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SIMPSON’S TYPE INEQUALITIES VIA THE KATUGAMPOLA
FRACTIONAL INTEGRALS FOR s-CONVEX FUNCTIONS

SETH KERMAUSUOR!

ABSTRACT. In this paper, we introduce some Simpson’s type integral inequalities
via the Katugampola fractional integrals for functions whose first derivatives at
certain powers are s-convex (in the second sense). The Katugampola fractional
integrals are generalizations of the Riemann-Liouville and Hadamard fractional
integrals. Hence, our results generalize some results in the literature related to the
Riemann-Liouville fractional integrals. Results related to the Hadamard fractional
integrals could also be derived from our results.

1. INTRODUCTION

The inequality below is known in the literature as the Simpson’s inequality:

/abf(t)dt_ b—a [f(a) +4f(a‘2i‘b) +f(b)] < %H]cm)

where f : [a,b] — R is a four times continuously differentiable function on (a,b) and
ol 100
oo te(a,b)

This inequality has been studied and generalized by many authors over the years.
For more information on recent results about the Simpson’s inequality, we refer the
interested reader to the papers [1,2,6-8,11,14,15].

Y
[e.9]

< Q.

Definition 1.1 ([3]). A function f : [0, 00) — R is said to be s-convex (in the second
sense), for s € (0, 1], if

[tz + 1 =t)y) <t*f(x) + (1 —1)°f(y),
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for all 2,y € [0,00) and ¢ € [0, 1].
Remark 1.1. If s = 1 in Definition 1.1, then we have the definition of convex functions.

Recently, Cheng and Huang [5] obtained the following Simpson’s type inequalities
for s-convex functions via the Riemann-Liouville fractional integrals.

Theorem 1.1 ([5]). Let f: I C [0,00) — R be a diferentiable mapping on I° such
that f' € Ly([a,b]), where a,b € I° with a < b. If |f'| is s-convex on [a,b] for some
fized s € (0,1], then the following inequality holds:

oo (130) 0] - s () s (7))

<ot @I+ 170 e,9),
A e

where
1
I(a, :/ L
(@s)= ) 1373

J f(z) and JS, f(x) denotes the right- and left-sided Riemann—Liouville fractional
integrals of f at x respectively (see Definition 1.2).

Theorem 1.2 ([5]). Let f: I C [0,00) — R be a diferentiable mapping on I° such
that f' € Ly([a,b]), where a,b € I° with a < b. If |f'|? is s-convex on [a,b], for some
fizred s € (0,1] and q > 1, then the following inequality holds:

i (13 o] R (13 e (37)]

<5 (L 3Tﬁ>i[(@ﬁ*—1ﬂfwﬂ«+u«@w>i

25(s+1)
+<@H*—numww+uwww>17

25(s+ 1)
where % + % =1
Theorem 1.3 ([5]). Let f: 1 C [0,00) = R be a differentiable mapping on I1° such
that f' € Li([a,b]), where a,b € I° with a < b. If |f'|? is s-convez on |a,b], for some
fized s € (0,1] and q > 1, then the following inequality holds:

sl ear (57 o] - TGl e (1) + o (%57
b—a

< 5 Is(a, s) {16(0475)% + I7(a, 5)%} ,

where
1
Is(a, s) = </
0

t* 1

Q|

o1 1-3
— — |dt
2 3‘) ’
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wess) = [ |5 =3l [(57) 1o+ () rar] a

) = [ |5 =35/ [(50) @i+ (F50) 1ror a

The goal in this paper is to provide some Simpson’s type inequalities for s-convex
functions in the second sense via the Katugampola fractional integrals. Our results
generalizes Theorems 1.1, 1.2, 1.3 and also some results in [11]. We complete this
section with the definitions of the Riemann—Liouville, Hadamard and Katugampola
fractional integrals.

and

Definition 1.2 ([12]). The left- and right-sided Riemann—Liouville fractional integrals
of order aw > 0 of f are defined by

tﬁJ@ﬁ:IéwLQx—ﬂaﬁﬁwt

and

B @) = s [ =2

with a < z < b and ['(+) is the gamma function given by
['(x) ::/ t*“te~tdt, Re(z) >0,
0
with the property that I'(z + 1) = 2I'(z) .

Definition 1.3 ([13]). The left- and right-sided Hadamard fractional integrals of
order o > 0 of f are defined by

H, f(z) = r(la) / (ln f)a_l fit)dt

HE f(x) = r(la) /: (ln ;)Q_l fit)dt

In what follows, X?(a,b), c € R, 1 < p < oo, denotes the set of all complex-valued
Lebesgue measurable functions f for which || f||x» < oo, where the norm is defined by

b dt\ "
= ([erert) L rspe,

and, for p = oo, || f|xe = esssup,,<; [t°f(t)|.
In 2011, Katugampola [9] introduced a new fractional integral operator which
generalizes the Riemann-Liouville and Hadamard fractional integrals as follows.

and
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Definition 1.4. Let [a,b] C R be a finite interval. Then, the left- and right-sided
Katugampola fractional integrals of order a > 0 of f € XP?(a,b) are defined by

b1 - plfa T tpfl
]a+f<x> T F(Oé) /a ([Ep . tp)l_af(t)dt

and
11—«

b7 p b tp—1
B = f | e/ O

with a < x < band p > 0, if the integrals exist.

Remark 1.2. 1t is shown in [9] that the Katugampola fractional integral operators are
well-defined on X?(a,b).

Theorem 1.4 ([9]). Let o > 0 and p > 0. Then, for x > a,
(a) fl)l_rflpj +f( T) = J‘ﬂ_f(;p);
(b) pli)m+ P15 f(x) = Hyy f(x).

Similar results also hold for right-sided operators.

For more information about the Katumgapola fractional integrals and related results,
we refer the interested reader to the papers [4,9,10].

2. MAIN RESULTS

To obtain our main results, we need the following lemma which is a generalization
of [5, Lemma 2.1] and [11, Lemma 5.

Lemma 2.1. Let a,p > 0 and let [ : [a”,b’] — R be a differentiable function on
(a?,b"), with 0 < a < b such that f" € Li([a”,b"]). Then the following identity holds:

i@ (U5 + a0

2o LooT (o + 1) af + b° af + b°
oy e () s (5

P _ ap 1 /1 ap 14+ ¢P 1 —¢P
AL () (e 5
0

_/ <_tap)tp—1fr<1—2tp n 1+tpbp>dt].

Proof. We start by considering the following computations which follows from change
of variables and using the definiton of the Katugampola fractional integrals.

1 1+t 1—tr
/t“ﬂlf(; a’ + 5 bp)dt

14t 1—tr
_/talptp 1f( ALV 5 bp)dt
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D=

Qa (M> p bP a—1
’ o —uf w1t f (u?) du

T (b — ar)* Ja 2
2°p> 1T () af + b°
2.1 =P
(21) (br — ar)> at 2
and, by similar argument as above, we have
—t° 1 —I— tP 290217 () a’ + b°
ap—1 a” p — pra

(2.2) / t ( + 0 ) @ =" I (5 )

Now, by using integration by parts and (2.1), we obtain

11 tor 1+¢° 1—tr
I:/ (—)tﬂ‘“( P b")dt
L= \37 2 Pl +—

2 Lo\ It 1=t
- (Z__ %
p(ap—bp)<3 2)f< y Ty )

1

0

* p(a?’a—pb/’) /01 taglf (1 —;tpap * E ) at
3= ) = ( : bp)

“pw (e )
5o ( )

(2.3)

2°p° T (o + 1) a —|— b*
- (bp _ ap)oHrl f ’

Similarly, by using integration by parts and (2.2), we obtain

Ll ger L=t 141
=[Gt )
*“h\37 2 FPlrg ot —t)d

-1 2 a’ + b°
T ) —
3p(bp—ap)f( ) 3p(bp—ap)f< 2 )
aa—1 P 0
2%p F(a—i_l)p]gif a’ + b .
(bP — ar)att 2
Using (2.3) and (2.4), we obtain

1 p a’ + b? o
]1—]2=W[f(a)+4f< 5 >+f(b )]

2.5) 27" T (e + 1) l Y (a” +bﬂ> Y (a” +bﬂ)].

(b — )T 2

(2.4)
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The desired identity is obtained by multiplying both sides of (2.5) by M. This
completes the proof. O

Theorem 2.1. Let a,p > 0 and let f : [a”?,b°] — R be a differentiable function on
(a?,bP), with 0 < a < b such that f" € Li([a”,b"]). If |f'| is s-convex for s € (0,1],
then the following inequalities hold:

fersa (25 -2t

() e (3

b? — af

< Cla) (I @)+ 17 w)))

2.6 S (@117
where
aaﬁy:Ali—g101+mf+a—ufde
Proof. Using Lemma 2.1 and the s-convexity of |f'|, we obtain
@ () 4w

201 50T (o + 1) R AN
e [0 (557) e (57|

P aPf) fl 4
Sp(bQ(z)/ 1t < (1+ta'°+1 tb)‘
0

3 92 2 2

(i3 ) o

L - e (S e+ S5 e
+ e+ S

:“2‘> [ =S+ =) (1) + 170 )

S [ = 0+ - ) du @)+ @)
¥ — )

=1 Gl s) (I (@) + 11 ("))
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where

1 u®

573 (14 u)*+ (1 —u)®) du.

Cla, s) = /01

This proves the first inequality in (2.6). To obtain the second inequality in (2.6), we
< & for all w € [0,1]. Thus,

observe that ‘ é

Clay, s) < ;/01 ((1 +u)’ 4+ (1— u)s>>du = B(ij—ll)'

This completes the proof. O

Remark 2.1. If p = 1, then the first inequality in Theorem 2.1 coincides with the
inequality in Theorem 1.1 and the second inequality coincides with the inequality in
Corollary 8 in [11].

Corollary 2.1. Let a,p > 0 and let f : [a”,0’] — R be a differentiable function on
(a?,b°), with 0 < a < b such that f" € Li([a?,b"]). If | f’| is convex, then the following
inequalities hold:

‘épmw+4f(”§”>+fw@]

B 20(—1100{’(@—:1) [ o (ap+b ) Y <a9+bp> H

(bP — ar) 2
<"l 1) (@) + 17 0)
L)+ 1)

Proof. The result follows directly if we take s = 1 in Theorem 2.1. 0

Theorem 2.2. Let a,p > 0 and let f : [a”,b°] — R be a differentiable function on
(a?,b), with 0 < a < b such that f' € Ly([a”,0?]). If |f'|? is s-convez for s € (0,1]
and g > 1, then the following inequalities hold:

‘ép<> M(“+b>+ﬂwﬂ

2071 poT (v + 1) a’ +0"\ | e [0V
e [ () s ()

et 7>w<§:+ﬂ|< w+9%;Pwamﬂé

1 T NT S+11/pq%
g @r sy lrer)’]

1 u®

32
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Q=

M—MK?“—l

q 1 TN
< @ sl

1 (P4 28+1_1/pq%
e) 4 (gargle@nr pasirer))

where %Jr%: 1.

Proof. Using Lemma 2.1, the Hoélder’s inequality and the s-convexity of |f’|?, we
obtain

sl (50w
_zalpar(owrl)[ +f<a +b>+pl’{f—f<ap;bp>H

(bP — ar)>
D _ P 1 ap P _tp
S,o(b a) / l_ttp_lf,(1+tap+1 tb”)‘dt
2 013 2 2 2
11 g 1—t° 1+¢°
———— ’( P bp) ‘dt
+/0 37 2 Pl +

b —af| 1w 1+u 1—u
et - P P

2 [/0 3 2 < > T b)‘d“

+/ ( P+1+ub’3)’d]
b’ — af 11w\ 14+u —u Y
< 1w d
_2</03 2></of(2 2>‘“)

1w

+</01 f’<1;uap 1—}2—ubp) r@)é]
o (LY O (e G )

([ (S Erer s S i) )3

b — af 1 al|™\ =
2 </0

1 u
3 2

; 22 -1 P\|4 1 eva
) Kgﬁﬁigfm>|+?ﬁﬁﬂﬂfwﬂ)
+ <1|f/(ap)|q + 28+1_1|f/(bp)|q> q] '

25(s+1) 25(s+1)
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. The second inequality follows from the first

This proves the first inequality of (2.7)
vl < 4 forallue[0,1]. O

inequality by using the fact that ‘% —

Remark 2.2. If p = 1, then the first inequality in Theorem 2.2 coincides with the
inequality in Theorem 1.2 and the second inequality concides with the inequality in
Corollary 12 in [11].

Corollary 2.2. Let a,p > 0 and let f : [a”,0’] — R be a differentiable function on
(a?,b), with 0 < a < b such that f' € Li([a”,b"]). If |f'|7 is convex and q > 1, then
the following inequalities hold:

1 af +b° o

Mf() 4f< . ) f<b>]

20‘1°‘Fa—|—1 AN
o 75%) (3%

Sbﬁ;cf(/ol e ) [<3lf’( )i + ) >q+<3|f’<bp>rq+rf'<ap>|q>q]

4 4
Y [<3If’(ap)|q + rf'af)rq)i . <3lf’(b")|" + |f’<aﬂ>rq>i] |

1

3 2

-6 4 4
where % + % =1
Proof. The result follows directly if we take s = 1 in Theorem 2.2. 0J

Theorem 2.3. Let a,p > 0 and let f : [a”,b°] — R be a differentiable function on
(a?,b), with 0 < a < b such that ' € Ly([a?,0?]). If |f'|? is s-convex for s € (0,1]
and q > 1, then the following inequalities hold:

sl (C50) )

2071 poT (v + 1) af + b° P
e S Rl

b — af

S (Mo(a)yK;S(Ml(aas)\f’(apﬂq+Mz(a,s)!f’(bp)|">>

(2 (ot s s aire) )]

1

bp_apG) [<8<23+1 )|f( )| + 3(811 |f’(b”)!q)>q

s+1
(2.8) <21(3 Fa”)|” + 2 : 1f/(bp)‘q )

Q=
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where % + % =1, with

L1 u”
MQ(O{) :/U g — ? du,
1 e s
and
L1
Mg(a,s):/o 5—7(1—u)5du

Proof. Using Lemma 2.1, the Holder’s inequality and the s-convexity of |f’|?, we

‘é[f( )+ 4f ( - bp) ¥ f(b%]

g (1) s ()]

obtain

(b7 — ar)e
p(bP — aP) /1 A I ,(1+tp 1—t° >‘
<= —— —|t* p o
=T A Rl A VA S e A LU
L1 ger 1—t9  1+1tF
- _ p—1| g/ p P
5T f( 2 7 b>M4

:bP;aP[/OI; u2f(]_—|2—uap+]_—u )‘du
+/ ( o + 1+“M)P4
prgap</ol 3™ | )K/ 5 3| e

T
(2.9) +( o) ) )
+ /0 |- S| (5 @ S o) é]

2
7 a0 : (5 (@l + i)

1

3

u®
2

+ <21S (Mz(a, 8)|f(a”)]7 + M (a, 3)|f’(bﬂ)’q)> ;] |
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where
L1 u®
Mofe) = [ |5 =5 d
(@) 0o 137 2 |™
1w
M :/ - a v wed
1(a, s) 1373 (14 u)’du
and
11 a
Mg(a,s):/o g—%(l—u)sdu
This proves the first inequality of (2.8). For the second inequality, since ‘% — % < %
for all u € [0, 1], it follows that
1 u® 1
o = [ L s ]
ol@) =) 137 3| =3
111 u® 1 1 2s+1_1
M, (a, :/7—71 Sd<—/1 S —
lass) = 13— | widus g [P+ w)du=5r=y
and
L1 u® 1/t 1
M,:/f——l— Sd<7/1— Sdu — .
2ars) = J g~ 5 |- widus 5 (L —w)du = 5oy
This completes the proof of the theorem. O

Remark 2.3. If p = 1, then the first inequality in Theorem 2.3 coincides with the
inequality in Theorem 1.3.

Corollary 2.3. Let a,p > 0 and let f : [a”,0’] — R be a differentiable function on
(a?,b), with 0 < a < b such that f' € Li([a”,b"]). If |f'|7 is convex and q > 1, then
the following inequality holds:

v (75"

2 o Iz 0
i (5) +os (U5 |

|
<" (fMo(a))i K; (Mt D@+ 260 @) )

) n f(bﬂ)]

22T (a+1)
o —w)e

where %—l—%: 1.

Proof. The result follows directly if we take s = 1 in Theorem 2.3. 0J
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3. CONCLUSION

We have introduced some new integral inequalities of Simpson’s type for s-convex
functions using the Katugampola fractional integrals. Our results generalize some
results in the literature related to the Riemann—Liouville fractional integrals as pointed
out in the paper. We have new results for the case p # 1. In particular, if we take
the limit as p — 07, then our results could be stated using the Hadamard fractional
integrals. The details are left for the interested reader.
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