ON THE METRIC DIMENSION OF CIRCULANT GRAPHS WITH 2 GENERATORS

L. DU TOIT1 AND T. VETRÍK2

Abstract. A set of vertices W resolves a connected graph G if every vertex of G is uniquely determined by its vector of distances to the vertices in W. The number of vertices in a smallest resolving set is called the metric dimension and it is denoted by $\dim(G)$. We study the circulant graphs $C_n(2,3)$ with the vertices $v_0, v_1, v_2, \ldots, v_{n-1}$ and the edges v_iv_{i+2}, v_iv_{i+3}, where $i = 0, 1, 2, \ldots, n-1$, the indices are taken modulo n. We show that for $n \geq 26$ we have $\dim(C_n(2,3)) = 3$ if $n \equiv 4 \pmod{6}$, $\dim(C_n(2,3)) = 4$ if $n \equiv 0, 1, 5 \pmod{6}$ and $3 \leq \dim(C_n(2,3)) \leq 4$ if $n \equiv 2, 3 \pmod{6}$.

1. Introduction

Let G be a connected graph with the vertex set $V(G)$. The distance $d(u, v)$ between two vertices $u, v \in V(G)$ is the number of edges in a shortest path between them. A vertex w resolves a pair of vertices u, v if $d(u, w) \neq d(v, w)$. For an ordered set of z vertices $W = \{w_1, w_2, \ldots, w_z\}$, the representation of distances of a vertex v with respect to W is the ordered z-tuple

$$r(v|W) = (d(v, w_1), d(v, w_2), \ldots, d(v, w_z)).$$

A set of vertices $W \subseteq V(G)$ is a resolving set of G if every two vertices of G have distinct representations (if every pair of vertices of G is resolved by some vertex of W). The number of vertices in a smallest resolving set is called the metric dimension and it is denoted by $\dim(G)$. Note that the i-th coordinate in $r(v|W)$ is 0 if and only if $v = w_i$. Hence, to show that W is a resolving set of G, it suffices to verify that $r(u|W) \neq r(v|W)$ for every pair of distinct vertices $u, v \in V(G) \setminus W$.

Key words and phrases. Metric dimension, resolving set, circulant graph, distance.

2010 Mathematics Subject Classification. Primary: 05C35. Secondary: 05C12.

Received: February 24, 2017.

Accepted: September 13, 2017.
The concept of metric dimension was introduced by Slater [8], and Harary and Melter [3]. The metric dimension of various classes of graphs has been investigated for four decades. For example, products of graphs were considered in [7], subdivisions of Cayley graphs in [1] and from [2] it follows that the question whether the metric dimension of a graph is less than a given value, is an NP-complete problem.

We study the metric dimension of circulant graphs. Let \(a_1, a_2, \ldots, a_m \) be positive integers, such that \(1 \leq a_1 < a_2 < \cdots < a_m \leq \frac{n}{2} \). The circulant graph \(C_n(a_1, a_2, \ldots, a_m) \) consists of the vertices \(v_0, v_1, \ldots, v_{n-1} \) and the edges \(v_i v_{i+a_j} \) where \(i = 0, 1, \ldots, n-1 \) and \(j = 1, 2, \ldots, m \), the indices are taken modulo \(n \). The numbers \(a_1, a_2, \ldots, a_m \) are called generators. The graph \(C_n(a_1, a_2, \ldots, a_m) \) is a regular graph of degree \(2m \) if all generators are smaller than \(\frac{n}{2} \), or of degree \(2m - 1 \) if \(\frac{n}{2} \) is one of the generators.

Javaid, Rahim and Ali [5] obtained the following results:

\[
\begin{align*}
\dim(C_n(1, 2)) &= 3, & \text{if } n \equiv 0, 2, 3 \pmod{4}, \\
\dim(C_n(1, 2)) &\leq 4, & \text{if } n \equiv 1 \pmod{4}.
\end{align*}
\]

The metric dimension of the circulant graphs \(C_n(1, 3) \) was studied by Javaid, Azhar and Salman [4]. They showed that for any \(n \geq 5 \)

\[
\begin{align*}
\dim(C_n(1, 3)) &= 3, & \text{if } n \equiv 1 \pmod{6}, \\
\dim(C_n(1, 3)) &= 4, & \text{if } n \equiv 0, 3, 4, 5 \pmod{6}, \\
4 &\leq \dim(C_n(1, 3)) \leq 6, & \text{if } n \equiv 2 \pmod{6}.
\end{align*}
\]

If \(n \) is even, then the graphs \(C_n(1, \frac{n}{2}) \) are 3-regular and in [6] it was proved that

\[
\dim\left(C_n\left(1, \frac{n}{2}\right)\right) = \begin{cases}
3, & \text{if } n \equiv 0 \pmod{4}, \\
4, & \text{if } n \equiv 2 \pmod{4}.
\end{cases}
\]

We extend known results on the metric dimension of circulant graphs by showing that for \(n \geq 26 \) we have

\[
\dim(C_n(2, 3)) = \begin{cases}
3, & \text{if } n \equiv 4 \pmod{6}, \\
3 \text{ or } 4, & \text{if } n \equiv 2, 3 \pmod{6}, \\
4, & \text{if } n \equiv 0, 1, 5 \pmod{6}.
\end{cases}
\]

Let us note that the distance between two vertices \(v_i \) and \(v_j \) in \(C_n(2, 3) \) is

\[
d(v_i, v_j) = \begin{cases}
\left\lfloor \frac{|i - j|}{3} \right\rfloor, & \text{if } 2 \leq |i - j| \leq \frac{n}{2}, \\
\left\lfloor \frac{n - |i - j|}{3} \right\rfloor, & \text{if } \frac{n}{2} < |i - j| \leq n - 2,
\end{cases}
\]

and \(d(v_i, v_{i+1}) = 2 \) for \(i = 0, 1, 2, \ldots, n - 1 \).
2. Lower Bounds on \(C_n(2, 3) \)

First we present a lemma, which will be used in the proofs of main results of this section.

Lemma 2.1. Three vertices \(v_i, v_{i+1}, v_{i+2} \in V(C_n(2, 3)) \), where \(0 \leq i \leq n - 1 \), can be resolved by one vertex \(w \) if and only if \(w = v_i \) or \(w = v_{i+2} \).

Proof. Let \(v_j \) be any vertex of \(C_n(2, 3) \). From the definition of the graph \(C_n(2, 3) \) it follows that the distances \(d(v_j, v_i), d(v_j, v_{i+1}), d(v_j, v_{i+2}) \) are pairwise different if and only if \(j = i \) or \(j = i + 2 \).

If \(4 \leq n \leq 6 \), then the graph \(C_n(2, 3) \) contains multiple edges, thus we study the metric dimension of \(C_n(2, 3) \) for \(n \geq 7 \). We show that the graph \(C_n(2, 3) \) does not contain a resolving set, which consists of 2 vertices.

Theorem 2.1. Let \(n \geq 7 \). Then \(\dim(C_n(2, 3)) \geq 3 \).

Proof. We prove the result by contradiction. Suppose that the graph \(C_n(2, 3) \) contains a resolving set, which consists of two different vertices \(v_i, v_j \), where \(i, j \in \{0, 1, 2, \ldots, n - 1\} \). Without loss of generality we can assume that \(i = 0 \). We distinguish two cases.

Case 1: \(7 \leq n \leq 13 \).

The distance between \(v_0 \) and any vertex in \(V' = \{v_2, v_3, v_{n-3}, v_{n-2}\} \) is 1. Since for \(n \leq 13 \) the distance between any two vertices of \(C_n(2, 3) \) is at most 2, we have \(0 \leq d(v_j, v') \leq 2 \) for any vertex \(v' \in V' \). This implies that there are two vertices in \(V' \), which are of the same distance from \(v_j \), hence they are not resolved.

Case 2: \(n \geq 14 \).

Then \(d(v_4, v_0) = d(v_5, v_0) = d(v_6, v_0) = 2 \) and \(d(v_{n-4}, v_0) = d(v_{n-5}, v_0) = d(v_{n-6}, v_0) = 2 \). By Lemma 2.1, the vertices \(v_4, v_5, v_6 \) can be resolved by \(v_j \) only if \(j = 4 \) or 6. Similarly, the vertices \(v_{n-4}, v_{n-5}, v_{n-6} \) can be resolved by \(v_j \) only if \(j = n - 4 \) or \(j = n - 6 \). Since \(\{4, 6\} \cap \{n - 4, n - 6\} = \emptyset \), we have a contradiction. The proof is complete.

For two vertices \(v_i, v_j \in V(C_n(2, 3)) \) let \(V_{i,j} = \{v_{i+1}, v_{i+2}, \ldots, v_j\} \) if \(i < j \), and let \(V_{i,j} = \{v_{j-1}, v_{j-2}, \ldots, v_0, v_1, v_2, \ldots, v_j\} \) if \(i > j \). Let us also define \(d_{i,j} \) to be the number of vertices in \(V_{i,j} \). Note that if \(v_{i_1}, v_{i_2}, \ldots, v_{i_r} \) are any vertices of \(C_n(2, 3) \), such that \(0 \leq i_1 < i_2 < \cdots < i_r \leq n - 1 \) and \(r \geq 2 \), then

\[
V_{i_1,i_2} \cup V_{i_2,i_3} \cup \cdots \cup V_{i_{r-1},i_r} \cup V_{i_r,i_1} = V(C_n(2, 3))
\]

and

\[
d_{i_1,i_2} + d_{i_2,i_3} + \cdots + d_{i_{r-1},i_r} + d_{i_r,i_1} = n.
\]

We improve the lower bound presented in Theorem 2.1 if \(n \equiv q \pmod{6} \) where \(q = 0, 1, 5 \).
Theorem 2.2. Let $n \equiv q \ (\text{mod} \ 6)$ where $n \geq 29$ and $q = 0, 1, 5$. Then
\[\dim(C_n(2,3)) \geq 4. \]

Proof. Let $n = 6k + p$ where $k \geq 5$ and $p = -1, 0, 1$. We show by contradiction that three vertices cannot resolve the graph $C_n(2,3)$. Suppose that $W = \{v_a, v_i, v_j\}$ is a resolving set of $C_n(2,3)$ where $0 \leq a < i < j \leq n - 1$. Without loss of generality we can assume that $d_{a,i} \leq d_{i,j} \leq d_{j,a}$. Note that $d_{a,i} \leq \frac{n}{3}$, otherwise we have $d_{a,i} + d_{i,j} + d_{j,a} > n$, which contradicts (2.1). Due to the symmetry in the graph, we can assume that $v_a = v_0$ and $1 \leq i \leq \frac{n}{3}$ (which means that $i \leq 2k$). Then $j \leq \frac{2n}{3}$, otherwise we have $d_{i,j} > \frac{n}{3}$ and $d_{j,a} < \frac{n}{3}$, which contradicts the fact that $d_{i,j} \leq d_{j,a}$.

Let $W' = \{v_0, v_i\}$. We consider three cases.

Case 1: $i \equiv 0 \ (\text{mod} \ 3)$.

By (1.1), we obtain $r(v_{3k-2}|W') = r(v_{3k-1}|W') = (k, k - \frac{i}{3})$. From Lemma 2.1, we know that the vertices $v_{3k-2}, v_{3k-1}, v_{3k}$ can be resolved by v_j only if $j = 3k - 2$ or $j = 3k$. This also implies that $i \leq \frac{3k}{2} \leq 3k$. Consequently $r(v_{3k-5}|W') = r(v_{3k-4}|W') = (k - 1, k - 1 - \frac{3}{3}, 1)$ if $j = 3k - 2$, and $r(v_{3k-5}|W') = r(v_{3k-4}|W') = (k - 1, k - 1 - \frac{3}{3}, 2)$ if $j = 3k$, which means that the vertices v_{3k-5} and v_{3k-4} are not resolved by W.

Case 2: $i \equiv 1 \ (\text{mod} \ 3)$.

We obtain $r(v_{3k-1}|W') = r(v_{3k}|W') = r(v_{3k+1}|W') = (k, k + \frac{1-i}{3})$. We need to resolve the vertices $v_{3k-1}, v_{3k}, v_{3k+1}$ by v_j. From Lemma 2.1, it follows that $j = 3k - 1$ or $j = 3k + 1$. By (1.1), if $j = 3k - 1$, then $r(v_{3k-4}|W') = r(v_{3k-3}|W') = (k - 1, k - 1 + \frac{1-i}{3}, 1)$, and if $j = 3k + 1$, we have $r(v_{3k-4}|W') = r(v_{3k-3}|W') = (k - 1, k - 1 + \frac{1-i}{3}, 2)$. A contradiction.

Case 3: $i \equiv 2 \ (\text{mod} \ 3)$.

If $p = 0$ or 1, then $r(v_{3k}|W') = r(v_{3k+1}|W') = r(v_{3k+2}|W') = (k, k + \frac{2-i}{3})$, thus by Lemma 2.1, $v_j = v_{3k}$ or $v_j = v_{3k+2}$ (so i is at most $\frac{3k}{2} + 1$). Since $r(v_{3k-5}|W') = r(v_{3k-4}|W') = (k - 1, k - 1 + \frac{2-i}{3}, 2)$ if $j = 3k$, and $r(v_{3k-4}|W') = r(v_{3k-3}|W') = (k - 1, k - 1 + \frac{2-i}{3}, 2)$ if $j = 3k + 2$, the set W cannot resolve the graph $C_n(2,3)$.

It remains to consider the case $p = -1$ (if $i \equiv 2 \ (\text{mod} \ 3)$). Then
\[r(v_{3k-5}|W') = r(v_{3k-4}|W') = (k - 1, k - 2 + \frac{2-i}{3}), \]
\[r(v_{3k-2}|W') = r(v_{3k-1}|W') = (k, k - 1 + \frac{2-i}{3}), \]
\[r(v_{3k}|W') = r(v_{3k+1}|W') = (k, k + \frac{2-i}{3}), \]
\[r(v_{6k-4}|W') = r(v_{6k-3}|W') = (1, \frac{i+1}{3} + 1). \]
Let us distinguish 3 subcases.

Case 3a: $j \equiv 0 \pmod{3}$.

Then $d(v_j, v_{3k-2}) = d(v_j, v_{3k-1}) = k - \frac{j}{3}$ if $j < 3k - 3$, $d(v_j, v_{3k-5}) = d(v_j, v_{3k-4}) = \frac{j}{3} - k + 2$ if $j > 3k - 3$, and $d(v_{3k-3}, v_{6k-4}) = d(v_{3k-3}, v_{6k-3}) = k$, which means that W cannot resolve the graph $C_n(2, 3)$.

Case 3b: $j \equiv 1 \pmod{3}$.

If $j \leq 3k - 2$, then $d(v_j, v_{3k}) = d(v_j, v_{3k+1}) = k + \frac{j}{3}$, and if $j \geq 3k + 1$, then $d(v_j, v_{3k-2}) = d(v_j, v_{3k-1}) = \frac{j}{3} - k + 1$.

Case 3c: $j \equiv 2 \pmod{3}$.

If $j < 3k - 1$, then $d(v_j, v_{3k}) = d(v_j, v_{3k+1}) = k + \frac{2j}{3}$, and if $j > 3k + 2$, then $d(v_j, v_{3k}) = d(v_j, v_{3k+1}) = \frac{j}{3} - k$.

Let $j = 3k - 1$. Then $r(v_2|W) = r(v_3|W) = \left(1, \frac{i-2}{3}, k-1\right)$ if $i \geq 5$, and $r(v_3|W) = r(v_{6k-4}|W) = (1, 2, k-1)$ if $i = 2$.

Let $j = 3k + 2$. Then $r(v_2|W) = r(v_3|W) = \left(1, \frac{i-2}{3}, k\right)$ if $i \geq 5$, and $r(v_5|W) = r(v_{6k-2}|W) = (2, 1, k-1)$ if $i = 2$. Hence, $C_n(2, 3)$ cannot be resolved by three vertices, which means that $\dim(C_n(2, 3)) \geq 4$.

\end{proof}

3. Resolving Sets of $C_n(2, 3)$

In this section we present resolving sets, which yield upper bound on the metric dimension of $C_n(2, 3)$. We show that there exists an infinite set of graphs $C_n(2, 3)$ containing a resolving set, which consists of 3 vertices.

\begin{theorem}
Let $n \equiv 4 \pmod{6}$ where $n \geq 22$. Then $\dim(C_n(2, 3)) \leq 3$.
\end{theorem}

\begin{proof}
Let $n = 6k + 4$ where $k \geq 3$. We show that $W = \{v_0, v_4, v_8\}$ is a resolving set of $C_n(2, 3)$. We give representations of distances of all vertices in $V(C_n(2, 3)) \setminus W$ with respect to W:

\begin{align*}
 r(v_{3i-2}|W) &= (i, i - 2, i - 3), & 4 \leq i \leq k + 1, \\
 r(v_{3i-1}|W) &= (i, i - 1, i - 3), & 4 \leq i \leq k + 1, \\
 r(v_{3i}|W) &= (i, i - 1, i - 2), & 4 \leq i \leq k + 1, \\
 r(v_{6k-3i+4}|W) &= (i, i + 2, i + 3), & 1 \leq i \leq k - 2, \\
 r(v_{6k-3i+5}|W) &= (i, i + 1, i + 3), & 1 \leq i \leq k - 2, \\
 r(v_{6k-3i+6}|W) &= (i, i + 1, i + 2), & 2 \leq i \leq k - 1, \\
 r(v_{i}|W) &= (2, 1, 3), & r(v_{2}|W) = (1, 1, 2), \\
 r(v_{3}|W) &= (1, 2, 2), & r(v_{5}|W) = (2, 2, 1), \\
 r(v_{6}|W) &= (2, 1, 1), & r(v_{7}|W) = (3, 1, 2), \\
 r(v_{9}|W) &= (3, 2, 2), & r(v_{6k+3}|W) = (2, 2, 3), \\
 r(v_{3k+4}|W) &= (k, k, k - 1), & r(v_{3k+5}|W) = (k, k + 1, k - 1),
\end{align*}

\end{proof}
Theorem 3.2. Let \(n \equiv q \pmod{6} \) where \(n \geq 15 \) and \(q = 2, 3, 5 \). Then \[
\dim(C_n(2,3)) \leq 4.
\]

Proof. Let \(n = 6k + q \) where \(n \geq 15 \) and \(q = 2, 3, 5 \). Let us show that \(W = \{v_0, v_1, v_2, v_3, v_4, v_5\} \) is a resolving set of \(C_n(2,3) \). First we give representations of distances of the vertices \(v_i \) for \(3 \leq i \leq 3k+1 \) and \(3k + q + 1 \leq i \leq 6k + q - 1 \) with respect to \(W' = \{v_0, v_1, v_2\} \subset W \) (see Table 1).

Table 1. Representations of distances of the vertices \(v_i \) for \(3 \leq i \leq 3k+1 \) and \(3k + q + 1 \leq i \leq 6k + q - 1 \) with respect to \(W' \)

<table>
<thead>
<tr>
<th>Representation</th>
<th>(v_0)</th>
<th>(v_1)</th>
<th>(v_2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(v_3)</td>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>(v_{3i-2}) ((2 \leq i \leq k + 1))</td>
<td>(i)</td>
<td>(i - 1)</td>
<td>(i - 1)</td>
</tr>
<tr>
<td>(v_{3i-1}) ((2 \leq i \leq k))</td>
<td>(i)</td>
<td>(i)</td>
<td>(i - 1)</td>
</tr>
<tr>
<td>(v_{3i}) ((2 \leq i \leq k))</td>
<td>(i)</td>
<td>(i)</td>
<td>(i)</td>
</tr>
<tr>
<td>(v_{6k-3i+q}) ((1 \leq i \leq k - 1))</td>
<td>(i)</td>
<td>(i + 1)</td>
<td>(i + 1)</td>
</tr>
<tr>
<td>(v_{6k-3i+q+1}) ((1 \leq i \leq k))</td>
<td>(i)</td>
<td>(i)</td>
<td>(i + 1)</td>
</tr>
<tr>
<td>(v_{6k-3i+q+2}) ((2 \leq i \leq k))</td>
<td>(i)</td>
<td>(i)</td>
<td>(i)</td>
</tr>
<tr>
<td>(v_{6k+i-q-1})</td>
<td>2</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

The only vertices, which have the same representations are the following pairs: \(v_3, v_{6k+q-2} \); \(v_4, v_{6k+q-1} \) and \(v_{3i}, v_{6k-3i+q+2} \) for \(2 \leq i \leq k \). The vertex \(v_6 \) resolves all these pairs, since

\[
\begin{align*}
 d(v_6, v_3) &= 1, & d(v_6, v_{6k+q-2}) &= 3, \\
 d(v_6, v_4) &= 1, & d(v_6, v_{6k+q-1}) &= 3, \\
 d(v_6, v_{3i}) &= i - 2, \text{ for } 2 \leq i \leq k, \\
 d(v_6, v_{6k-3i+q+2}) &= i + 2, \text{ for } 2 \leq i \leq k - 1, \\
 d(v_6, v_{3k+q+2}) &= \begin{cases} i, & \text{if } q = 2 \text{ or } 3, \\
 i + 1, & \text{if } q = 5. \end{cases}
\end{align*}
\]

Let us present representations of the vertices in \(V(C_n(2,3)) \setminus W' \), which are not given in Table 1.
If \(n = 6k + 2 \), then
\[
r(v_{3k+2}|W') = (k, k + 1, k),
\]
and if \(n = 6k + 3 \), we have
\[
r(v_{3k+2}|W') = (k + 1, k + 1, k),
nr(v_{3k+3}|W') = (k, k + 1, k + 1).
\]
Since these representations are different from the representation of any vertex in Table 1, \(W \) is a resolving set of \(C_n(2, 3) \) if \(q = 2 \) or \(3 \).

If \(n = 6k + 5 \), we obtain
\[
r(v_{3k+2}|W') = (k + 1, k + 1, k),
nr(v_{3k+3}|W') = (k + 1, k + 1, k + 1),
nr(v_{3k+5}|W') = (k, k + 1, k + 1).
\]
Since \(d(v_6, v_{3k+3}) = k - 1 \) and \(d(v_6, v_{3k+4}) = k \), we have \(\dim(C_n(2, 3)) \leq 4 \) for \(q = 5 \) too.

Theorem 3.3. Let \(n \equiv 0 \pmod{6} \) where \(n \geq 12 \). Then \(\dim(C_n(2, 3)) \leq 4 \).

Proof. Let \(n = 6k \) where \(k \geq 2 \), and let \(W' = \{v_0, v_1, v_2\} \). We consider representations of distances of the vertices \(v_{3i-2}, v_{3i-1}, v_{3i} \) and \(v_{6k-3i+q+2} \) with respect to \(W' \) given in Table 1 for \(2 \leq i \leq k \) and \(q = 0 \). Similarly, consider representations of the vertices \(v_{6k-3i+q} \) and \(v_{6k-3i+q+1} \) given in Table 1 for \(1 \leq i \leq k - 1 \) and \(q = 0 \). It remains to give the representation of \(v_{3k+1} \), which is \(r(v_{3k+1}|W') = (k, k, k) \).

Let us present all vertices of \(C_n(2, 3) \), which have the same representations of distances with respect to \(W' \):
\[
r(v_3|W') = r(v_{6k-2}|W') = (1, 1, 2),
nr(v_4|W') = r(v_{6k-1}|W') = (2, 1, 1),
r(v_3|W') = r(v_{6k-3i+2}|W') = (i, i, i), \text{ for } 2 \leq i \leq k - 1,
nr(v_3k|W') = r(v_{3k+1}|W') = r(v_{3k+2}|W') = (k, k, k).
\]

We show that the vertex \(v_{3k} \) resolves all these vertices.
\[
d(v_{3k}, v_3) = k - 1, \quad d(v_{3k}, v_{6k-2}) = k,
d(v_{3k}, v_4) = k - 1, \quad d(v_{3k}, v_{6k-1}) = k,
d(v_{3k}, v_{3i}) = k - i, \quad d(v_{3k}, v_{6k-3i+2}) = k - i + 1, \text{ for } 2 \leq i \leq k - 1,
d(v_{3k}, v_{3k+1}) = 2, \quad d(v_{3k}, v_{6k+2}) = 1.
\]
Thus \(W = \{v_0, v_1, v_2, v_{3k}\} \) is a resolving set of the graph \(C_n(2, 3) \), which implies that \(\dim(C_n(2, 3)) \leq 4 \).

Theorem 3.4. Let \(n \equiv 1 \pmod{6} \) where \(n \geq 13 \). Then \(\dim(C_n(2, 3)) \leq 4 \).
Table 2. Representations of distances of all vertices in $V(C_n(2, 3)) \setminus W$ with respect to W

<table>
<thead>
<tr>
<th>Representation</th>
<th>v_0</th>
<th>v_1</th>
<th>v_{3k-1}</th>
<th>v_{3k}</th>
</tr>
</thead>
<tbody>
<tr>
<td>v_2</td>
<td>1</td>
<td>2</td>
<td>$k - 1$</td>
<td>k</td>
</tr>
<tr>
<td>v_{3i-2} ($2 \leq i \leq k - 1$)</td>
<td>i</td>
<td>$i - 1$</td>
<td>$k - i + 1$</td>
<td>$k - i + 1$</td>
</tr>
<tr>
<td>v_{3i-1} ($2 \leq i \leq k - 1$)</td>
<td>i</td>
<td>i</td>
<td>$k - i$</td>
<td>$k - i + 1$</td>
</tr>
<tr>
<td>v_{3i} ($1 \leq i \leq k - 1$)</td>
<td>i</td>
<td>i</td>
<td>$k - i$</td>
<td>$k - i$</td>
</tr>
<tr>
<td>v_{3k-2}</td>
<td>k</td>
<td>$k - 1$</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>v_{3k+1}</td>
<td>k</td>
<td>k</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>$v_{6k-3i+1}$ ($1 \leq i \leq k - 1$)</td>
<td>i</td>
<td>$i + 1$</td>
<td>$k - i + 1$</td>
<td>$k - i + 1$</td>
</tr>
<tr>
<td>$v_{6k-3i+2}$ ($1 \leq i \leq k$)</td>
<td>i</td>
<td>i</td>
<td>$k - i + 1$</td>
<td>$k - i + 1$</td>
</tr>
<tr>
<td>$v_{6k-3i+3}$ ($2 \leq i \leq k$)</td>
<td>i</td>
<td>i</td>
<td>$k - i + 2$</td>
<td>$k - i + 1$</td>
</tr>
</tbody>
</table>

Proof. Let $n = 6k + 1$ where $k \geq 2$. We show that $W = \{v_0, v_1, v_{3k-1}, v_{3k}\}$ is a resolving set of $C_n(2, 3)$. Representations of distances of all vertices in $V(C_n(2, 3)) \setminus W$ with respect to W are given in Table 2.

Any two vertices have different representations, hence W is a resolving set of $C_n(2, 3)$ and $\dim(C_n(2, 3)) \leq 4$. □

4. Conclusion

In Section 3 we presented resolving sets of $C_n(2, 3)$ except for a few small values of n. Resolving sets for those values of n, which are not included in our theorems, are given in Table 3.

Table 3. Resolving sets of $C_n(2, 3)$ for $n = 7, 8, 9, 10, 11, 14$ and 16

<table>
<thead>
<tr>
<th>$C_n(2, 3)$</th>
<th>Resolving set</th>
</tr>
</thead>
<tbody>
<tr>
<td>$n = 7$</td>
<td>${v_0, v_1, v_2}$</td>
</tr>
<tr>
<td>$n = 8$</td>
<td>${v_0, v_1, v_4}$</td>
</tr>
<tr>
<td>$n = 9$</td>
<td>${v_0, v_1, v_2, v_4}$</td>
</tr>
<tr>
<td>$n = 10$</td>
<td>${v_0, v_1, v_2, v_3, v_4}$</td>
</tr>
<tr>
<td>$n = 11$</td>
<td>${v_0, v_1, v_3, v_4}$</td>
</tr>
<tr>
<td>$n = 14$</td>
<td>${v_0, v_1, v_2, v_6}$</td>
</tr>
<tr>
<td>$n = 16$</td>
<td>${v_0, v_1, v_2, v_6}$</td>
</tr>
</tbody>
</table>

We carefully checked that these resolving sets are the smallest ones (this can be checked also by computer programs). Note that $n = 10$ is the only case, such that $\dim(C_n(2, 3)) > 4$. The case $n = 14$ could be included in the proof of Theorem 3.2, but we would have to consider a short part of the proof of Theorem 3.2 separately for this case.

From our theorems presented in Sections 2 and 3 we obtain Table 4. Our results yield exact values of the metric dimension of $C_n(2, 3)$ if $n \equiv q \pmod{6}$ where $q = 0, 1, 4, 5$.
Table 4. Lower and upper bounds on $\dim(C_n(2, 3))$

<table>
<thead>
<tr>
<th>$\dim(C_n(2, 3))$</th>
<th>Lower bound for $n \geq 26$</th>
<th>Upper bound for $n \geq 17$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$n \equiv 0 \pmod{6}$</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>$n \equiv 1 \pmod{6}$</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>$n \equiv 2 \pmod{6}$</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>$n \equiv 3 \pmod{6}$</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>$n \equiv 4 \pmod{6}$</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>$n \equiv 5 \pmod{6}$</td>
<td>4</td>
<td>4</td>
</tr>
</tbody>
</table>

We have

$\dim(C_n(2, 3)) = 3$, for $n \equiv 4 \pmod{6}$, where $n \geq 22$,

$\dim(C_n(2, 3)) = 4$, for $n \equiv q \pmod{6}$, where $n \geq 29$ and $q = 0, 1, 5$.

It would be interesting to know exact values of $\dim(C_n(2, 3))$ also for $n \equiv 2$ or 3 (mod 6). We conjecture that all resolving sets presented in this paper are the smallest ones, thus we close this section by presenting the following conjecture.

Conjecture 4.1. Let $n \equiv 2$ or 3 (mod 6), where $n \geq 9$. Then $\dim(C_n(2, 3)) = 4$.

Acknowledgements. The work of the second author has been supported by the National Research Foundation of South Africa; grant numbers: 90793, 112122.

References

1Department of Mathematics and Applied Mathematics, University of Pretoria, Private bag X20, 0028 Pretoria, South Africa
E-mail address: lindiedt@gmail.com

2Department of Mathematics and Applied Mathematics, University of the Free State, P. O. Box 339, 9300 Bloemfontein, South Africa
E-mail address: vetrikt@ufs.ac.za