert C^{*}-module Jordan higher derivation on \mathcal{M}, is a Hilbert C^{*}-module higher derivation on \mathcal{M}. As a consequence, we show that every Hilbert C^{*}-module Jordan derivation on \mathcal{M}, is a Hilbert C^{*}-module derivation on \mathcal{M}.

For more information about Hilbert C*-module derivations and Hilbert C*-module higher derivations the reader can see $[6,16]$. Also for information about derivations and higher derivations on algebras, the reader refer to $[1-5,7,10,12,14,15,17,18]$.

2. The Result

Let \mathcal{M} be a Hilbert C^{*}-module and I be the identity mapping on \mathcal{M}. A sequence of linear mappings $\left\{\varphi_{n}: \mathcal{M} \rightarrow \mathcal{M}\right\}_{n=0}^{+\infty}$, with $\varphi_{0}=I$, is said to be a
(i) Hilbert C^{*}-module higher derivation on \mathcal{M}, if it satisfies the equation

$$
\begin{equation*}
\varphi_{n}(\langle a, b\rangle c)=\sum_{i+j+k=n}\left\langle\varphi_{i}(a), \varphi_{j}(b)\right\rangle \varphi_{k}(c), \tag{2.1}
\end{equation*}
$$

for all $a, b, c \in \mathcal{M}$ and each non-negative integer n;
(ii) Hilbert C^{*}-module Jordan higher derivation on \mathcal{M}, if it satisfies the equation

$$
\begin{equation*}
\varphi_{n}(\langle a, b\rangle a)=\sum_{i+j+k=n}\left\langle\varphi_{i}(a), \varphi_{j}(b)\right\rangle \varphi_{k}(a), \tag{2.2}
\end{equation*}
$$

for all $a, b \in \mathcal{M}$ and each non-negative integer n.
Trivially every Hilbert C*-module higher derivation is a Hilbert C*-module Jordan higher derivation. But the converse is not true in general. In this section, we prove that on a prime Hilbert C*-module \mathcal{M}, every Hilbert C*-module Jordan higher derivation is a Hilbert C^{*}-module higher derivation. Before proving the result, we need some lemmas.

Lemma 2.1. Let \mathcal{M} be a Hilbert C^{*}-module and $\left\{\varphi_{n}: \mathcal{M} \rightarrow \mathcal{M}\right\}_{n=0}^{+\infty}$ be a Hilbert C^{*}-module Jordan higher derivation on \mathcal{M}. Then,

$$
\begin{equation*}
\varphi_{n}(\langle a, b\rangle c+\langle c, b\rangle a)=\sum_{i+j+k=n}\left(\left\langle\varphi_{i}(a), \varphi_{j}(b)\right\rangle \varphi_{k}(c)+\left\langle\varphi_{i}(c), \varphi_{j}(b)\right\rangle \varphi_{k}(a)\right), \tag{2.3}
\end{equation*}
$$

for all $a, b, c \in \mathcal{M}$ and each non-negative integer n.
Proof. Replacing a by $a+c$ in (2.2), we get

$$
\varphi_{n}(\langle a+c, b\rangle(a+c))=\sum_{i+j+k=n}\left\langle\varphi_{i}(a+c), \varphi_{j}(b)\right\rangle \varphi_{k}(a+c),
$$

which implies that

$$
\begin{aligned}
& \varphi_{n}(\langle a, b\rangle a+\langle c, b\rangle a+\langle a, b\rangle c+\langle c, b\rangle c) \\
= & \sum_{i+j+k=n}\left(\left\langle\varphi_{i}(a), \varphi_{j}(b)\right\rangle \varphi_{k}(a)+\left\langle\varphi_{i}(a), \varphi_{j}(b)\right\rangle \varphi_{k}(c)\right. \\
& \left.+\left\langle\varphi_{i}(c), \varphi_{j}(b)\right\rangle \varphi_{k}(a)+\left\langle\varphi_{i}(c), \varphi_{j}(b)\right\rangle \varphi_{k}(c)\right),
\end{aligned}
$$

for all $a, b, c \in \mathcal{M}$. Since $\varphi_{n}(\langle a, b\rangle a)=\sum_{i+j+k=n}\left\langle\varphi_{i}(a), \varphi_{j}(b)\right\rangle \varphi_{k}(a)$ and $\varphi_{n}(\langle c, b\rangle c)=$ $\sum_{i+j+k=n}\left\langle\varphi_{i}(c), \varphi_{j}(b)\right\rangle \varphi_{k}(c)$, canceling these terms from both sides of the above equation, we get the equation (2.3).

Lemma 2.2. Let \mathcal{M} be a 2-torsion-free semiprime Hilbert C^{*}-module and $a, b \in \mathcal{M}$. If $\langle a, x\rangle b+\langle b, x\rangle a=0$ for all $x \in \mathcal{M}$, then $\langle a, x\rangle b=\langle b, x\rangle a=0$ for all $x \in \mathcal{M}$. If $\langle a, x\rangle b=0$ for all $x \in \mathcal{M}$, then $\langle b, x\rangle a=0$ for all $x \in \mathcal{M}$.

Proof. Let $a, b \in \mathcal{M}$. Suppose that $\langle a, x\rangle b+\langle b, x\rangle a=0$ for all $x \in \mathcal{M}$. Then, we have

$$
\begin{aligned}
\langle\langle a, x\rangle b, y\rangle\langle a, x\rangle b & =-\langle\langle b, x\rangle a, y\rangle\langle a, x\rangle b=-\langle b, x\rangle\langle a, y\rangle\langle a, x\rangle b=-\langle b,\langle y, a\rangle x\rangle\langle a, x\rangle b \\
& =-\langle\langle b,\langle y, a\rangle x\rangle a, x\rangle b=\langle\langle a,\langle y, a\rangle x\rangle b, x\rangle b=\langle\langle a, x\rangle\langle a, y\rangle b, x\rangle b \\
& =\langle a, x\rangle\langle a, y\rangle\langle b, x\rangle b=\langle a, x\rangle\langle\langle a, y\rangle b, x\rangle b=-\langle a, x\rangle\langle\langle b, y\rangle a, x\rangle b \\
& =-\langle a, x\rangle\langle b, y\rangle\langle a, x\rangle b=-\langle\langle a, x\rangle b, y\rangle\langle a, x\rangle b
\end{aligned}
$$

for all $y \in \mathcal{M}$, which implies that $\langle\langle a, x\rangle b, y\rangle\langle a, x\rangle b=0$ for all $y \in \mathcal{M}$. Since \mathcal{M} is semiprime, we get $\langle a, x\rangle b=0$ and so $\langle b, x\rangle a=0$ for all $x \in \mathcal{M}$.

Now suppose that $\langle a, x\rangle b=0$ for all $x \in \mathcal{M}$. Then, we have

$$
\langle\langle b, x\rangle a, y\rangle\langle b, x\rangle a=\langle b, x\rangle\langle a, y\rangle\langle b, x\rangle a=\langle b, x\rangle\langle\langle a, y\rangle b, x\rangle a=0,
$$

for all $y \in \mathcal{M}$. Then semiprimeness of \mathcal{M} implies that $\langle b, x\rangle a=0$ for all $x \in \mathcal{M}$.
Lemma 2.3. Let \mathcal{M} be a 2 -torsion-free Hilbert C^{*}-module. Then the following conditions are equivalent.
(i) \mathcal{M} is a prime Hilbert C^{*}-module.
(ii) For $a, b \in \mathcal{M}$, validity of $\langle a, x\rangle b+\langle b, x\rangle a=0$ for all $x \in \mathcal{M}$, implies that $a=0$ or $b=0$.
(iii) For $a, b \in \mathcal{M}$, validity of $\langle a, x\rangle a=\langle b, x\rangle b$ for all $x \in \mathcal{M}$, implies that $a=b$ or $a=-b$.

Proof. (i) \Rightarrow (ii) If \mathcal{M} is a prime Hilbert C^{*}-module and $\langle a, x\rangle b+\langle b, x\rangle a=0$ for all $x \in \mathcal{M}$, then by Lemma $2.2,\langle a, x\rangle b=0$ for all $x \in \mathcal{M}$ and then by primeness of \mathcal{M}, $a=0$ or $b=0$.
(ii) \Rightarrow (i) Suppose that $\langle a, x\rangle b=0$ for all $x \in \mathcal{M}$. Then $\langle\langle b, x\rangle a, y\rangle\langle b, x\rangle a=$ $\langle b, x\rangle\langle a, y\rangle\langle b, x\rangle a=\langle b, x\rangle\langle\langle a, y\rangle b, x\rangle a=0$ which implies that $\langle b, x\rangle a=0$ for all $x \in \mathcal{M}$. Hence $\langle a, x\rangle b+\langle b, x\rangle a=0$ for all $x \in \mathcal{M}$ and therefore $a=0$ or $b=0$. Thus, \mathcal{M} is a prime.
(ii) $\Rightarrow($ iii) Let $\langle a, x\rangle a=\langle b, x\rangle b$ for all $x \in \mathcal{M}$. Then $\langle a-b, x\rangle(a+b)+\langle a+b, x\rangle(a-b)=$ 0 for all $x \in \mathcal{M}$. Thus, $a-b=0$ or $a+b=0$.
(iii) \Rightarrow (ii) Let $\langle a, x\rangle b+\langle b, x\rangle a=0$ for all $x \in \mathcal{M}$. Then, $\langle a-b, x\rangle(a-b)=$ $\langle a+b, x\rangle(a+b)$ for all $x \in \mathcal{M}$. Hence, $a-b=a+b$ or $a-b=-(a+b)$. That is $a=0$ or $b=0$.

Lemma 2.4. Let \mathcal{M} be a 2-torsion-free semiprime Hilbert C^{*}-module and Δ, Ω : $\mathcal{M} \times \mathcal{M} \times \mathcal{M} \rightarrow \mathcal{M}$ be mappings which are additive in each variable and $\Delta(a, b, a)=$ $\Omega(a, b, a)=0$ for all $a, b \in \mathcal{M}$. If

$$
\begin{equation*}
\langle\Delta(a, b, c), x\rangle \Omega(a, b, c)=0, \tag{2.4}
\end{equation*}
$$

for all $a, b, c, x \in \mathcal{M}$, then $\langle\Delta(a, b, c), x\rangle \Omega(c, b, a)=0$ for all $a, b, c, x \in \mathcal{M}$.
Proof. Suppose that $\langle\Delta(a, b, c), x\rangle \Omega(a, b, c)=0$ for all $a, b, c, x \in \mathcal{M}$. Then, by Lemma 2.2, we get $\langle\Omega(a, b, c), x\rangle \Delta(a, b, c)=0$ for all $a, b, c, x \in \mathcal{M}$.

Replacing a and c by $a+c$ in (2.4), we have

$$
\langle\Delta(a+c, b, a+c), x\rangle \Omega(a+c, b, a+c)=0
$$

which implies that

$$
\langle\Delta(a, b, c), x\rangle \Omega(c, b, a)+\langle\Delta(c, b, a), x\rangle \Omega(a, b, c)=0
$$

for all $a, b, c, x \in \mathcal{M}$. It follows from

$$
\begin{aligned}
& \langle\langle\Delta(a, b, c), x\rangle \Omega(c, b, a), y\rangle\langle\Delta(a, b, c), x\rangle \Omega(c, b, a) \\
= & -\langle\langle\Delta(a, b, c), x\rangle \Omega(c, b, a), y\rangle\langle\Delta(c, b, a), x\rangle \Omega(a, b, c) \\
= & -\langle\Delta(a, b, c), x\rangle\langle\Omega(c, b, a), y\rangle\langle\Delta(c, b, a), x\rangle \Omega(a, b, c) \\
= & -\langle\Delta(a, b, c), x\rangle\langle\langle\Omega(c, b, a), y\rangle \Delta(c, b, a), x\rangle \Omega(a, b, c)=0,
\end{aligned}
$$

and semiprimeness of \mathcal{M} that $\langle\Delta(a, b, c), x\rangle \Omega(c, b, a)=0$ for all $a, b, c, x \in \mathcal{M}$.
Lemma 2.5. Let \mathcal{M} be a Hilbert C^{*}-module. Then for all a,b, $c, x \in \mathcal{M}$ we have

$$
\langle a,\langle b,\langle c, x\rangle c\rangle b\rangle a=\langle\langle a, b\rangle c, x\rangle\langle c, b\rangle a .
$$

Proof. Let $a, b, c, x \in \mathcal{M}$, then

$$
\begin{aligned}
\langle a,\langle b,\langle c, x\rangle c\rangle b\rangle a & =\langle a,\langle b, c\rangle\langle x, c\rangle b\rangle a=\langle a,\langle x, c\rangle b\rangle\langle c, b\rangle a \\
& =\langle a, b\rangle\langle c, x\rangle\langle c, b\rangle a=\langle\langle a, b\rangle c, x\rangle\langle c, b\rangle a .
\end{aligned}
$$

Theorem 2.1. Let \mathcal{M} be a 2-torsion-free prime Hilbert C^{*}-module. Then, every Hilbert C^{*}-module Jordan higher derivation on \mathcal{M} is a Hilbert C^{*}-module higher derivation on \mathcal{M}.

Proof. Let $\left\{\varphi_{n}\right\}_{n=0}^{+\infty}$ be a Hilbert C^{*}-module Jordan higher derivation on \mathcal{M} and $a, b, c \in$ \mathcal{M}. Define

$$
\begin{equation*}
\Delta_{n}(a, b, c):=\varphi_{n}(\langle a, b\rangle c)-\sum_{i+j+k=n}\left\langle\varphi_{i}(a), \varphi_{j}(b)\right\rangle \varphi_{k}(c), \tag{2.5}
\end{equation*}
$$

for each non-negative integer n and $\Omega(a, b, c):=\langle a, b\rangle c-\langle c, b\rangle a$. Trivially $\Delta_{n}(a, b, a)=$ $\Omega(a, b, a)=0$ for all $n \in \mathbb{N}, \Delta_{n}(a, b, c)+\Delta_{n}(c, b, a)=0$ and $\Omega(a, b, c)+\Omega(c, b, a)=0$.

We have

$$
\begin{aligned}
S= & \varphi_{n}(\langle a,\langle b,\langle c, x\rangle c\rangle b\rangle a+\langle c,\langle b,\langle a, x\rangle a\rangle b\rangle c) \\
= & \sum_{i+j+k=n}\left(\left\langle\varphi_{i}(a), \varphi_{j}(\langle b,\langle c, x\rangle c\rangle b)\right\rangle \varphi_{k}(a)+\left\langle\varphi_{i}(c), \varphi_{j}(\langle b,\langle a, x\rangle a\rangle b)\right\rangle \varphi_{k}(c)\right) \\
= & \sum_{i+p+q+r+k=n}\left(\left\langle\varphi_{i}(a),\left\langle\varphi_{p}(b), \varphi_{q}(\langle c, x\rangle c)\right\rangle \varphi_{r}(b)\right\rangle \varphi_{k}(a)\right. \\
& \left.+\left\langle\varphi_{i}(c),\left\langle\varphi_{p}(b), \varphi_{q}(\langle a, x\rangle a)\right\rangle \varphi_{r}(b)\right\rangle \varphi_{k}(c)\right) \\
= & \sum_{i+p+s+t+u+r+k=n}\left(\left\langle\varphi_{i}(a),\left\langle\varphi_{p}(b),\left\langle\varphi_{s}(c), \varphi_{t}(x)\right\rangle \varphi_{u}(c)\right\rangle \varphi_{r}(b)\right\rangle \varphi_{k}(a)\right. \\
& \left.+\left\langle\varphi_{i}(c),\left\langle\varphi_{p}(b),\left\langle\varphi_{s}(a), \varphi_{t}(x)\right\rangle \varphi_{u}(a)\right\rangle \varphi_{r}(b)\right\rangle \varphi_{k}(c)\right) \\
= & \sum_{i+p+s+t+u+r+k=n}\left(\left\langle\left\langle\varphi_{i}(a), \varphi_{p}(b)\right\rangle \varphi_{s}(c), \varphi_{t}(x)\right\rangle\left\langle\varphi_{u}(c), \varphi_{r}(b)\right\rangle \varphi_{k}(a)\right. \\
& \left.+\left\langle\left\langle\varphi_{i}(c), \varphi_{p}(b)\right\rangle \varphi_{s}(a), \varphi_{t}(x)\right\rangle\left\langle\varphi_{u}(a), \varphi_{r}(b)\right\rangle \varphi_{k}(c)\right),
\end{aligned}
$$

for all $x \in \mathcal{M}$. On the other hand, using Lemmas 2.5 and 2.1, we get

$$
\begin{aligned}
S & =\varphi_{n}(\langle\langle a, b\rangle c, x\rangle\langle c, b\rangle a+\langle\langle c, b\rangle a, x\rangle\langle a, b\rangle c) \\
& =\sum_{i+j+k=n}\left(\left\langle\varphi_{i}(\langle a, b\rangle c), \varphi_{j}(x)\right\rangle \varphi_{k}(\langle c, b\rangle a)+\left\langle\varphi_{i}(\langle c, b\rangle a), \varphi_{j}(x)\right\rangle \varphi_{k}(\langle a, b\rangle c)\right),
\end{aligned}
$$

for all $x \in \mathcal{M}$. It follows from above equations that

$$
\begin{align*}
& \sum_{i+j+k=n}\left(\left\langle\varphi_{i}(\langle a, b\rangle c), \varphi_{j}(x)\right\rangle \varphi_{k}(\langle c, b\rangle a)+\left\langle\varphi_{i}(\langle c, b\rangle a), \varphi_{j}(x)\right\rangle \varphi_{k}(\langle a, b\rangle c)\right) \tag{2.6}\\
= & \sum_{i+p+s+t+u+r+k=n}\left(\left\langle\left\langle\varphi_{i}(a), \varphi_{p}(b)\right\rangle \varphi_{s}(c), \varphi_{t}(x)\right\rangle\left\langle\varphi_{u}(c), \varphi_{r}(b)\right\rangle \varphi_{k}(a)\right. \\
& \left.+\left\langle\left\langle\varphi_{i}(c), \varphi_{p}(b)\right\rangle \varphi_{s}(a), \varphi_{t}(x)\right\rangle\left\langle\varphi_{u}(a), \varphi_{r}(b)\right\rangle \varphi_{k}(c)\right),
\end{align*}
$$

for all $x \in \mathcal{M}$.
Now we use induction on n. Putting $n=1$ in the above equation and canceling the like terms from both sides of this equation and then arranging them, we get

$$
\begin{aligned}
& \left\langle\Delta_{1}(a, b, c), x\right\rangle\langle c, b\rangle a+\langle\langle c, b\rangle a, x\rangle \Delta_{1}(a, b, c) \\
& +\left\langle\Delta_{1}(c, b, a), x\right\rangle\langle a, b\rangle c+\langle\langle a, b\rangle c, x\rangle \Delta_{1}(c, b, a)=0,
\end{aligned}
$$

for all $x \in \mathcal{M}$. Since $\Delta_{1}(c, b, a)=-\Delta_{1}(a, b, c)$, we get

$$
\begin{aligned}
& \left\langle\Delta_{1}(a, b, c), x\right\rangle\langle c, b\rangle a+\langle\langle c, b\rangle a, x\rangle \Delta_{1}(a, b, c) \\
& -\left\langle\Delta_{1}(a, b, c), x\right\rangle\langle a, b\rangle c-\langle\langle a, b\rangle c, x\rangle \Delta_{1}(a, b, c)=0,
\end{aligned}
$$

which implies that

$$
\left\langle\Delta_{1}(a, b, c), x\right\rangle \Omega(c, b, a)+\langle\Omega(c, b, a), x\rangle \Delta_{1}(a, b, c)=0,
$$

for all $x \in \mathcal{M}$ and since $\Omega(c, b, a)=-\Omega(a, b, c)$, then

$$
\left\langle\Delta_{1}(a, b, c), x\right\rangle \Omega(a, b, c)+\langle\Omega(a, b, c), x\rangle \Delta_{1}(a, b, c)=0
$$

for all $x \in \mathcal{M}$. Since \mathcal{M} is semiprime, it follows from Lemma 2.2, that

$$
\left\langle\Delta_{1}(a, b, c), x\right\rangle \Omega(a, b, c)=\langle\Omega(a, b, c), x\rangle \Delta_{1}(a, b, c)=0,
$$

for all $x \in \mathcal{M}$. Since \mathcal{M} is prime, it follows from Lemma 2.3 that $\Delta_{1}(a, b, c)=0$ or $\Omega(a, b, c)=0$. If $\Delta_{1}(a, b, c)=0$, then $\varphi_{1}(\langle a, b\rangle c)=\left\langle\varphi_{1}(a), b\right\rangle c+\left\langle a, \varphi_{1}(b)\right\rangle c+\langle a, b\rangle \varphi_{1}(c)$, and so φ_{1} is a Hilbert C^{*}-module derivation. If $\Omega(a, b, c)=0$, then $\langle a, b\rangle c=\langle c, b\rangle a$. Thus it follows from Lemma 2.1 that φ_{1} is a Hilbert C^{*}-module derivation.

Now suppose that for all $1 \leq \ell \leq n-1, \varphi_{\ell}$ satisfies the equation

$$
\begin{equation*}
\varphi_{\ell}(\langle a, b\rangle c)=\sum_{i+j+k=\ell}\left\langle\varphi_{i}(a), \varphi_{j}(b)\right\rangle \varphi_{k}(c) . \tag{2.7}
\end{equation*}
$$

We will show that the equation (2.7) is true for $\ell=n$.
Note that equation (2.6) can be written as

$$
\begin{align*}
& \sum_{j=0}^{n} \sum_{i+k=n-j}\left(\left\langle\varphi_{i}(\langle a, b\rangle c), \varphi_{j}(x)\right\rangle \varphi_{k}(\langle c, b\rangle a)+\left\langle\varphi_{i}(\langle c, b\rangle a), \varphi_{j}(x)\right\rangle \varphi_{k}(\langle a, b\rangle c)\right) \tag{2.8}\\
&= \sum_{t=0}^{n} \sum_{i+p+s+u+r+k=n-t}\left(\left\langle\left\langle\varphi_{i}(a), \varphi_{p}(b)\right\rangle \varphi_{s}(c), \varphi_{t}(x)\right\rangle\left\langle\varphi_{u}(c), \varphi_{r}(b)\right\rangle \varphi_{k}(a)\right. \\
&\left.\quad+\left\langle\left\langle\varphi_{i}(c), \varphi_{p}(b)\right\rangle \varphi_{s}(a), \varphi_{t}(x)\right\rangle\left\langle\varphi_{u}(a), \varphi_{r}(b)\right\rangle \varphi_{k}(c)\right),
\end{align*}
$$

for all $x \in \mathcal{M}$. In (2.8), for $1 \leq j \leq n$ we have $i+k=n-j<n$ and then $i, k<n$. This implies that φ_{i}, φ_{k} satisfy (2.7). Thus we can cancel the like terms of both sides of equation (2.8). In fact the equation (2.8) reduces to the following equation for the case that $j=0$:

$$
\begin{aligned}
& \sum_{i+k=n}\left(\left\langle\varphi_{i}(\langle a, b\rangle c), x\right\rangle \varphi_{k}(\langle c, b\rangle a)+\left\langle\varphi_{i}(\langle c, b\rangle a), x\right\rangle \varphi_{k}(\langle a, b\rangle c)\right) \\
= & \sum_{i+p+s+u+r+k=n}\left(\left\langle\left\langle\varphi_{i}(a), \varphi_{p}(b)\right\rangle \varphi_{s}(c), x\right\rangle\left\langle\varphi_{u}(c), \varphi_{r}(b)\right\rangle \varphi_{k}(a)\right. \\
& \left.+\left\langle\left\langle\varphi_{i}(c), \varphi_{p}(b)\right\rangle \varphi_{s}(a), x\right\rangle\left\langle\varphi_{u}(a), \varphi_{r}(b)\right\rangle \varphi_{k}(c)\right),
\end{aligned}
$$

which implies that

$$
\begin{aligned}
& \left\langle\varphi_{n}(\langle a, b\rangle c), x\right\rangle\langle c, b\rangle a+\left\langle\varphi_{n}(\langle c, b\rangle a), x\right\rangle\langle a, b\rangle c \\
& +\langle\langle a, b\rangle c, x\rangle \varphi_{n}(\langle c, b\rangle a)+\langle\langle c, b\rangle a, x\rangle \varphi_{n}(\langle a, b\rangle c) \\
& +\sum_{\substack{i+k=n \\
1 \leq i, k \leq n-1}}\left(\left\langle\varphi_{i}(\langle a, b\rangle c), x\right\rangle \varphi_{k}(\langle c, b\rangle a)+\left\langle\varphi_{i}(\langle c, b\rangle a), x\right\rangle \varphi_{k}(\langle a, b\rangle c)\right) \\
& =\sum_{i+p+s=n}\left\langle\left\langle\varphi_{i}(a), \varphi_{p}(b)\right\rangle \varphi_{s}(c), x\right\rangle\langle c, b\rangle a+\left\langle\left\langle\varphi_{i}(c), \varphi_{p}(b)\right\rangle \varphi_{s}(a), x\right\rangle\langle a, b\rangle c \\
& \quad+\sum_{u+r+k=n}\langle\langle a, b\rangle c, x\rangle\left\langle\varphi_{u}(c), \varphi_{r}(b)\right\rangle \varphi_{k}(a)+\langle\langle c, b\rangle a, x\rangle\left\langle\varphi_{u}(a), \varphi_{r}(b)\right\rangle \varphi_{k}(c) \\
& +\sum_{\substack{i+p+s+u+r+k=n \\
1 \leq i+p+s, u+r+k \leq n-1}}\left(\left\langle\left\langle\varphi_{i}(a), \varphi_{p}(b)\right\rangle \varphi_{s}(c), x\right\rangle\left\langle\varphi_{u}(c), \varphi_{r}(b)\right\rangle \varphi_{k}(a)\right. \\
& \\
& \left.+\left\langle\left\langle\varphi_{i}(c), \varphi_{p}(b)\right\rangle \varphi_{s}(a), x\right\rangle\left\langle\varphi_{u}(a), \varphi_{r}(b)\right\rangle \varphi_{k}(c)\right) .
\end{aligned}
$$

Canceling the like terms from both sides of the above equation and then arranging them, we get

$$
\begin{aligned}
& \left\langle\Delta_{n}(a, b, c), x\right\rangle\langle c, b\rangle a+\langle\langle c, b\rangle a, x\rangle \Delta_{n}(a, b, c) \\
& +\left\langle\Delta_{n}(c, b, a), x\right\rangle\langle a, b\rangle c+\langle\langle a, b\rangle c, x\rangle \Delta_{n}(c, b, a)=0,
\end{aligned}
$$

for all $x \in \mathcal{M}$. A similar argument as used for $n=1$, shows that

$$
\left\langle\Delta_{n}(a, b, c), x\right\rangle \Omega(a, b, c)=\langle\Omega(a, b, c), x\rangle \Delta_{n}(a, b, c)=0
$$

for all $x \in \mathcal{M}$. It follows from primeness of \mathcal{M} that $\Delta_{n}(a, b, c)=0$ or $\Omega(a, b, c)=0$. In each case, it follows that the equation (2.7) holds for $\ell=n$. This proves $\operatorname{that}\left\{\varphi_{n}\right\}_{n=0}^{+\infty}$ is a Hilbert C^{*}-module higher derivation on \mathcal{M}.

The next corollary follows from Theorem 2.1.
Corollary 2.1. Let \mathcal{M} be a 2 -torsion-free prime Hilbert C^{*}-module. Then every Hilbert C^{*}-module Jordan derivation on \mathcal{M} is a Hilbert C^{*}-module derivation on \mathcal{M}.

References

[1] M. J. Atteya, C. Haetinger and D. I. Rasen, (σ, τ)-derivations of semiprime rings, Kragujevac J. Math. 43(2) (2019), 239-246.
[2] M. Bresar, Jordan derivations on semiprime rings, Proc. Amer. Math. Soc. 104 (1988), 10031006.
[3] W. Cortes and C. Haetinger, On Jordan generalized higher derivations in rings, Turk. J. Math. 29 (2005), 1-10.
[4] S. Kh. Ekrami, A note on characterization of higher derivations and their product, J. Mahani Math. Res. 13(1) (2024), 403-415. https://doi.org/10.22103/jmmr.2023.21376.1432
[5] S. Kh. Ekrami, Approximate orthogonally higher ring derivations, Control Optim. App. Math. 7(1) (2022), 93-106. https://doi.org/10.30473/coam.2021.59727.1166
[6] S. Kh. Ekrami, Characterization of Hilbert C^{*}-module higher derivations, Georgian Math. J. (2023). https://doi.org/10.1515/gmj-2023-2085
[7] S. Kh. Ekrami, Jordan higher derivations, a new approach, J. Algebr. Syst. 10(1) (2022), 167-177. https://doi.org/10.22044/JAS.2021.10636.1527
[8] M. Ferrero and C. Haetinger, Higher derivations and a theorem by Herstein, Quaest. Math. 25(2) (2002), 249-257.
[9] C. Haetinger, Derivações de ordem superior em anéis primos e semiprimos, Ph.D. Thesis, UFRGS, Porto Alegre, Brazil, (2000).
[10] C. Haetinger, Higher derivations on Lie ideals, Trends Comp. App. Math. 3 (2002), 141-145.
[11] I. N. Herstein, Jordan derivations of prime rings, Proc. Amer. Math. Soc. 8 (1957), 1104-1110.
[12] N. P. Jewell, Continuity of module and higher derivations, Pacific J. Math. 68 (1977), 91-98.
[13] I. Kaplansky, Modules over operator algebras, Amer. J. Math. 75 (1953), 839-858.
[14] M. Mirzavaziri, Characterization of higher derivations on algebras, Comm. Algebra 38 (2010), 981-987.
[15] A. Roy and R. Sridharan, Higher derivations and central simple algebras, Nagoya Math. J. 32 (1968), 21-30.
[16] H. Saidi, A. R. Janfada and M. Mirzavaziri, Kinds of derivations on Hilbert C^{*}-modules and their operator algebras, Miskolc Math. Notes. 16(1) (2015), 453-461.
[17] E. Tafazzoli and M. Mirzavaziri, Inner higher derivations on algebras, Kragujevac J. Math. 44(2) (2019), 267-273.
[18] S. Xu and Z. Xiao, Jordan higher derivation revisited, Gulf J. Math. 2(1) (2014), 11-21.
Department of Mathematics, Payame Noor University, P.O. Box 19395-3697, Tehran, Iran.

Email address: ekrami@pnu.ac.ir, khalil.ekrami@gmail.com
ORCID iD: https://orcid.org/0000-0002-6233-5741

[^0]: Key words and phrases. Derivation, Jordan derivation, higher derivation, Jordan higher derivation, Hilbert C^{*}-module.

 2020 Mathematics Subject Classification. Primary: 46L08. Secondary: 16W25.
 DOI
 Received: June 08, 2023.
 Accepted: May 10, 2024.

