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THREE SOLUTIONS FOR p-HAMILTONIAN SYSTEMS WITH
IMPULSIVE EFFECTS

HADI HAGHSHENAS1 AND GHASEM A. AFROUZI2

Abstract. In this paper, we give some new criteria that guarantee the existence of
at least three weak solutions to a p-Hamiltonian boundary value problem generated
by impulsive effects. To ensure the existence of these solutions, we use variational
methods and critical point theory as our main tools.

1. Introduction.

In this research, we prove the existence of at least three weak solutions to the
following second-order impulsive p-Hamiltonian system
(1.1)

− (|u′|p−2u′)′ + A(t)|u|p−2u = λ∇F (t, u) +∇G(t, u) +∇H(u), a.e. t ∈ J,
4(u′i(tj)) = Iij(ui(tj)), i = 1, 2, . . . , N, j = 1, 2, . . . ,m,
u(0)− u(T ) = u′(0)− u′(T ) = 0.

Here, we assume that
• N ≥ 1, m ≥ 2, p > 1, T > 0 and λ ∈ R;
• the function F : [0, T ]× RN → R is measurable in [0, T ] and C1 in RN ;
• G : [0, T ]× RN → R is a function such that G(·, x) is continuous on [0, T ] for
all x ∈ RN and G(t, ·) is C1 on RN for almost every t ∈ [0, T ];
• 0 = t0 < t1 < · · · < tm < tm+1 = T , J = [0, T ] \ {t1, t2, . . . , tm},
u(t) = (u1(t), . . . , uN(t)) and 4(u′i(tj)) = u′i(t+j ) − u′i(t−j ) such that
u′i(t±j ) = limt→t±j

u′i(t);
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• the functions Iij : R→ R, i = 1, 2, . . . , N, and j = 1, 2, . . . ,m, are continuous;
• A(t) = (aij(t))N×N is an N × N continuous symmetric matrix and there is
a positive constant λ such that (A(t)|x|p−2x, x) ≥ λ|x|p for all x ∈ RN and
t ∈ [0, T ];
• H : RN → R is a continuously differentiable function for which there is a
constant 0 < L < min{1,λ}

2p such that |H(x)| ≤ L|x|p for every x ∈ RN .

The study of the multiplicity of the solutions of Hamiltonian systems, as particular
cases of dynamical systems, is mathematically important and interesting from a
practical point of view. This is because these systems constitute a natural framework
for the mathematical models of many natural phenomena in fluid mechanics, gas
dynamics, nuclear physics, relativistic mechanics, etc. Inspired by the monographs
[16] and [21], the existence and multiplicity of weak solutions for Hamiltonian systems
have been investigated by many authors using variational methods. See [6, 7, 9, 11,12,
17–19,27–31,33] and the references therein for example.

On the other hand, impulsive effects describe some discontinuous processes and
occur in many research fields such as SIR epidemic models, controllability and opti-
mization, etc. (see [8, 20]). In the past few decades, a series of nonlinear functional
methods were applied for dealing with the existence of solutions to boundary value
problems for impulsive differential equations. These include the coincidence degree
theory, the comparison principles and fixed point theorems.

In particular, in the recent years, the variational method has been used successfully
in the investigation of the existence and multiplicity of solutions to boundary value
problems for differential equations with impulsive effects. See [1, 2] and the refer-
ences therein. For the background, theory and applications of impulsive differential
equations, we refer the interested readers to [4, 13, 23]. Recently, a great deal of
work has been done on the existence of multiple solutions for second-order impulsive
p-Hamiltonian systems. We refer the interested reader to [10,15,25,26,32], in which
second-order Hamiltonian systems with impulsive effects have been examined.

Our results are motivated by the recent papers [14] and [24]. In [14], Li et al. have
studied the three periodic solutions for p-Hamiltonian systems

(1.2)
{
−(|u′|p−2u′)′ + A(t)|u|p−2u = λ∇F (t, u) + µ∇G(t, u),
u(0)− u(T ) = u′(0)− u′(T ) = 0.

Their technical approach was based on the two general three critical points theorems
of Averna and Bonanno [3] and Ricceri [22]. In [24], Shang and Zhang obtained three
solutions to the perturbed Dirichlet boundary value problem

(1.3)
{
−∆pu+ a(x)|u|p−2u = λf(x, u) + g(x, u), in Ω,
u = 0, on ∂Ω,

by using Theorem 2.1 below.
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2. Preliminaries

In this article, we use the following theorem of Bonanno to prove the existence of
three solutions for problem (1.1).

Theorem 2.1 ([5]). Let X be a separable and reflexive real Banach space, and let
φ, ψ : X → R be two continuously Gateaux differentiable functionals. Assume that φ
is sequentially weakly lower semicontinuous and even, that ψ is sequentially weakly
continuous and odd, and that, for some a > 0 and for each λ ∈ [−a, a], the functional
φ+ λψ satisfies the Palais-Smale condition and

lim
‖x‖→+∞

[φ(x) + λψ(x)] = +∞.

If there exists k > 0 such that

inf
x∈X

φ(x) < inf
|ψ(x)|<k

φ(x),

then, for every b > 0 there exists an open interval Λ ⊆ [−b, b] and a positive real
number σ such that for every λ ∈ Λ, the equation

φ′(x) + λψ′(x) = 0,

admits at least three solutions in X whose norms are less than σ.

Here, we recall some basic concepts that will be used in what follows. Let

W 1,p
T ={u : [0, T ]→ RN : u is absolutely continuous, u(0) = u(T ),

u′ ∈ Lp([0, T ],RN)},

which is endowed with the norm

‖u‖ =
(∫ T

0
|u′(t)|p +

(
A(t)|u(t)|p−2u(t), u(t)

)
dt

) 1
p

.

Observe that

(A(t)|x|p−2x, x) = |x|p−2
N∑

i,j=1
aij(t)xixj

≤ |x|p−2
N∑

i,j=1
|aij(t)||xi||xj|

≤

 N∑
i,j=1
‖aij(t)‖∞

 |x|p.
Then, there exists a constant λ ≤ ∑N

i,j=1 ‖aij(t)‖∞ such that (A(t)|x|p−2x, x) ≤ λ|x|p
for all x ∈ RN . So,

(2.1) min{1, λ}|||u|||p ≤ ‖u‖p ≤ max{1, λ}|||u|||p,
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where

|||u||| =
(∫ T

0
|u(t)|pdt+

∫ T

0
|u′(t)|pdt

) 1
p

,

is the usual norm of W 1,p
T . Let

(2.2) k0 = sup
u∈W 1,p

T \{0}

‖u‖∞
‖u‖

, ‖u‖∞ = sup
t∈[0,T ]

|u(t)|,

where | · | is the usual norm of RN . Since W 1,p
T ↪→ C0 is compact, one has k0 < +∞

and for each u ∈ W 1,p
T there exists ξ ∈ [0, T ] such that |u(ξ)| = mint∈[0,T ] |u(t)|. Hence,

by Hölder’s inequality, one has

|u(t)| =
∣∣∣∣∫ t

ξ
u′(s)ds+ u(ξ)

∣∣∣∣
≤
∫ T

0
|u′(s)|ds+ 1

T

∫ T

0
|u(ξ)|ds

≤
∫ T

0
|u′(s)|ds+ 1

T

∫ T

0
|u(s)|ds

≤ T
1
q

(∫ T

0
|u′(s)|pds

) 1
p

+ T−
1
p

(∫ T

0
|u(s)|pds

) 1
p

≤ max{T
1
q , T−

1
p}

(∫ T

0
|u′(s)|pds

) 1
p

+
(∫ T

0
|u(s)|pds

) 1
p


≤ q
√

2 max{T
1
q , T−

1
p}
(∫ T

0
|u′(s)|pds+

∫ T

0
|u(s)|pds

) 1
p

= q
√

2 max{T
1
q , T−

1
p}|||u|||,

for each t ∈ [0, T ] and q = p
p−1 . So, by (2.1) and the above expression, we obtain

‖u‖∞ ≤ q
√

2 max{T
1
q , T−

1
p}|||u||| ≤ q

√
2 max{T

1
q , T−

1
p} (min{1, λ})−

1
p ‖u‖.

Then, from this and (2.2) it follows that

k0 ≤ k = q
√

2 max{T
1
q , T−

1
p} (min{1, λ})−

1
p .

As usual, a weak solution to problem (1.1) is any u ∈ W 1,p
T such that∫ T

0

[(
|u′(t)|p−2u′(t), v′(t)

)
+
(
A(t)|u(t)|p−2u(t), v(t)

)]
dt−

∫ T

0
(∇G(t, u(t)), v(t)) dt

−
∫ T

0
(∇H(u(t)), v(t)) dt+

p∑
j=1

N∑
i=1

Iij(ui(tj))vi(tj)− λ
∫ T

0
(∇F (t, u(t)), v(t)) dt = 0,

for all v ∈ W 1,p
T .
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3. The Main Results

Now, we present our main results.

Theorem 3.1. Suppose that F , G, H and Iij satisfy the following conditions.
(H1) H(·) is even.
(H2) G(t, ·) is even and F (t, ·) is odd for almost every t ∈ [0, T ].
(H3) The functions Iij, i = 1, 2, . . . , N, and j = 1, 2, . . . ,m, are odd.
(H4) lim|x|→0

|∇G(t,x)|
|x|p−1 = 0 uniformly for almost every t ∈ [0, T ].

(H5) lim|x|→+∞
|∇G(t,x)|
|x|p−1 = 0 uniformly for almost every t ∈ [0, T ].

(H6) There exist constants c > 0 and 1 ≤ q < p such that
|∇F (t, x)| ≤ c(1 + |x|q−1),

for all x ∈ RN and almost every t ∈ [0, T ].
(H7) There is a constant B ≥ 0 such that G(t, x) ≥ 2r |x|

p

p
− B for all x ∈ RN and

almost every t ∈ [0, T ]. Here, r = sup
{

1∫ T

0 |u(t)|pdt
: ‖u‖ = 1

}
.

(H8) For any i ∈ {1, 2, . . . , N} and j ∈ {1, 2, . . . ,m} there exist constants aij > 0,
bij > 0 and γij ∈ [0, 1] such that
Iij(y) ≥ −aij − bijyγij (y ≥ 0) and Iij(y) ≤ aij + bij(−y)γij (y ≤ 0).

Then, for every b > 0 there exist an open interval Λ ⊆ [−b, b] and a positive real
number σ such that for every λ ∈ Λ, problem (1.1) admits at least three solutions in
W 1,p
T whose norms are less than σ.

Proof. Let X = W 1,p
T be endowed with ‖ · ‖, and for each u in X let

φ(u) = 1
p
‖u‖p −

∫ T

0
G(t, u(t))dt−

∫ T

0
H(u(t))dt,

ψ(u) = 1
λ

m∑
j=1

N∑
i=1

∫ ui(tj)

0
Iij(t)dt−

∫ T

0
F (t, u(t))dt.

Then, for every u, v ∈ X,

φ′(u)(v) =
∫ T

0

[(
|u′(t)|p−2u′(t), v′(t)

)
+
(
A(t)|u(t)|p−2u(t), v(t)

)]
dt

−
∫ T

0
(∇G(t, u(t)), v(t)) dt−

∫ T

0
(∇H(u(t)), v(t)) dt,

ψ′(u)(v) = 1
λ

m∑
j=1

N∑
i=1

Iij(ui(tj))vi(tj)−
∫ T

0
(∇F (t, u(t)), v(t)) dt.

Since the critical points of the functional φ+ λψ on X are exactly the weak solutions
of problem (1.1), our aim is to apply Theorem 2.1 to φ and ψ. It is well-known that φ
is a continuously Gateaux differentiable and sequentially weakly lower semicontinuous
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functional. Moreover, ψ is continuously Gateaux differentiable and sequentially weakly
continuous. Also, by (H1), (H2) and (H3), φ is even and ψ is odd. Owning to the
assumption (H8), we have that∫ z

0
Iij(t)dt ≥ −aijz −

bij
γij + 1z

γij+1

= −aij|z| −
bij

γij + 1 |z|
γij+1 (z ≥ 0),

and ∫ 0

z
Iij(t)dt ≤ −aijz −

bij(−1)γij

γij + 1 zγij+1

= aij|z|+
bij

γij + 1 |z|
γij+1 (z < 0).

Therefore, for every i ∈ {1, 2, . . . , N}, j ∈ {1, 2, . . . ,m} and z ∈ R,

(3.1)
∫ z

0
Iij(t)dt ≥ −aij|z| −

bij
γij + 1 |z|

γij+1.

Thanks to (H4), given ε > 0 small enough, we may find a constant Cε > 0 such that

(3.2) |G(t, x)| ≤ Cε + ε

p
|x|p,

for every x ∈ RN and almost every t ∈ [0, T ]. Also, taking (H6) into account, we get

(3.3) |F (t, x)| ≤ c|x|+ c

q
|x|q,

for every x ∈ RN and almost every t ∈ [0, T ]. Now by (3.1), (3.2) and (3.3), for all
u ∈ X and λ ∈ R, we obtain

φ(u) + λψ(u) =1
p
‖u‖p −

∫ T

0
G(t, u(t))dt−

∫ T

0
H(u(t))dt

+
m∑
j=1

N∑
i=1

∫ ui(tj)

0
Iij(t)dt− λ

∫ T

0
F (t, u(t))dt

≥1
p
‖u‖p −

∫ T

0

(
Cε + ε

p
|u(t)|p

)
dt− L

∫ T

0
|u(t)|pdt

− λ
∫ T

0

(
c|u(t)|+ c

q
|u(t)|q

)
dt

−
m∑
j=1

N∑
i=1

aij|u(tj)| −
m∑
j=1

N∑
i=1

bij
γij + 1 |u(tj)|γij+1

≥1
p

(
1− 2p−1ε+ Lp

min{1, λ}

)
‖u‖p − 1

q
(min{1, λ})−

q
p 2

q(p−1)
p λc‖u‖q

− (min{1, λ})−
1
p 2

p−1
p λc‖u‖ − CεT
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−
m∑
j=1

N∑
i=1

aij|u(tj)| −
m∑
j=1

N∑
i=1

bij
γij + 1 |u(tj)|γij+1.

Since p > q and ε is small enough,
(3.4) lim

‖u‖→+∞
[φ(u) + λψ(u)] = +∞.

Now, we prove that ϕλ = φ+ λψ satisfies the (P-S) condition. Suppose that {un}∞n=1
is a (P-S) sequence of ϕλ, that is, there exists C > 0 such that

ϕλ(un)→ C, ϕ′λ(un)→ 0 as n→∞.

Assume that ‖un‖ → +∞. Then, (3.4) contradicts to the ϕλ(un)→ C, hence, {un}∞n=1
is bounded in W 1,p

T . We may assume that there exists u0 ∈ W 1,p
T satisfying un → u0

weakly inW 1,p
T , un → u0 in Lp[0, T ], un(t)→ u0(t) for almost every t ∈ [0, T ]. Observe

that

ϕ′λ(un)(un − u0) =
∫ T

0

[ (
|u′n(t)|p−2u′n(t), u′n(t)− u′0(t)

)
+
(
A(t)|un(t)|p−2un(t), un(t)− u0(t)

) ]
dt

−
∫ T

0
(∇G(t, un(t)), un(t)− u0(t)) dt

−
∫ T

0
(∇H(un(t)), un(t)− u0(t)) dt

−
∫ T

0
(∇F (t, un(t)), un(t)− u0(t)) dt

+ 1
λ

m∑
j=1

N∑
i=1

Iij ((un)i(tj)) ((un)i(tj)− (u0)i(tj)) .

We already know that
ϕ′λ(un)(un − u0)→ 0 as n→∞.

Clearly,

lim
n→∞

∫ T

0
(∇H(un(t)), un(t)− u0(t)) dt = 0.

By (H5), given ε > 0, we may find a constant Cε > 0 such that
|∇G(t, x)| ≤ Cε + ε|x|p−1,

for every x ∈ RN and almost every t ∈ [0, T ]. So,∫ T

0
(∇G(t, un(t)), un(t)− u0(t)) dt→ 0 as n→∞.

Moreover, by (H6)∫ T

0
(∇F (t, un(t)), un(t)− u0(t)) dt→ 0 as n→∞.
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Also, ∑m
j=1

∑N
i=1 Iij ((un)i(tj)) ((un)i(tj)− (u0)i(tj))→ 0 as n→∞. Therefore,∫ T

0

[(
|u′n(t)|p−2u′n(t), u′n(t)− u′0(t)

)
+
(
A(t)|un(t)|p−2un(t), un(t)− u0(t)

)]
dt→ 0,

as n → ∞. This, together with the weak convergence of un → u0 in W 1,p
T , implies

that un → u0 in W 1,p
T as n→∞. Hence, ϕλ satisfies the (P-S) condition. Finally, we

prove that infu∈X φ(u) < inf |ψ(u)|<k φ(u) for some k > 0. To this end, we choose a
nonnegative function v ∈ W 1,p

T with ‖v‖ = 1. By condition (H7), a simple calculation
shows that

φ(sv) = 1
p
‖sv‖p −

∫ T

0
G(t, sv(t))dt−

∫ T

0
H(sv(t))dt

≤ sp

p
‖v‖p − 2s

pr

p

∫ T

0
|v(t)|pdt+BT + Lsp

min{1, λ}‖v‖
p(3.5)

≤
(

L

min{1, λ} −
1
p

)
sp +BT → −∞,

as s → ∞. Since 1
2p >

L
min{1,λ} , (3.5) implies that φ(sv) < 0 for s > 0 large enough.

So, we choose a large enough s0 > 0, and let u1 = s0v such that φ(u1) < 0. Thus,
infu∈X φ(u) < 0. From (H4), for every ε > 0, there exists ρ0(ε) > 0 such that

|∇G(t, x)| ≤ ε|x|p−1, if 0 < |x| < ρ0(ε).

Thus, ∫ T

0
G(t, u(t))dt ≤

∫ T

0

ε

p
|u(t)|pdt ≤ ε

pmin{1, λ}‖u‖
p.

By choosing ε = 1
2 min{1, λ}, we get

φ(u) ≥
(

1
2p −

L

min{1, λ}

)
‖u‖p > 0.

Hence, there exists k > 0 such that inf |ψ(u)|<k φ(u) = 0. So,

inf
u∈X

φ(u) < inf
|ψ(u)|<k

φ(u).

Now, all the assumptions of Theorem 2.1 are verified. Thus, for every b > 0 there
exists an open interval Λ ⊆ [−b, b] and a positive real number σ such that for every
λ ∈ Λ, problem (1.1) admits at least three solutions in W 1,p

T whose norms are less
than σ. �

Theorem 3.2. If F , G, H and Iij satisfy the assumptions (Hi) for i = 1, 2, 3, 4, 5, 6, 8
and (H’7), which asserts that lim|x|→0

G(t,x)
|x|p = +∞ for almost every t ∈ [0, T ], then

for every b > 0 there exist an open interval Λ ⊆ [−b, b] and a positive real number σ
such that for every λ ∈ Λ, problem (1.1) admits at least three solutions in W 1,p

T whose
norms are less than σ.
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Proof. The proof is similar to that of Theorem 3.1. So we only give a sketch of
it. By the proof of Theorem 3.1, the functionals φ, ψ are sequentially weakly lower
semicontinuous and continuously Gateaux differentiable in W 1,p

T , φ is even and ψ is
odd. For every λ ∈ R, the functional φ+ λψ satisfies the (P-S) condition and

lim
‖u‖→+∞

[φ(u) + λψ(u)] = +∞.

Owning to the assumption (H’7), we can find δ > 0 such that, for every M > 0
one has |G(t, x)| > M |x|p for 0 < |x| ≤ δ and almost every t ∈ [0, T ]. We choose a
nonzero nonnegative function v ∈ C∞0 ([0, T ]), put M > 3‖v‖p

2p
∫ T

0 |v(t)|pdt
and take ε > 0

small enough. Then, we obtain

φ(εv) = 1
p
‖εv‖p −

∫ T

0
G(t, εv(t))dt−

∫ T

0
H(εv(t))dt

≤ 1
p
εp‖v‖p −Mεp

∫ T

0
|v(t)|pdt+ Lεp

min{1, λ}‖v‖
p

<
3
2pε

p‖v‖p −Mεp
∫ T

0
|v(t)|pdt < 0.

So, we get
inf

u∈W 1,p
T

φ(u) < 0.

By the proof of Theorem 3.1, we know that there exists k > 0 such that

inf
u∈X

φ(u) < inf
|ψ(u)|<k

φ(u).

Hence, our conclusion follows from Theorem 2.1. �

When Iij = G = H ≡ 0, the problem (1.1) reduces to the following ordinary
problem which has been considered in [14] by Li et al.

(3.6)
{
−(|u′|p−2u′)′ + A(t)|u|p−2u = λ∇F (t, u), a.e. t ∈ [0, T ],
u(0)− u(T ) = u′(0)− u′(T ) = 0.

By a reasoning just like that of Theorem 3.1, we obtain the following result.

Theorem 3.3. If F (t, ·) is odd for almost every t ∈ [0, T ] and there exist constants
c > 0 and 1 ≤ q < p such that

|∇F (t, x)| ≤ c(1 + |x|q−1),

for all x ∈ RN and almost every t ∈ [0, T ], then for every b > 0 there exist an open
interval Λ ⊆ [−b, b] and a positive real number σ such that for every λ ∈ Λ, problem
(3.6) admits at least three solutions in W 1,p

T whose norms are less than σ.
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