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ON THE METRIC DIMENSION OF CIRCULANT GRAPHS WITH
2 GENERATORS

L. DU TOIT1 AND T. VETRÍK2

Abstract. A set of vertices W resolves a connected graph G if every vertex of G is
uniquely determined by its vector of distances to the vertices in W . The number of
vertices in a smallest resolving set is called the metric dimension and it is denoted by
dim(G). We study the circulant graphs Cn(2, 3) with the vertices v0, v1, v2, . . . , vn−1
and the edges vivi+2, vivi+3, where i = 0, 1, 2, . . . , n − 1, the indices are taken
modulo n. We show that for n ≥ 26 we have dim(Cn(2, 3)) = 3 if n ≡ 4 (mod 6),
dim(Cn(2, 3)) = 4 if n ≡ 0, 1, 5 (mod 6) and 3 ≤ dim(Cn(2, 3)) ≤ 4 if n ≡ 2, 3
(mod 6).

1. Introduction

Let G be a connected graph with the vertex set V (G). The distance d(u, v) between
two vertices u, v ∈ V (G) is the number of edges in a shortest path between them.
A vertex w resolves a pair of vertices u, v if d(u, w) 6= d(v, w). For an ordered set of
z vertices W = {w1, w2, . . . , wz}, the representation of distances of a vertex v with
respect to W is the ordered z-tuple

r(v|W ) = (d(v, w1), d(v, w2), . . . , d(v, wz)).

A set of vertices W ⊂ V (G) is a resolving set of G if every two vertices of G have
distinct representations (if every pair of vertices of G is resolved by some vertex of
W ). The number of vertices in a smallest resolving set is called the metric dimension
and it is denoted by dim(G). Note that the i-th coordinate in r(v|W ) is 0 if and only
if v = wi. Hence, to show that W is a resolving set of G, it suffices to verify that
r(u|W ) 6= r(v|W ) for every pair of distinct vertices u, v ∈ V (G) \W .
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The concept of metric dimension was introduced by Slater [8], and Harary and
Melter [3]. The metric dimension of various classes of graphs has been investigated
for four decades. For example, products of graphs were considered in [7], subdivisions
of Cayley graphs in [1] and from [2] it follows that the question whether the metric
dimension of a graph is less than a given value, is an NP-complete problem.

We study the metric dimension of circulant graphs. Let n, m and a1, a2, . . . , am

be positive integers, such that 1 ≤ a1 < a2 < · · · < am ≤ n
2 . The circulant graph

Cn(a1, a2, . . . , am) consists of the vertices v0, v1, . . . , vn−1 and the edges vivi+aj
where

i = 0, 1, . . . , n− 1 and j = 1, 2, . . . , m, the indices are taken modulo n. The numbers
a1, a2, . . . , am are called generators. The graph Cn(a1, a2, . . . , am) is a regular graph
either of degree 2m if all generators are smaller than n

2 , or of degree 2m − 1 if n
2 is

one of the generators.
Javaid, Rahim and Ali [5] obtained the following results:

dim(Cn(1, 2)) = 3, if n ≡ 0, 2, 3 (mod 4),
dim(Cn(1, 2)) ≤ 4, if n ≡ 1 (mod 4).

The metric dimension of the circulant graphs Cn(1, 3) was studied by Javaid, Azhar
and Salman [4]. They showed that for any n ≥ 5

dim(Cn(1, 3)) = 3, if n ≡ 1 (mod 6),
dim(Cn(1, 3)) = 4, if n ≡ 0, 3, 4, 5 (mod 6),
4 ≤ dim(Cn(1, 3)) ≤ 6, if n ≡ 2 (mod 6).

If n is even, then the graphs Cn(1, n
2 ) are 3-regular and in [6] it was proved that

dim
(

Cn

(
1,

n

2

))
=

3, if n ≡ 0 (mod 4),
4, if n ≡ 2 (mod 4).

We extend known results on the metric dimension of circulant graphs by showing
that for n ≥ 26 we have

dim(Cn(2, 3)) =


3, if n ≡ 4 (mod 6),
3 or 4, if n ≡ 2, 3 (mod 6),
4, if n ≡ 0, 1, 5 (mod 6).

Let us note that the distance between two vertices vi and vj in Cn(2, 3) is

(1.1) d(vi, vj) =



⌈
|i− j|

3

⌉
, if 2 ≤ |i− j| ≤ n

2 ,

⌈
n− |i− j|

3

⌉
, if n

2 < |i− j| ≤ n− 2,

and d(vi, vi+1) = 2 for i = 0, 1, 2, . . . , n− 1.
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2. Lower Bounds on Cn(2, 3)

First we present a lemma, which will be used in the proofs of main results of this
section.

Lemma 2.1. Three vertices vi, vi+1, vi+2 ∈ V (Cn(2, 3)), where 0 ≤ i ≤ n− 1, can be
resolved by one vertex w if and only if w = vi or w = vi+2.

Proof. Let vj be any vertex of Cn(2, 3). From the definition of the graph Cn(2, 3) it
follows that the distances d(vj, vi), d(vj, vi+1), d(vj, vi+2) are pairwise different if and
only if j = i or j = i + 2. �

If 4 ≤ n ≤ 6, then the graph Cn(2, 3) contains multiple edges, thus we study
the metric dimension of Cn(2, 3) for n ≥ 7. We show that the graph Cn(2, 3) does not
contain a resolving set, which consists of 2 vertices.

Theorem 2.1. Let n ≥ 7. Then dim(Cn(2, 3)) ≥ 3.

Proof. We prove the result by contradiction. Suppose that the graph Cn(2, 3) con-
tains a resolving set, which consists of two different vertices vi, vj, where i, j ∈
{0, 1, 2, . . . , n − 1}. Without loss of generality we can assume that i = 0. We
distinguish two cases.

Case 1: 7 ≤ n ≤ 13.
The distance between v0 and any vertex in V ′ = {v2, v3, vn−3, vn−2} is 1. Since

for n ≤ 13 the distance between any two vertices of Cn(2, 3) is at most 2, we have
0 ≤ d(vj, v′) ≤ 2 for any vertex v′ ∈ V ′. This implies that there are two vertices in
V ′, which are of the same distance from vj, hence they are not resolved.

Case 2: n ≥ 14.
Then d(v4, v0) = d(v5, v0) = d(v6, v0) = 2 and d(vn−4, v0) = d(vn−5, v0) = d(vn−6, v0)

= 2. By Lemma 2.1, the vertices v4, v5, v6 can be resolved by vj only if j = 4 or
6. Similarly, the vertices vn−4, vn−5, vn−6 can be resolved by vj only if j = n − 4 or
j = n − 6. Since {4, 6} ∩ {n − 4, n − 6} = ∅, we have a contradiction. The proof is
complete. �

For two vertices vi, vj ∈ V (Cn(2, 3)) let Vi,j = {vi+1, vi+2, . . . , vj} if i < j, and
let Vi,j = {vi+1, vi+2, . . . , vn−1, v0, v1, . . . vj} if i > j. Let us also define di,j to be
the number of vertices in Vi,j. Note that if vi1 , vi2 , . . . , vir are any vertices of Cn(2, 3),
such that 0 ≤ i1 < i2 < · · · < ir ≤ n− 1 and r ≥ 2, then

Vi1,i2 ∪ Vi2,i3 ∪ · · · ∪ Vir−1,ir ∪ Vir,i1 = V (Cn(2, 3))

and

di1,i2 + di2,i3 + · · ·+ dir−1,ir + dir,i1 = n.(2.1)

We improve the lower bound presented in Theorem 2.1 if n ≡ q (mod 6) where
q = 0, 1, 5.
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Theorem 2.2. Let n ≡ q (mod 6) where n ≥ 29 and q = 0, 1, 5. Then

dim(Cn(2, 3)) ≥ 4.

Proof. Let n = 6k + p where k ≥ 5 and p = −1, 0, 1. We show by contradiction
that three vertices cannot resolve the graph Cn(2, 3). Suppose that W = {va, vi, vj}
is a resolving set of Cn(2, 3) where 0 ≤ a < i < j ≤ n − 1. Without loss of
generality we can assume that da,i ≤ di,j ≤ dj,a Note that da,i ≤ n

3 , otherwise we have
da,i + di,j + dj,a > n, which contradicts (2.1). Due to the symmetry in the graph, we
can assume that va = v0 and 1 ≤ i ≤ n

3 (which means that i ≤ 2k). Then j ≤ 2n
3 ,

otherwise we have di,j > n
3 and dj,a < n

3 , which contradicts the fact that di,j ≤ dj,a.
Let W ′ = {v0, vi}. We consider three cases.

Case 1: i ≡ 0 (mod 3).
By (1.1), we obtain r(v3k−2|W ′) = r(v3k−1|W ′) = r(v3k|W ′) =

(
k, k − i

3

)
. From

Lemma 2.1 we knopw that the vertices v3k−2, v3k−1, v3k can be resolved by vj only if
j = 3k − 2 or j = 3k. This also implies that i ≤ j

2 ≤
3k
2 . Consequently r(v3k−5|W ) =

r(v3k−4|W ) =
(
k − 1, k − 1− i

3 , 1
)
if j = 3k − 2, and r(v3k−5|W ) = r(v3k−4|W ) =(

k − 1, k − 1− i
3 , 2

)
if j = 3k, which means that the vertices v3k−5 and v3k−4 are not

resolved by W .
Case 2: i ≡ 1 (mod 3).
We obtain r(v3k−1|W ′) = r(v3k|W ′) = r(v3k+1|W ′) =

(
k, k + 1−i

3

)
. We need to

resolve the vertices v3k−1, v3k, v3k+1 by vj. From Lemma 2.1, it follows that j =
3k − 1 or j = 3k + 1. By (1.1), if j = 3k − 1, then r(v3k−4|W ) = r(v3k−3|W ) =(
k − 1, k − 1 + 1−i

3 , 1
)
, and if j = 3k + 1, we have r(v3k−4|W ) = r(v3k−3|W ) =(

k − 1, k − 1 + 1−i
3 , 2

)
. A contradiction.

Case 3: i ≡ 2 (mod 3).
If p = 0 or 1, then r(v3k|W ′) = r(v3k+1|W ′) = r(v3k+2|W ′) =

(
k, k + 2−i

3

)
, thus

by Lemma 2.1, vj = v3k or vj = v3k+2
(
so i is at most 3k

2 + 1
)
. Since r(v3k−5|W ) =

r(v3k−4|W ) =
(
k − 1, k − 1 + 2−i

3 , 2
)
if j = 3k, and r(v3k−4|W ) = r(v3k−3|W ) =(

k − 1, k − 1 + 2−i
3 , 2

)
if j = 3k + 2, the set W cannot resolve the graph Cn(2, 3).

It remains to consider the case p = −1 (if i ≡ 2 (mod 3)). Then

r(v3k−5|W ′) = r(v3k−4|W ′) =
(

k − 1, k − 2 + 2− i

3

)
,

r(v3k−2|W ′) = r(v3k−1|W ′) =
(

k, k − 1 + 2− i

3

)
,

r(v3k|W ′) = r(v3k+1|W ′) =
(

k, k + 2− i

3

)
,

r(v6k−4|W ′) = r(v6k−3|W ′) =
(

1,
i + 1

3 + 1
)

.



ON THE METRIC DIMENSION OF CIRCULANT GRAPHS WITH 2 GENERATORS 53

Let us distinguish 3 subcases.
Case 3a: j ≡ 0 (mod 3).
Then d(vj, v3k−2) = d(vj, v3k−1) = k − j

3 if j < 3k − 3, d(vj, v3k−5) = d(vj, v3k−4) =
j
3 − k + 2 if j > 3k − 3, and d(v3k−3, v6k−4) = d(v3k−3, v6k−3) = k, which means that
W cannot resolve the graph Cn(2, 3).

Case 3b: j ≡ 1 (mod 3).
If j ≤ 3k − 2, then d(vj, v3k) = d(vj, v3k+1) = k + 1−j

3 , and if j ≥ 3k + 1, then
d(vj, v3k−2) = d(vj, v3k−1) = j−1

3 − k + 1.
Case 3c: j ≡ 2 (mod 3).
If j < 3k − 1, then d(vj, v3k) = d(vj, v3k+1) = k + 2−j

3 , and if j > 3k + 2, then
d(vj, v3k) = d(vj, v3k+1) = j+1

3 − k.
Let j = 3k − 1. Then r(v2|W ) = r(v3|W ) =

(
1, i−2

3 , k − 1
)
if i ≥ 5, and r(v3|W ) =

r(v6k−4|W ) = (1, 2, k − 1) if i = 2.
Let j = 3k + 2. Then r(v2|W ) = r(v3|W ) =

(
1, i−2

3 , k
)
if i ≥ 5, and r(v5|W ) =

r(v6k−2|W ) = (2, 1, k−1) if i = 2. Hence, Cn(2, 3) cannot be resolved by three vertices,
which means that dim(Cn(2, 3)) ≥ 4. �

3. Resolving Sets of Cn(2, 3)

In this section we present resolving sets, which yield upper bound on the metric
dimension of Cn(2, 3). We show that there exists an infinite set of graphs Cn(2, 3)
containing a resolving set, which consists of 3 vertices.

Theorem 3.1. Let n ≡ 4 (mod 6) where n ≥ 22. Then dim(Cn(2, 3)) ≤ 3.

Proof. Let n = 6k + 4 where k ≥ 3. We show that W = {v0, v4, v8} is a resolving
set of Cn(2, 3). We give representations of distances of all vertices in V (Cn(2, 3)) \W
with respect to W :

r(v3i−2|W ) = (i, i− 2, i− 3), 4 ≤ i ≤ k + 1,

r(v3i−1|W ) = (i, i− 1, i− 3), 4 ≤ i ≤ k + 1,

r(v3i|W ) = (i, i− 1, i− 2), 4 ≤ i ≤ k + 1,

r(v6k−3i+4|W ) = (i, i + 2, i + 3), 1 ≤ i ≤ k − 2,

r(v6k−3i+5|W ) = (i, i + 1, i + 3), 1 ≤ i ≤ k − 2,

r(v6k−3i+6|W ) = (i, i + 1, i + 2), 2 ≤ i ≤ k − 1,

r(v1|W ) = (2, 1, 3), r(v2|W ) = (1, 1, 2),
r(v3|W ) = (1, 2, 2), r(v5|W ) = (2, 2, 1),
r(v6|W ) = (2, 1, 1), r(v7|W ) = (3, 1, 2),
r(v9|W ) = (3, 2, 2), r(v6k+3|W ) = (2, 2, 3),
r(v3k+4|W ) = (k, k, k − 1), r(v3k+5|W ) = (k, k + 1, k − 1),
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r(v3k+6|W ) = (k, k + 1, k), r(v3k+7|W ) = (k − 1, k + 1, k),
r(v3k+8|W ) = (k − 1, k, k).

Since no two vertices in V (Cn(2, 3))\W have the same representations, W is a resolving
set for Cn(2, 3). Thus dim(Cn(2, 3)) ≤ 3. �

In the next three theorems we present resolving sets of Cn(2, 3) consisting of 4
vertices.

Theorem 3.2. Let n ≡ q (mod 6) where n ≥ 15 and q = 2, 3, 5. Then

dim(Cn(2, 3)) ≤ 4.

Proof. Let n = 6k + q where n ≥ 15 and q = 2, 3, 5. Let us show that W =
{v0, v1, v2, v6} is a resolving set of Cn(2, 3). First we give representations of distances
of the vertices vi for 3 ≤ i ≤ 3k + 1 and 3k + q + 1 ≤ i ≤ 6k + q − 1 with respect to
W ′ = {v0, v1, v2} ⊂ W (see Table 1).

Table 1. Representations of distances of the vertices vi for 3 ≤ i ≤
3k + 1 and 3k + q + 1 ≤ i ≤ 6k + q − 1 with respect to W ′

Representation v0 v1 v2

v3 1 1 2
v3i−2 (2 ≤ i ≤ k + 1) i i− 1 i− 1
v3i−1 (2 ≤ i ≤ k) i i i− 1
v3i (2 ≤ i ≤ k) i i i
v6k−3i+q (1 ≤ i ≤ k − 1) i i + 1 i + 1
v6k−3i+q+1 (1 ≤ i ≤ k) i i i + 1
v6k−3i+q+2 (2 ≤ i ≤ k) i i i
v6k+q−1 2 1 1

The only vertices, which have the same representations are the following pairs:
v3, v6k+q−2; v4, v6k+q−1 and v3i, v6k−3i+q+2 for 2 ≤ i ≤ k. The vertex v6 resolves all
these pairs, since

d(v6, v3) = 1, d(v6, v6k+q−2) = 3,

d(v6, v4) = 1, d(v6, v6k+q−1) = 3,

d(v6, v3i) = i− 2, for 2 ≤ i ≤ k,

d(v6, v6k−3i+q+2) = i + 2, for 2 ≤ i ≤ k − 1,

d(v6, v3k+q+2) =

i, if q = 2 or 3,

i + 1, if q = 5.

Let us present representations of the vertices in V (Cn(2, 3)) \W ′, which are not
given in Table 1.
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If n = 6k + 2, then

r(v3k+2|W ′) = (k, k + 1, k),

and if n = 6k + 3, we have

r(v3k+2|W ′) = (k + 1, k + 1, k),
r(v3k+3|W ′) = (k, k + 1, k + 1).

Since these representations are different from the representation of any vertex in Table
1, W is a resolving set of Cn(2, 3) if q = 2 or 3.

If n = 6k + 5, we obtain

r(v3k+2|W ′) = (k + 1, k + 1, k),
r(v3k+3|W ′) = r(v3k+4|W ′) = (k + 1, k + 1, k + 1),
r(v3k+5|W ′) = (k, k + 1, k + 1).

Since d(v6, v3k+3) = k − 1 and d(v6, v3k+4) = k, we have dim(Cn(2, 3)) ≤ 4 for q = 5
too. �

Theorem 3.3. Let n ≡ 0 (mod 6) where n ≥ 12. Then dim(Cn(2, 3)) ≤ 4.

Proof. Let n = 6k where k ≥ 2, and let W ′ = {v0, v1, v2}. We consider representations
of distances of the vertices v3i−2, v3i−1, v3i and v6k−3i+q+2 with respect to W ′ given in
Table 1 for 2 ≤ i ≤ k and q = 0. Similarly, consider representations of the vertices
v6k−3i+q and v6k−3i+q+1 given in Table 1 for 1 ≤ i ≤ k − 1 and q = 0. It remains to
give the representation of v3k+1, which is r(v3k+1|W ′) = (k, k, k).

Let us present all vertices of Cn(2, 3), which have the same representations of
distances with respect to W ′:

r(v3|W ′) = r(v6k−2|W ′) = (1, 1, 2),
r(v4|W ′) = r(v6k−1|W ′) = (2, 1, 1),
r(v3i|W ′) = r(v6k−3i+2|W ′) = (i, i, i), for 2 ≤ i ≤ k − 1,

r(v3k|W ′) = r(v3k+1|W ′) = r(v3k+2|W ′) = (k, k, k).

We show that the vertex v3k resolves all these vertices.

d(v3k, v3) = k − 1, d(v3k, v6k−2) = k,

d(v3k, v4) = k − 1, d(v3k, v6k−1) = k,

d(v3k, v3i) = k − i, d(v3k, v6k−3i+2) = k − i + 1, for 2 ≤ i ≤ k − 1,

d(v3k, v3k+1) = 2, d(v3k, v6k+2) = 1.

Thus W = {v0, v1, v2, v3k} is a resolving set of the graph Cn(2, 3), which implies that
dim(Cn(2, 3)) ≤ 4. �

Theorem 3.4. Let n ≡ 1 (mod 6) where n ≥ 13. Then dim(Cn(2, 3)) ≤ 4.
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Table 2. Representations of distances of all vertices in V (Cn(2, 3))\W
with respect to W

Representation v0 v1 v3k−1 v3k

v2 1 2 k − 1 k
v3i−2 (2 ≤ i ≤ k − 1) i i− 1 k − i + 1 k − i + 1
v3i−1 (2 ≤ i ≤ k − 1) i i k − i k − i + 1
v3i (1 ≤ i ≤ k − 1) i i k − i k − i
v3k−2 k k − 1 2 1
v3k+1 k k 1 2
v6k−3i+1 (1 ≤ i ≤ k − 1) i i + 1 k − i + 1 k − i + 1
v6k−3i+2 (1 ≤ i ≤ k) i i k − i + 1 k − i + 1
v6k−3i+3 (2 ≤ i ≤ k) i i k − i + 2 k − i + 1

Proof. Let n = 6k+1 where k ≥ 2. We show that W = {v0, v1, v3k−1, v3k} is a resolving
set of Cn(2, 3). Representations of distances of all vertices in V (Cn(2, 3)) \W with
respect to W are given in Table 2.

Any two vertices have different representations, hence W is a resolving set of Cn(2, 3)
and dim(Cn(2, 3)) ≤ 4. �

4. Conclusion

In Section 3 we presented resolving sets of Cn(2, 3) except for a few small values of
n. Resolving sets for those values of n, which are not included in our theorems, are
given in Table 3.

Table 3. Resolving sets of Cn(2, 3) for n = 7, 8, 9, 10, 11, 14 and 16

Cn(2, 3) Resolving set
n = 7 {v0, v1, v2}
n = 8 {v0, v1, v4}
n = 9 {v0, v1, v2, v4}
n = 10 {v0, v1, v2, v3, v4}
n = 11 {v0, v1, v3, v4}
n = 14 {v0, v1, v2, v6}
n = 16 {v0, v1, v2, v6}

We carefully checked that these resolving sets are the smallest ones (this can be
checked also by computer programs). Note that n = 10 is the only case, such that
dim(Cn(2, 3)) > 4. The case n = 14 could be included in the proof of Theorem 3.2,
but we would have to consider a short part of the proof of Theorem 3.2 separately for
this case.

From our theorems presented in Sections 2 and 3 we obtain Table 4. Our results yield
exact values of the metric dimension of Cn(2, 3) if n ≡ q (mod 6) where q = 0, 1, 4, 5.
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Table 4. Lower and upper bounds on dim(Cn(2, 3))

Lower bound Upper bound
dim(Cn(2, 3)) for n ≥ 26 for n ≥ 17
n ≡ 0 (mod 6) 4 4
n ≡ 1 (mod 6) 4 4
n ≡ 2 (mod 6) 3 4
n ≡ 3 (mod 6) 3 4
n ≡ 4 (mod 6) 3 3
n ≡ 5 (mod 6) 4 4

We have

dim(Cn(2, 3)) = 3, for n ≡ 4 (mod 6), where n ≥ 22,

dim(Cn(2, 3)) = 4, for n ≡ q (mod 6), where n ≥ 29 and q = 0, 1, 5.

It would be interesting to know exact values of dim(Cn(2, 3)) also for n ≡ 2 or 3
(mod 6). We conjecture that all resolving sets presented in this paper are the smallest
ones, thus we close this section by presenting the following conjecture.

Conjecture 4.1. Let n ≡ 2 or 3 (mod 6), where n ≥ 9. Then dim(Cn(2, 3)) = 4.
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