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ANALYZING THE SEMILOCAL CONVERGENCE OF A
FOUR-STEP SCHEME WITH NOVEL MAJORANT AND

AVERAGE LIPSCHITZ CONDITIONS

J. P. JAISWAL1, AKANKSHA SAXENA2, K. R. PARDASANI2, AND I. K. ARGYROS3

Abstract. The primary goal of this study is to examine the semilocal convergence
(s.c.) of the classical four-step nonlinear scheme (fsns), which is used to identify
nonlinear operators in Banach spaces (b.s.). The first derivative of the operator is
assumed to satisfy a generalized Lipschitz condition (g.l.c.), which leads to a novel s.c.
analysis of the fsns. Majorizing functions (m.f.) and average Lipschitz conditions
are used in the study because they have been shown to be effective in studying
the convergence of Newton-type approaches for nonlinear operator equations. The
study expands on prior research on the topic by examining higher-order iterative
algorithms and increasing their range of applications. The fsns’s s.c. analysis is
then presented under the average Lipschitz condition. The scheme’s applicability to
nonlinear integral equations is also demonstrated.

1. Introduction

Let ℑ be an operator that maps from a nonempty open convex subset ℧ of a b.s.
¯̄U to another b.s. ¯̄V . Our aim is to approximate a locally unique solution Υ∗ of a
nonlinear equation given by:

ℑ(x) = 0.(1.1)

It is important to highlight that within the field of computer science, the realm of
numerical analysis is closely related to various adaptations of Newton’s method (NM),
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given by

(1.2) xn+1 = xn − [ℑ′(xn)]−1 ℑ(xn), n ≥ 0.

Although NM is known for its relatively slow convergence, it remains a popular and
widely used iterative method. For a more comprehensive understanding of this method,
interested readers can refer to Ortega’s survey on NM [12].

Numerous studies have focused on analyzing the local convergence (l.c.) of iterative
methods (IM) under Lipschitz, Hölder, and w-continuity conditions. However, these
conditions may not be satisfied by certain nonlinear problems, which limits the appli-
cability of these methods. In order to overcome this limitation, Wang [15] introduced
the concept of g.l.c. to analyze the l.c. of NM. However, it was realized by Saxena
et al. [13] that the earlier definition of g.l.c. cannot be directly applied to multi-step
Newton-type methods. Therefore, they proposed a modified definition of generalized
Lipschitz conditions to address this issue.

To examine the l.c. of the fsns method, we will employ the four-step Newton-like
sequences fsns proposed by Regmi [10], subject to the χ-average condition. The fsns
method is defined as follows:

yn = xn − [ℑ′(xn)]−1ℑ(xn),
zn = yn − [ℑ′(xn)]−1ℑ(yn),
qn = zn − [ℑ′(xn)]−1ℑ(zn),

xn+1 = qn − [ℑ′(xn)]−1ℑ(qn), n ≥ 0.(1.3)

Extensive investigations have been conducted by Saxena et al. [14] to analyze the l.c.
of the aforementioned iterative operator under a generalized Lipschitz condition. The
m.f. technique has proven to be a valuable analytical tool in studying the convergence
of various Newton-type methods, including those employed for solving nonlinear
operator equations [4, 5, 16].

Previous investigations have extensively examined the s.c. of iterative methods under
various assumptions. Argyros [1] advanced the analysis by considering a generalized
notion of the second Fréchet derivative of the operator ℑ, i.e., the mapping ℑ : D ⊂
Rn → Rm is Fréchet-differentiable at x ∈ int(D) if there is an A ∈ L(Rn,Rm) such
that

lim
h→0

||ℑ(x + h) − ℑx − Ah||
||h||

= 0.

The linear operator A is again denoted by ℑ′(x), and is called the first ℑ-derivative
of ℑ at x. ℑ is second order Fréchet-differentiable at x, ℑ′′(x) if the first derivative
ℑ′(x) is itself Fréchet-differentiable as a map from Rn to the space of bounded linear
operators L(Rn,Rm) [12]. Ruiz and Argyros [11] relaxed the conditions and introduced
a novel convergence analysis framework based on Lipschitz and Lipschitz-like criteria
for the first Fŕechet derivative of ℑ. George [2] focused on the l.c. of multiple Newton-
like methods, while Ling [9] proposed a two-step NM with a generalized Lipschitz
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condition to ensure convergence. Ling’s approach achieved Q-cubic convergence and
provided a fresh perspective on s.c. analysis.

Recognizing the potential for exploring higher-order iterative methods and expand-
ing their applicability, we embark on an in-depth investigation of s.c. Using our
analysis and findings, we aim to improve our understanding of numerical methods for
solving nonlinear equations and systems. Through our analysis and findings, our aim
is to improve the understanding of numerical methods for solving nonlinear equations
and systems. The improved convergence criteria and error estimates provided by our
approach have the potential to enhance the efficiency and reliability of numerical
algorithms in practice.

The paper is organized as follows. Section 2 discusses the generalized/average
Lipschitz condition. Section 3 provides a review of preliminary notions and properties
related to m.f.’s and majorizing sequences. The s.c. analysis of the fsns under the χ-
average Lipschitz condition is presented in Section 4. In Section 5, we demonstrate the
application of the proposed approach to nonlinear integral equations. In conclusion,
Section 6 provides final remarks to wrap up the paper.

2. Preliminary Results and Notations

In order to make this research self-contained, we provide the necessary concepts
and notations extracted from references [9, 16].

This section concludes by introducing the concepts of generalized/average Lipschitz
condition.

Criteria 1. Let x0 ∈ D and [ℑ′(x0)]−1 be nonsingular, and let ϵ > 0, such that
O(x0, ϵ) ⊆ D. We say that the χ-average Lipschitz condition is satisfied by ℑ′ on
O(x0, ϵ) if, for any x, y ∈ O(x0, ϵ) with ∥x − x0∥ + ∥y − x∥ < ϵ∥∥∥[ℑ′(x0)]−1(ℑ′(y) − ℑ′(x))

∥∥∥ ≤
∫ ∥x−x0∥+∥y−x∥

∥x−x0∥
χ(h)du.(2.1)

In the work of Wang [16], the generalized Lipschitz condition also referred to as the
center Lipschitz condition in the inscribed sphere with χ-average, was introduced.

Clearly, the conventional Lipschitz condition with the Lipschitz constant χ(ϵ) can
be inferred from the χ-average Lipschitz condition on O(x0, ϵ), as defined earlier. By
utilizing the χ-average Lipschitz condition, the NM can be improved, offering a more
accurate convergence criterion and an estimation of the convergence radius.

3. Application of fsns (1.3) to the Majorizing Function

Consider the notation O(x, ℘) representing an open ball with radius ℘ centered at
x, and O(x, ℘) denoting its closure set. The identity operator is denoted by I. Let
us consider χ(·) as a positive non-decreasing (n.d.) function defined on the interval
[0, ϱ), where ϱ > 0 satisfies the following relation:

(3.1)
∫ ϱ

0 χ(h)(ϱ − h)du

ϱ
= 1.
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The m.f. ℏ : [0, ϱ] → R is defined as

(3.2) ℏ(a) = ♭ − a +
∫ a

0
χ(h)(a − h)du, a ∈ [0, ϱ].

In the early 2000s, Wang [16] made a significant contribution through an analysis
of the convergence properties of Newton’s method (1.2), we can gain insights into
the behavior of the method. It is important to mention that the m.f. employed in
this study shares similarities with the one utilized by Ferreira [4]. The motivation
behind adopting the aforementioned m.f. in this study is its potential to provide more
accurate convergence criteria and error estimates for the three-step classical approach.
With this in mind, we can clearly observe that:

(3.3) ℏ′(a) = −1 +
∫ a

0
χ(h)du, a ∈ [0, ϱ),

and
(3.4) ℏ′′(a) = χ(a) > 0, for a.e. a ∈ [0, ϱ).
Consequently, it can be inferred that∫ a

j
χ(h)du = ℏ′(a) − ℏ′(j), for any j, a ∈ [0, ϱ) with j < a.

The relationship between the m.f. and the χ function discussed here will be frequently
employed in the convergence analysis of the fsns provided in equation (1.3). Let’s
assume that ℘0 satisfies

(3.5)
∫ ℘0

0
χ(h)du = 1.

Consequently, it can be observed that ℏ(a) is strictly convex, ℏ′(a) is convex, increasing,
and satisfies −1 ≤ ℏ′(a) < 0 for any a ∈ [0, ℘0).

In this section, we will commence by examining some essential intermediate results
concerning the error estimates for the majorizing sequences cι, bι, and aι. Additionally,
we will explore the connection between the m.f. ℏ(a), defined in equation (3.2), and
the nonlinear operator ℑ. Subsequently, we will delve into the convergence analysis
of the fsns (1.3) under the χ-average Lipschitz condition, as presented in b.s.

3.1. Important Intermediary Findings. The subsequent auxiliary result concern-
ing scalar-valued functions is drawn from standard convex analysis literature (refer to
Remark 4.1.2 and Theorem 4.1.1 in [7, p. 21]. These findings hold great significance
and will be integrated into our analysis.

Lemma 3.1. Assuming G : (0, ϱ) → R is a continuously differentiable and convex
function, in which ϱ > 0 and 0 ≤ ℧ ≤ 1. Then,

(i) (1 − ℧)G′(℧a) ≤ G(a)−G(℧a)
a

≤ (1 − ℧)G′(a), for all a ∈ (0, ϱ),
(ii) G(l)−G(℧l)

l
≤ G(m)−G(℧m)

m
, for all l, m ∈ (0, ϱ), l < m.

Most notably, if G exhibits strict convexity, then the aforementioned inequalities
are strict.
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Also, establish

♮ :=
∫ ℘0

0
χ(h)udu,(3.6)

in which ℘0 is defined by equation (3.5). The preceding lemma is adapted from [16,
Lemma 1.2] and provides some fundamental characteristics for the m.f. ℏ given by
expression (3.2).

Lemma 3.2 ([16]). In the case where 0 < ♭ < ♮, the function ℏ exhibits a decreasing
behavior on the interval [0, ℘0] and
(3.7) ℏ(♭) > 0, ℏ(℘0) = ♭ − ♮ < 0, ℏ(ϱ) = ♭ > 0.

Furthermore, within each interval, ℏ possesses a unique zero denoted by a∗ and a∗∗

respectively. These zeros satisfy the following conditions:

(3.8) ♭ < a∗ <
℘0

♮
♭ < ℘0 < a∗∗ < ϱ.

We initialize the position as a0 = 0. The sequences bι, cι, and aι represent the
values generated using the fsns for the m.f. ℏ as described in [9]. This scheme can be
expressed as follows: 

bι = aι − ℏ(aι)
ℏ′(aι)

,

cι = bι − ℏ(bι)
ℏ′(aι)

,

dι = cι − ℏ(cι)
ℏ′(aι)

,

aι+1 = dι − ℏ(dι)
ℏ′(aι),

ι = 0, 1, 2, . . . .

(3.9)

Note 1.Assuming that 0 < ♭ ≤ ♮, we can utilize Lemmas 3.1 and 3.2, along with
standard analytical techniques (e.g., as described in [8]), to easily establish that the
sequences bι, cι, and aι generated by (3.9) satisfy the following relationships:
(3.10) 0 ≤ aι < bι < cι < dι < aι+1 < a∗, for all ι ≥ 0,

and progressively approach the common point a∗, which represents the unique zero
of ℏ on the interval [0, ℘0]. Here, ℘0 is determined by (3.5). Moreover, we can derive
the following:

(3.11) a∗ − aι+1 ≤ 1
2 · ℏ

′′(a∗)4

ℏ′(a∗)4 (a∗ − aι)5, ι ≥ 0.

Specifically, if 1 + a∗ℏ′′(a∗)/ℏ′(a∗) ≥ 0, then we obtain

(3.12) dι − cι ≥ (a∗ − cι) + ℏ′′(a∗)
ℏ′(a∗) (a∗ − aι)(a∗ − cι), ι ≥ 0.

The convergence properties of the sequences dι, cι, bι, and aι discussed earlier will be
utilized in the convergence analysis of the fsns (1.3). Consider an initial guess x0 ∈ D
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such that the inverse [ℑ′(x0)]−1 exists. Let O(x0, ℘0) ⊂ D, where ℘0 satisfies equation
(3.5). Let’s denote

(3.13) ♭ :=
∥∥∥[ℑ′(x0)]−1ℑ(x0)

∥∥∥ .

Recalling that equation (3.2) defines the m.f. ℏ, and equation (3.6) defines ♮, we have
the unique zeros a∗ and a∗∗ of ℏ on the intervals [0, ℘0] and [℘0, ϱ], respectively. Here,
℘0 and ϱ satisfy equations (3.5) and (3.1), respectively. It is important to note that
when 0 < ♭ ≤ ♮, the sequences cι, bι, and aι given by equation (3.9) gradually converge
to a∗, where ♮ is defined by equation (3.6).

The subsequent lemmas, which establish explicit connections between the m.f. ℏ
and the nonlinear function ℑ, play a vital role in the subsequent analysis of the fsns
given by (1.3).

Lemma 3.3. Suppose that |x − x0| ≤ a < a∗ and the first derivative ℑ in O(Υ∗, a)
satisfies the χ-average Lipschitz condition (2.1). In such a case, ℑ′(x) is nonsingular,
we obtain the following outcome:∥∥∥[ℑ′(x)]−1ℑ′(x0)

∥∥∥ ≤ − 1
ℏ′(∥x − x0∥) ≤ − 1

ℏ′(a) .(3.14)

Furthermore, ℑ is also nonsingular in O(x0, a∗).

Proof. Let’s consider x ∈ O(x0, a), 0 ≤ a < a∗. By applying the χ-average Lipschitz
condition (2.1), we can observe the following:∥∥∥[ℑ′(x0)]−1ℑ′(x) − I

∥∥∥ ≤
∫ ∥x−x0∥

0
χ(h)du = ℏ′(∥x − x0∥) − ℏ′(0).

Since ℏ′(0) = 1 and ℏ strictly increases in the interval (0, a∗), we obtain the following:∥∥∥[ℑ′(x0)]−1ℑ′(x) − I
∥∥∥ ≤ ℏ′(x) + 1 < 1.

The last inequality holds due to the fact that −1 < ℏ′(x) < 0 for any x ∈ (0, a∗).
Therefore, we can apply the Banach lemma to deduce that [ℑ′(x0)]−1ℑ′(x) is nonsin-
gular and relation (3.14) holds. Thus, the proof is now complete. □

Lemma 3.4. Consider the sequences dι, cι, bι, and aι generated by the scheme (3.9).
Assuming that ℑ′ in O(x0, a∗) satisfies the χ-average Lipschitz condition (2.1), if
0 < ♭ ≤ ♮, the sequences xι, yι, zι and qι obtained using the four-step fsns (1.3) with
the initial guess x0 are well defined and contained within O(x0, a). Moreover, for all
ι = 0, 1, 2, . . ., we have the following:

(ι) [ℑ′(xι)]−1 exists with ∥[ℑ′(xι)]−1ℑ′(x0)∥ ≤ − 1
ℏ′(∥xι−x0∥) ≤ − 1

ℏ′(a) ,

(ii) ∥[ℑ′(x0)]−1ℑ(xι)∥ ≤ ℏ(xι),
(iii) ∥yι − xι∥ ≤ bι − aι,

(iv) ∥zι − yι∥ ≤ (cι − bι)
(

∥yι−xι∥
bι−aι

)2
≤ cι − bι,

(v) ∥qι − zι∥ ≤ (dι − cι)
[

∥zι−yι∥
cι−bι

· ∥yι−xι+τ∥zι−yι∥
bι−aι+τ∥cι−bι∥

]
≤ dι − cι,

(vi) ∥zι − xι∥ ≤ cι − aι,
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(vii) ∥qι − xι∥ ≤ dι − aι,

(viii) ∥xι+1 − qι∥ ≤ (aι+1 − dι)
[

∥qι−zι∥
dι−cι

· ∥zι−xι+τ∥qι−zι∥
cι−aι+τ∥dι−cι∥

]
≤ aι+1 − dι,

(ix) ∥xι+1 − xι∥ ≤ (aι+1 − aι).

Proof. We will prove the validity of the statement using induction. Let’s consider
the base case ι = 0. In this case, we can see that (ι) − (iii), (vi), and (vii) hold
true. Therefore, we have y0 ∈ O(x0, a∗) because ∥y0 − x0∥ ≤ b0 − a0 = b0 < a∗ and
∥z0 − y0∥ ≤ c0 − b0. Now, let’s examine (iv), (v), (viii), and (ix) by considering
scheme (1.3). We can express these conditions as follows:

ℑ(y0) = ℑ(y0) − ℑ(y0) − ℑ′(y0)(y0 − x0)

=
∫ 1

0

[
ℑ′(x0 + τ(y0 − x0)) − ℑ′(x0)

]
(y0 − x0) dτ.

By utilizing the χ-average Lipschitz condition (2.1), we can infer that:

∥[ℑ′(x0)]−1ℑ(y0)∥ ≤
∫ 1

0

∥∥∥[ℑ′(x0)]−1
(
ℑ′(x0 + τ(y0 − x0)) − ℑ′(x0)

)∥∥∥ · ∥y0 − x0∥ dτ

≤
∫ 1

0

(∫ τ∥y0−x0∥

0
χ(h) du

)
∥y0 − x0∥ dτ

=
∫ 1

0

[
ℏ′(τ∥y0 − x0∥) − ℏ′(0)

]
· ∥y0 − x0∥ dτ

Considering the strict convexity of ℏ′ in [0, ℘0) and the fact that ∥y0 −x0∥ ≤ b0 −a0
according to (iii), Lemma 3.1 implies that:

ℏ′(τ∥y0 − x0∥) − ℏ′(0) = ℏ′(τ∥y0 − x0∥) − ℏ′(0)
∥y0 − x0∥

∥y0 − x0∥

≤ ℏ′(τ(b0 − a0)) − ℏ′(0)
(b0 − a0)

∥y0 − x0∥

By combining the aforementioned inequality and scheme (3.9), we can derive:

∥∥∥[ℑ′(x0)]−1ℑ(y0)
∥∥∥ ≤

∫ 1

0

[
ℏ′(τb0) − ℏ′(0)

]
b0 dτ

(
∥y0 − x0∥
b0 − a0

)2

= ℏ(b0)
(

∥y0 − x0∥
b0 − a0

)2

= (c0 − b0)
(

∥y0 − x0∥
b0 − a0

)2

.

Consequently,

∥z0 − y0∥ =
∥∥∥[ℑ′(x0)]−1ℑ(y0)

∥∥∥ ≤ (c0 − b0)
(

∥y0 − x0∥
b0 − a0

)2

.
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By utilizing these two outcomes, we find that |z0 − x0| ≤ |z0 − y0 + y0 − x0| ≤
c0 − b0 + b0 − a0 ≤ c0 − a0. Likewise, for the subsequent relation, we observe that

ℑ(z0) = ℑ(z0) − ℑ(y0) − ℑ′(x0)(z0 − y0)

=
∫ 1

0

[
ℑ′(y0 + τ(z0 − y0)) − ℑ′(x0)

]
(z0 − y0) dτ.

By employing the χ-average Lipschitz condition (2.1) as a supporting factor∥∥∥[ℑ′(x0)]−1ℑ(z0)
∥∥∥ ≤

∫ 1

0

∥∥∥[ℑ′(x0)]−1
(
ℑ′(y0 + τ(z0 − y0)) − ℑ′(x0)

)∥∥∥ · ∥z0 − y0∥ dτ

≤
∥∥∥[ℑ′(x0)]−1ℑ′(x0)

∥∥∥ ∫ 1

0

(∫ ∥y0−x0∥+τ∥z0−y0∥

0
χ(h) du

)
∥z0 − y0∥ dτ

=
∫ 1

0

[
ℏ′(∥y0 − x0∥ + τ∥z0 − y0∥) − ℏ′(0)

]
· ∥z0 − y0∥ dτ.

Lemma 3.1 states that, under the assumption of ℏ′ being strictly convex in [0, ℘0],
along with the condition |z0 − y0| ≤ c0 − b0 from (iv), we have the following:

ℏ′(∥y0 − x0∥ + τ∥z0 − y0∥) − ℏ′(0)

=ℏ′(∥y0 − x0∥ + τ∥z0 − y0∥) − ℏ′(0)
∥y0 − x0∥ + τ∥z0 − y0∥

(
∥y0 − x0∥ + τ∥z0 − y0∥

)

≤
ℏ′
(
(b0 − a0) + τ(c0 − b0)

)
− ℏ′(0)

(b0 − a0) + τ(c0 − b0)
(
∥y0 − x0∥ + τ∥z0 − y0∥

)
.

By combining the inequality mentioned above and scheme (3.9), we can derive the
following:∥∥∥[ℑ′(x0)]−1ℑ(z0)

∥∥∥
≤
∫ 1

0

ℏ′
(
(b0 − a0) + τ(c0 − b0)

)
− ℏ′(0)

(b0 − a0) + τ(c0 − b0)
∥z0 − y0∥

(
∥y0 − x0∥ + τ∥z0 − y0∥

)
dτ

=ℏ(c0)
[

∥z0 − y0∥
c0 − b0

· ∥y0 − x0 + τ∥z0 − y0∥∥
(b0 − a0) + τ(c0 − b0)

]

=(d0 − c0)
[

∥z0 − y0∥
c0 − b0

· ∥y0 − x0 + τ∥z0 − y0∥∥
(b0 − a0) + τ(c0 − b0)

]
.

Similarly, for the third part, we observe that

ℑ(q0) = ℑ(q0) − ℑ(z0) − ℑ′(x0)(q0 − z0)

=
∫ 1

0

[
ℑ′(z0 + τ(q0 − z0)) − ℑ′(x0)

]
(q0 − z0) dτ.
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By utilizing the χ-average Lipschitz condition (2.1),∥∥∥[ℑ′(x0)]−1ℑ(q0)
∥∥∥

≤
∫ 1

0

∥∥∥[ℑ′(x0)]−1
(
ℑ′(z0 + τ(q0 − z0)) − ℑ′(x0)

)∥∥∥ · ∥q0 − z0∥ dτ

≤
∥∥∥[ℑ′(x0)]−1ℑ′(x0)

∥∥∥ ∫ 1

0

(∫ ∥z0−x0∥+τ∥q0−z0∥

0
χ(h) du

)
∥q0 − z0∥ dτ

=
∫ 1

0

[
ℏ′(∥z0 − x0∥ + τ∥q0 − z0∥) − ℏ′(0)

]
· ∥q0 − z0∥ dτ.

Lemma 3.1 asserts that, provided ℏ′ exhibits strict convexity in the interval [0, ℘0],
and taking into account the inequality |q0 − z0| ≤ d0 − c0 from (v), we have the
following

ℏ′
(
∥z0 − x0∥ + τ∥q0 − z0∥

)
− ℏ′(0)

=
ℏ′
(
∥z0 − x0∥ + τ∥q0 − z0∥

)
− ℏ′(0)

∥z0 − x0∥ + τ∥q0 − z0∥
(
∥z0 − x0∥ + τ∥q0 − z0∥

)

≤
ℏ′
(
(c0 − a0) + τ(d0 − c0)

)
− ℏ′(0)

(c0 − a0) + τ(d0 − c0)
(
∥z0 − x0∥ + τ∥q0 − z0∥

)
.

Combining the aforementioned inequality and scheme (3.9), we can deduce the follow-
ing ∥∥∥[ℑ′(x0)]−1ℑ(q0)

∥∥∥
≤
∫ 1

0

ℏ′
(
(c0 − a0) + τ(d0 − c0)

)
− ℏ′(0)

(c0 − a0) + τ(d0 − c0)
∥q0 − z0∥

(
∥z0 − x0∥ + τ∥q0 − z0∥

)
dτ

=ℏ(d0)
[

∥q0 − z0∥
d0 − c0

· ∥z0 − x0∥ + τ∥q0 − z0∥
(c0 − a0) + τ(d0 − c0)

]

=(a1 − d0) ·
[

∥q0 − z0∥
d0 − c0

· ∥z0 − x0∥ + τ∥q0 − z0∥
(c0 − a0) + τ(d0 − c0)

]
Consequently,

∥x1 − q0∥ =
∥∥∥[ℑ′(x0)]−1ℑ(q0)

∥∥∥
≤ (a1 − d0)

[
∥q0 − z0∥
d0 − c0

· ∥z0 − x0∥ + τ∥q0 − z0∥
(c0 − a0) + τ(d0 − c0)

]
In conclusion, we obtain

∥x1 − x0∥ ≤ ∥x1 − q0∥ + ∥q0 − z0∥ + ∥z0 − y0∥ + ∥y0 − x0∥

≤ (a1 − d0) + (d0 − c0) + (c0 − b0) + (b0 − a0)
= a1 − a0
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Let’s assume that xι, yι, zι, qι ∈ O(x0, a∗), |x1−x0| ≤ aι, and (ι)-(ix) are valid for some
ι ≥ 0. Using the inductive hypothesis (iii), we have |yι −x0| ≤ |yι −xι|+ |xι −x0| ≤ bι.
Additionally, by applying the inductive hypothesis (ix) and (3.10), we obtain

∥xι+1 − x0∥ ≤
ι∑

a=0
∥xι+1 − xι∥ ≤

ι∑
a=0

(aι+1 − aι) = aι+1 < a∗.

This indicates that xι+1 ∈ O(x0, a∗). Combining this with relation (3.14), we can
conclude that (ι) holds for ι + 1. Applying scheme (1.3), we can derive the following
identity for (ii)

ℑ(xι+1) = ℑ(xι+1) − ℑ(qι) − ℑ′(xι)(xι+1 − qι)

=
∫ 1

0

[
ℑ′(qι + τ(xι+1 − qι)) − ℑ′(xι)

]
(xι+1 − qι) dτ.

By considering the χ-average Lipschitz condition (2.1), we attain

∥∥∥[ℑ′(x0)]−1ℑ(xι+1)
∥∥∥ ≤

∫ 1

0

∥∥∥[ℑ′(x0)]−1[ℑ′(qι + τ(xι+1 − qι)) − ℑ′(xι)]
∥∥∥ · ∥xι+1 − qι∥ dτ

≤
∫ 1

0

(∫ ∥xι−x0∥+∥qι−xι+τ(xι+1−qι)∥

∥xι−x0∥
χ(h) du

)
∥xι+1 − qι∥ dτ.

By utilizing Lemma 3.1 and the note (3.10), one can infer that if ℏ′ is convex and
increasing in [0, ℘0], then

∫ ∥xι−x0∥+∥qι−xι+τ(xι+1−qι)∥

∥xι−x0∥
χ(h) du

=ℏ′
(
∥xι − x0∥ + ∥qι − xι + τ(xι+1 − qι)∥

)
− ℏ′(∥qι − x0∥)

≤ℏ′
(
∥xι − x0∥ + ∥qι − xι∥ + τ∥xι+1 − qι∥

)
− ℏ′(∥qι − x0∥)

≤ℏ′(dι + τ(aι+1 − dι)) − ℏ′(aι)
dι − aι + τ(aι+1 − dι)

(
∥qι − xι∥ + τ∥xι+1 − qι∥

)
≤ℏ′(dι + τ(aι+1 − dι)) − ℏ′(aι).

As a result, we can obtain

∥∥∥[ℑ′(x0)]−1ℑ(xι+1)
∥∥∥ ≤

∫ 1

0

[
ℏ′(dι + τ(aι+1 − dι)) − ℏ′(aι)

]
· ∥xι+1 − qι∥dτ(3.15)

=ℏ(aι+1) − ℏ(dι) − ℏ′(aι)(aι+1 − dι)
∥xι+1 − qι∥
aι+1 − dι

=ℏ(aι+1).
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This illustrates that (ii) is valid for the case ι + 1. By combining equations (3.14) and
(3.15), we obtain that

∥yι+1 − xι+1∥ =
∥∥∥[ℑ′(xι+1)]−1ℑ(xι+1)

∥∥∥(3.16)

≤
∥∥∥[ℑ′(xι+1)]−1ℑ′(x0)

∥∥∥ ·
∥∥∥[ℑ′(x0)]−1ℑ(xι+1)

∥∥∥
≤ − ℏ(aι+1)

ℏ′(aι+1)
= bι+1 − aι+1.

This indicates by verifying that condition (iii) holds for the case ι + 1, we can
therefore infer that ∥yι+1 − x0∥ ≤ ∥yι+1 − xι+1∥ + ∥xι+1 − x0∥ ≤ bι+1 < a∗, implying
that yι+1 ∈ O(x0, a∗). Additionally, with regard to (iv), it is noteworthy that

ℑ(yι+1) = ℑ(yι+1) − ℑ(xι+1) − ℑ′(xι+1)(yι+1 − xι+1)

=
∫ 1

0

[
ℑ′(xι+1 + τ(yι+1 − xι+1)) − ℑ′(xι+1)

]
(yι+1 − xι+1) dτ.

Given the χ-average Lipschitz condition stated in (2.1), reduces the above relation to∥∥∥[ℑ′(xι+1)]−1ℑ(yι+1)
∥∥∥(3.17)

≤ − 1
ℏ′(aι+1)

∫ 1

0

(∫ ∥xι+1−x0∥+∥τ(yι+1−xι+1)∥

∥xι+1−x0∥
χ(h) du

)
∥yι+1 − xι+1∥ dτ.

By utilizing Lemma 3.1 and the observation in Note 1, one can derive from the
convexity and increasing nature of ℏ′ in the interval [0, ℘0] that∫ ∥xι+1−x0∥+τ∥yι+1−xι+1∥

∥xι+1−x0∥
χ(h) du

=ℏ′
(
∥xι+1 − x0∥ + τ∥yι+1 − xι+1∥

)
− ℏ′(∥xι+1 − x0∥)

≤ℏ′(aι+1 + τ(bι+1 − aι+1)) − ℏ′(aι+1)
bι+1 − aι+1

∥yι+1 − xι+1∥

≤ℏ′(aι+1 + τ(bι+1 − aι+1)) − ℏ′(aι+1).
From the aforementioned deduction, we are able to acquire∥∥∥[ℑ′(xι+1)]−1ℑ(yι+1)

∥∥∥
≤ − 1

ℏ′(aι+1)

∫ 1

0

[
ℏ′(aι+1 + τ(bι+1 − aι+1)) − ℏ′(aι+1)

]
· ∥yι+1 − xι+1∥ dτ

= − 1
ℏ′(aι+1)

[
ℏ(bι+1) − ℏ(aι+1) − ℏ′(aι+1)(bι+1 − aι+1)

]∥yι+1 − xι+1∥2

(bι+1 − aι+1)2

= − ℏ(bι+1)
ℏ′(aι+1)

· ∥yι+1 − xι+1∥2

(bι+1 − aι+1)2 .(3.18)

which is resulting in

(3.19) ∥zι+1 − yι+1∥ =
∥∥∥[ℑ′(xι+1)]−1ℑ(yι+1)

∥∥∥ ≤ −ℏ(bι+1)
ℏ′(aι+1)

= cι+1 − bι+1.
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This establishes the validity of (iv) for the case ι + 1. Based on these two outcomes,
we can deduce that for (vi) we obtain: ∥zι+1 − xι+1∥ ≤ ∥zι+1 − yι+1 + yι+1 − xι+1∥ ≤
cι+1 − bι+1 + bι+1 − aι+1 ≤ cι+1 − aι+1.

Likewise, for the subsequent relationship, it becomes apparent from the scheme
(1.3) that

qι+1 − zι+1 = −[ℑ′(xι+1)]−1
∫ 1

0

[
ℑ′(yι+1 + τ(zι+1 − yι+1)) − ℑ′(xι+1)

]
(zι+1 − yι+1) dτ.

By utilizing the χ-average Lipschitz condition (2.1)

∥qι+1 − zι+1∥

≤
∥∥∥[ℑ′(xι+1)]−1ℑ′(x0)

∥∥∥
×
∫ 1

0

∥∥∥[ℑ′(x0)]−1[ℑ′(yι+1 + τ(zι+1 − yι+1)) − ℑ′(xι+1)]
∥∥∥ · ∥zι+1 − yι+1∥ dτ

≤
∥∥∥[ℑ′(xι+1)]−1ℑ′(x0)

∥∥∥
×
∫ 1

0

(∫ ∥xι+1−x0∥+∥yι+1−xι+1∥+τ∥zι+1−yι+1∥

∥xι+1−x0∥
χ(h) du

)
∥zι+1 − yι+1∥ dτ

= − 1
ℏ′(aι+1)

∫ 1

0

[
ℏ′(∥xι+1 − x0∥ + ∥yι+1 − xι+1∥ + τ∥zι+1 − yι+1∥) − ℏ′(∥xι+1 − x0∥)

]
× ∥zι+1 − yι+1∥ dτ.

Since ℏ′ is strictly convex in [0, ℘0] and considering the fact that ∥zι+1 − xι+1∥ ≤
cι+1 − aι+1, we can derive from Lemma 3.1 that

∥qι+1 − zι+1∥ ≤ − 1
ℏ′(aι+1)

(∫ 1

0

ℏ′(bι+1 + τ(cι+1 − bι+1)) − ℏ′(aι+1)
(bι+1 − aι+1) + τ(cι+1 − bι+1)

dτ

×∥zι+1 − yι+1∥ (∥yι+1 − xι+1∥ + τ∥zι+1 − yι+1∥))

≤−ℏ(cι+1)
ℏ(bι+1)

[
∥zι+1 − yι+1∥
cι+1 − bι+1

· ∥yι+1 − xι+1∥ + τ∥zι+1 − yι+1∥
bι+1 − aι+1 + τ(cι+1 − bι+1)

]

≤(dι+1 − cι+1)
[

∥zι+1 − yι+1∥
cι+1 − bι+1

· ∥yι+1 − xι+1∥ + τ∥zι+1 − yι+1∥
bι+1 − aι+1 + τ(cι+1 − bι+1)

]
(3.20)

≤dι+1 − cι+1.

This establishes the validity of (v) for the case ι + 1. Likewise, by examining the
scheme (1.3), we observe that for the next relation

xι+2 − qι+1 = −[ℑ′(xι+1)]−1
∫ 1

0

[
ℑ′(zι+1 + τ(qι+1 − zι+1)) − ℑ′(xι+1)

]
(qι+1 − zι+1)dτ.
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By utilizing the condition of χ-average Lipschitz (2.1), we have
∥xι+2 − qι+1∥

≤
∥∥∥[ℑ′(xι+1)]−1ℑ′(x0)

∥∥∥
×
∫ 1

0

∥∥∥[ℑ′(x0)]−1
[
ℑ′(zι+1 + τ(qι+1 − zι+1)) − ℑ′(xι+1)

]
(qι+1 − zι+1)

∥∥∥ dτ

≤
∥∥∥[ℑ′(xι+1)]−1ℑ′(x0)

∥∥∥
×
∫ 1

0

(∫ ∥xι+1−x0∥+∥zι+1−xι+1∥+τ∥qι+1−zι+1∥

∥xι+1−x0∥
χ(h) du

)
∥qι+1 − zι+1∥dτ

= −1
ℏ′(aι+1)

∫ 1

0

[
ℏ′(∥xι+1 − x0∥ + ∥zι+1 − xι+1∥ + τ∥qι+1 − zι+1∥) − ℏ′(∥xι+1 − x0∥)

]
× ∥qι+1 − zι+1∥dτ.

Assuming that ℏ′ is strictly convex in [0, ℘0], one can deduce from Lemma 3.1

∥xι+2 − qι+1∥ ≤ − 1
ℏ′(aι+1)

(∫ 1

0

ℏ′(cι+1 + τ(dι+1 − cι+1)) − ℏ′(aι+1)
(cι+1 − aι+1) + τ(dι+1 − cι+1)

dτ

× ∥qι+1 − zι+1∥
(
∥zι+1 − xι+1∥ + τ∥qι+1 − zι+1∥

))

≤ −ℏ(dι+1)
ℏ(aι+1)

[
∥qι+1 − zι+1∥
dι+1 − cι+1

· ∥zι+1 − xι+1 + τ∥qι+1 − zι+1∥∥
cι+1 − aι+1 + τ(dι+1 − cι+1)

]

≤ (aι+2 − dι+1)
[

∥qι+1 − zι+1∥
dι+1 − cι+1

· ∥zι+1 − xι+1 + τ∥qι+1 − zι+1∥∥
cι+1 − aι+1 + τ(dι+1 − cι+1)

]
≤ (aι+2 − dι+1).

This establishes (viii) for the case ι + 1. Moreover, we obtain from equations (3.16)
and (3.19) that

∥xι+2 − xι+1∥ ≤ ∥xι+1 − qι+1∥ + ∥qι+1 − zι+1∥ + ∥zι+1 − yι+1∥ + ∥yι+1 − xι+1∥
≤ (aι+2 − dι+1) + (dι+1 − cι+1) + (cι+1 − bι+1) + (bι+1 − aι+1)
= aι+2 − aι+1.

Consequently, through the process of induction, all assertions in the lemma have been
verified. Thus, the scientific proof is now concluded. □

4. Main Result: Semilocal Convergence of fsns (1.3)

We are now ready to establish the significant properties of the fsns (1.3) under the
χ-average Lipschitz condition (2.1) in the given ball set. Our main result encompasses
the convergence, uniqueness, and convergence rate of the fsns, thereby demonstrating
its essential implications. Notably, this result encompasses two special cases: the ⋎
convergence result and the convergence result of Kantorovich type under the Lipschitz
condition.
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The subsequent lemmas will be instrumental in achieving this objective.

Lemma 4.1. Under the same assumptions as in Lemma 3.4, it follows that the
sequence xι converges to the point Υ∗ ∈ O(x0, a∗) such that ℑ(Υ∗) = 0. Moreover, we
obtain the following result:

∥Υ∗ − xι∥ ≤a∗ − aι, ι ≥ 0,(4.1)

∥Υ∗ − yι∥ ≤(a∗ − bι)
(

∥Υ∗ − xι∥
a∗ − aι

)2

, ι ≥ 0,(4.2)

∥Υ∗ − zι∥ ≤(a∗ − cι)
(

∥Υ∗ − xι∥
a∗ − aι

· ∥Υ∗ − yι∥
a∗ − bι

)
, ι ≥ 0,(4.3)

and

(4.4) ∥Υ∗ − qι∥ ≤ (a∗ − dι)
(

∥Υ∗ − xι∥
a∗ − aι

· ∥Υ∗ − zι∥
a∗ − cι

)
, ι ≥ 0.

Proof. To establish the claim, we employ Lemma 3.4 (vii) and relation (3.10) in order
to demonstrate that:

+∞∑
ι=N

∥xι+1 − xι∥ ≤
+∞∑
ι=N

(aι+1 − aι) = a∗ − aN < +∞, for any N ∈ N.

Consequently, the sequence xι is a Cauchy sequence within the ball O(x0, a∗), indi-
cating that it converges to a point Υ∗ ∈ O(x0, a∗). For each ι ≥ 0, the previous
inequality implies that ∥Υ∗ − xι∥ ≤ a∗ − aι. Furthermore, we will now demonstrate
that ℑ(Υ∗) = 0. Utilizing Lemma 3.3, we can ascertain that ℑ(xι) is bounded. Then,
by referencing proven Lemma 3.4, we can deduce that:

∥ℑ(xι)∥ ≤ ∥ℑ′(xι)∥ ·
∥∥∥[ℑ′(xι)]−1ℑ(xι)

∥∥∥ ≤ ∥ℑ′(xι)∥(bι − aι).

By allowing ι to approach infinity and considering that bι and aι converge to the same
point a∗ (as mentioned in Note 1), we can conclude that limι→+∞ ℑ(xι) = 0. Since ℑ
is continuous in O(x0, a∗) and xι is a sequence in O(x0, a∗) converging to Υ∗, we have
limι→+∞ ℑ(xι) = ℑ(Υ∗), which confirms that ℑ(Υ∗) = 0. It remains to establish the
estimates (4.2) and (4.3). Utilizing Lemma 3.4, we obtain

∥yι − x0∥ ≤ ∥yι − xι∥ + ∥xι − x0∥ ≤ bι.

However, we can derive the following identity:

Υ∗ − yι = −[ℑ′(xι)]−1
∫ 1

0

[
ℑ′(xι + τ(Υ∗ − xι)) − ℑ′(xι)

]
(Υ∗ − xι)dτ.

Next, by combining relation (3.14), the χ-average Lipschitz condition (2.1), and
Lemma 3.1, considering the convexity and increasing property of ℏ′ in [0, ℘0), we can
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deduce the following:

∥Υ∗ − yι∥ ≤ − 1
ℏ′(aι)

∫ 1

0

(∫ ∥xι−x0∥+∥τ(Υ∗−xι)∥

∥xι−x0∥
χ(h) du

)
∥Υ∗ − xι∥ dτ

≤ − 1
ℏ′(aι)

∫ 1

0

[
ℏ′(∥xι − x0∥ + τ∥Υ∗ − xι∥) − ℏ′(∥xι − x0∥)

]
· ∥Υ∗ − xι∥ dτ

≤ − 1
ℏ′(aι)

∫ 1

0

ℏ′(aι + τ(a∗ − aι)) − ℏ′(aι)
a∗ − aι

dτ ∥Υ∗ − xι∥2

≤ (a∗ − bι)
∥Υ∗ − xι∥2

(a∗ − aι)2 .

We still need to establish the estimates (4.2) and (4.3). By utilizing Lemma 3.4, we
can infer the following:

∥zι − x0∥ ≤ ∥zι − yι∥ + ∥yι − x0∥ ≤ cι.(4.5)

Furthermore, we can derive the fundamental identity:

Υ∗ − zι = −[ℑ′(xι)]−1
∫ 1

0

[
ℑ′(yι + τ(Υ∗ − yι)) − ℑ′(xι)

]
(Υ∗ − yι)dτ.

Subsequently, under the assumption that ℏ′ is convex and increasing in the interval
[0, ℘0), we can combine relation (3.14), Lemma 3.1, and the χ-average Lipschitz
condition (2.1) to obtain the following:

|Υ∗ − zι∥

≤ − 1
ℏ′(aι)

∫ 1

0

(∫ ∥xι−x0∥+∥yι−xι+τ(Υ∗−yι)∥

∥xι−x0∥
χ(h)du

)
∥Υ∗ − yι∥dτ

= − 1
ℏ′(aι)

∫ 1

0

[
ℏ′(∥xι − x0∥ + ∥yι − xι + τ(Υ∗ − yι)∥) − ℏ′(∥xι − x0∥)

]
∥Υ∗ − yι∥dτ

≤ − 1
ℏ′(aι)

∫ 1

0

ℏ′(bι + τ(a∗ − bι)) − ℏ′(aι)
a∗ − aι

∥Υ∗ − xι∥dτ ∥Υ∗ − yι∥

≤(a∗ − cι)
∥Υ∗ − xι∥ · ∥Υ∗ − yι∥

(a∗ − aι)(a∗ − bι)
.

Consequently, by applying Lemma 3.4, we can infer that

∥qι − x0∥ ≤ ∥qι − zι∥ + ∥zι − x0∥ ≤ dι.(4.6)

Furthermore, we can establish the following fundamental identity:

Υ∗ − qι = −[ℑ′(xι)]−1
∫ 1

0

[
ℑ′(zι + τ(Υ∗ − zι)) − ℑ′(xι)

]
(Υ∗ − zι)dτ.

If we assume that ℏ′ is both convex and increasing in the interval [0, ℘0), we can
combine equation (3.14), Lemma 3.1, and the χ-average Lipschitz condition (2.1) to
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obtain the following:

∥Υ∗ − qι∥ ≤ − 1
ℏ′(aι)

∫ 1

0

(∫ ∥xι−x0∥+∥zι−xι+τ(Υ∗−zι)∥

∥xι−x0∥
χ(h)du

)
∥Υ∗ − zι∥dτ

= − 1
ℏ′(aι)

∫ 1

0

(
ℏ′(∥xι − x0∥ + ∥zι − xι + τ(Υ∗ − zι)∥) − ℏ′(∥xι − x0∥)

)
× ∥Υ∗ − zι∥dτ

≤ −1
ℏ′(aι)

∫ 1

0

ℏ′(cι + τ(a∗ − cι)) − ℏ′(aι)
a∗ − aι

∥Υ∗ − xι∥dτ∥Υ∗ − yι∥

≤ (a∗ − dι)
∥Υ∗ − xι∥ · ∥Υ∗ − zι∥

(a∗ − aι)(a∗ − cι)
.

The proof of this lemma is fully completed and presented as stated. □

Lemma 4.2. Given the standard conditions outlined in the aforementioned Lemma
3.4 and assuming the hypothesis 1 + a∗ℏ′′(a∗)/ℏ′(a∗) > 0, we observe that

qι − zι

dι − cι

≤
1 − ℏ′′(a∗)

ℏ′(a∗) (a∗ − aι)
1 + ℏ′′(a∗)

ℏ′(a∗) (a∗ − aι)
· ∥Υ∗ − xι∥3

∥a∗ − aι∥3 .(4.7)

Proof. From the scheme (3.9), we can deduce that

a∗ − dι = − 1
ℏ′(aι)

∫ 1

0

[
ℏ′(cι + τ(a∗ − cι)) − ℏ′(aι)

]
(a∗ − cι) dτ.

Given the convexity of ℏ in [0, ℘0), Lemma 3.1 asserts that for any τ ∈ (0, 1],

ℏ′(cι + τ(a∗ − cι) − ℏ′(aι) ≤ ℏ′(a∗) − ℏ′(aι)
a∗ − aι

(cι + τ(a∗ − cι)) ≤ ℏ′′(a∗)(a∗ − aι).

Thus, considering the positive nature of 1/ℏ′(a), one can conclude from the aforemen-
tioned Lemma 3.1 that

a∗ − dι ≤ −1
ℏ′(aι)

∫ 1

0

ℏ′(a∗) − ℏ′(aι)
a∗ − aι

(a∗ − aι)(a∗ − cι)dτ = −ℏ′′(a∗)
ℏ′(a∗) (a∗ − aι)(a∗ − cι).

(4.8)

The final conclusion follows from the strict monotonicity of ℏ′. By utilizing this
concept, we can derive from the scheme (3.9) that

(4.9) a∗ − cι ≤ −1
2 · ℏ

′′(a∗)
ℏ′(a∗) (a∗ − aι)3.

By applying the inequality ∥qι − zι∥ ≤ ∥Υ∗ − qι∥ + ∥Υ∗ − zι∥, we can infer from
equations (4.2) and (4.3) that

∥qι − zι∥ ≤ (a∗ − dι)
(

∥Υ∗ − xι∥
a∗ − aι

.
∥Υ∗ − zι∥

a∗ − cι

)
+ (a∗ − cι)

(
∥Υ∗ − xι∥

a∗ − aι

)2 ∥Υ∗ − xι∥
a∗ − aι

.
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Finally, by utilizing equation (4.8), we can further derive that

∥qι − zι∥ ≤
(

1 − ℏ′′(a∗)
ℏ′(a∗) (a∗ − aι)

) −1
2 · ℏ

′′(a∗)
ℏ′(a∗) ∥Υ∗ − xι∥3.

As a consequence of equation (3.12), we can infer that

∥qι − zι∥
dι − cι

≤

(
1 − ℏ′′(a∗)

ℏ′(a∗) (a∗ − aι)
)

−1
2 · ℏ′′(a∗)

ℏ′(a∗)

cι − bι

∥Υ∗ − xι∥3

≤

(
1 − ℏ′′(a∗)

ℏ′(a∗) (a∗ − aι)
)

−1
2 · ℏ′′(a∗)

ℏ′(a∗)(
1 + ℏ′′(a∗)

ℏ′(a∗) (a∗ − aι)
)

−1
2 · ℏ′′(a∗)

ℏ′(a∗)

· ∥Υ∗ − xι∥3

(a∗ − aι)3 .

□

Therefore, utilizing Lemmas 4.1 and 4.2, we can conclude that

Theorem 4.1. Let us consider a nonlinear operator ℑ : D ⊂ ¯̄U → ¯̄V that is continu-
ously Fréchet differentiable and defined in an open and convex subset D. We assume
the existence of an i.g. x0 ∈ D for which [ℑ(x0)]−1 exists, and that ℑ satisfies the
χ-average Lipschitz condition (2.1) within the ball O(x0, a∗). We now consider the
sequence of iterates xι obtained by applying the fsns (1.3) with the initial value x0. If
the constants satisfy 0 < ♭ ≤ ♮, then the sequence xι obtained by applying the fsns
(1.3) with the initial guess x0 is well-defined and converges towards a unique solution
Υ∗ of (1.1) within the ball O(x0, ℘). The convergence rate is guaranteed to be at least
five. Here, ℘ is defined as ℘ := sup a ∈ (a∗,ð) : ℏ(a) ≤ 0. The solution Υ∗ is also
guaranteed to be unique within the larger ball O(x0, ℘), where a∗ ≤ ℘ < a∗∗. Moreover,
if

(4.10) 1 + a∗ℏ′′(a∗)
ℏ′(a∗) > 0 ⇔ 1 − a∗χ(a∗)

1 −
∫ a∗

0 χ(h)du
> 0.

If the condition is satisfied, it can be expected to achieve a convergence rate of at least
fifth order, and the following error bounds can be derived:

(4.11) ∥Υ∗ − xι+1∥ ≤ 1
2ℏ

4
∗
1 − a∗ℏ∗

1 + a∗ℏ∗
∥Υ∗ − xι∥5, ι ≥ 0,

in which ℏ∗
∆= ℏ′′(a∗)/ℏ′(a∗).

Proof. By utilizing Lemma 3.4, we can establish that the sequence xι is well-defined.
Based on the provided Lemma 3.4 (vii) and (3.10), it can be deduced that ∥xι −x0∥ ≤
aι < a∗ for ι ≥ 0, ensuring that xι remains within the ball O(x0, a∗). Additionally,
Lemma 4.1 guarantees that the sequence xι converges towards a solution Υ∗ of (1.1)
within the ball O(x0, a∗). Next, we will establish the fifth-order convergence of the
iterative process. To accomplish this, we employ conventional analytical methods and
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obtain the following result:

Υ∗ − xι+1

=Υ∗ − qι + [ℑ′(xι)]−1ℑ(qι)

= − [ℑ′(xι)]−1
[∫ 1

0
(ℑ′(xτ

ι ) − ℑ′(qι))(Υ∗ − qι)dτ + (ℑ′(qι) − ℑ′(xι))(Υ∗ − qι)
]

,

in which xτ
ι := xι + τ(Υ∗ − xι). By employing the χ-average Lipschitz condition (2.1)

and equation (3.14), we can deduce that:

∥Υ∗ − xι+1∥ ≤ − 1
ℏ′(aι)

[∫ 1

0

(∫ ∥qι−x0∥+∥qι−qι+τ(a∗−qι)∥

∥qι−x0∥
χ(h)du

)
∥a∗ − qι∥ dτ

+
∫ ∥xι−x0∥+∥qι−xι∥

∥xι−x0∥
χ(h)du∥a∗ − qι∥

]
.

Subsequently, if ℏ′ is both convex and increasing in [0, ℘0), we can utilize relations
(4.1), (4.6), Lemma 3.1, Lemma 3.4, and the χ-average Lipschitz condition (2.1) to
combine the following:

∥Υ∗ − xι+1∥ ≤ − 1
ℏ′(aι)

[∫ 1

0

ℏ′(dι + τ(a∗ − dι)) − ℏ′(dι)
a∗ − dι

∥Υ∗ − qι∥2 dτ

+ℏ′(dι) − ℏ′(aι)
dι − aι

∥Υ∗ − qι∥ · ∥qι − xι∥
]

= − 1
ℏ′(aι)

[(
ℏ(a∗) − ℏ(dι) − ℏ′(dι)(a∗ − dι)

)∥Υ∗ − qι∥2

(a∗ − dι)2

]

+(ℏ′(dι) − ℏ′(aι))(a∗ − dι)
∥Υ∗ − qι∥
(a∗ − dι)

· ∥qι − xι∥
dι − aι

.

By applying Lemma 3.4 along with relations (4.1) and (4.6) again, we can obtain an
additional inequality from the aforementioned expression, which can be expressed as
follows:

(4.12) ∥Υ∗ − xι+1∥ ≤ (a∗ − aι+1)
[

∥Υ∗ − xι∥
a∗ − aι

]3

.

Subsequently, we can infer from equation (3.11) that

∥Υ∗ − xι+1∥
∥Υ∗ − xι∥4 ≤ a∗ − aι+1

(a∗ − aι)4 ≤ 1
2 · ℏ

′′(a∗)4

ℏ′(a∗)4 (a∗ − aι).

By considering the limit as ι tends to infinity in the previous inequalities and taking
into account the convergence of aι to a∗, we obtain

lim
ι→+∞

∥Υ∗ − xι+1∥
∥Υ∗ − xι∥4 = 0.
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Furthermore, if condition (4.10) is also fulfilled, we can employ estimates (4.1), (4.6),
(4.7), and (3.11) to deduce the following from (4.11):

∥Υ∗ − xι+1∥ ≤ − 1
ℏ′(aι)

[
(ℏ(a∗) − ℏ(dι) − ℏ′(dι)(a∗ − dι))dτ

+ (ℏ′(dι) − ℏ′(aι))(a∗ − dι)
] 1 − ℏ′′(a∗)

ℏ′(a∗) (a∗ − aι)
1 + a∗ ℏ′′(a∗)

ℏ′(a∗) (a∗ − aι)

(
∥Υ∗ − zι∥
(a∗ − aι)

)5

= (a∗ − aι+1) ·
1 − ℏ′′(a∗)

ℏ′(a∗) (a∗ − aι)
1 + a∗ ℏ′′(a∗)

ℏ′(a∗) (a∗ − aι)

(
∥Υ∗ − zι∥
(a∗ − aι)

)5

≤ 1
2

(
ℏ′′(a∗)
ℏ′(a∗)

)4 1 − Υ∗ℏ′′(a∗)
ℏ′(a∗)

1 + Υ∗ℏ′′(a∗)
ℏ′(a∗)

∥Υ∗ − xι∥5.

Consequently, we have successfully demonstrated the estimate (4.11) as stated in
Theorem 4.1, which establishes the five-fold convergence rate of the iterates.

Ultimately, we establish the uniqueness of the solution. We begin by proving the
uniqueness of the solution Υ∗ for (1.1) in the domain O(x0, a∗). Let’s assume the
existence of an alternative solution a∗∗ within O(x0, a∗). This implies that ∥a∗∗−x0∥ ≤
a∗. Next, we will demonstrate this through an inductive argument.

∥a∗∗ − xι∥ ≤ a∗ − aι, ι = 0, 1, 2, . . . ,(4.13)
since a0 is equal to 0, the case where ι = 0 is clearly true. Assuming that the above
expression holds for a particular ι ≥ 0, we can apply the same procedure to estimate
∥a∗∗ − yι∥ in (4.2) and ∥a∗ − zι∥ in (4.3), which yields the following:

∥a∗ − yι∥ ≤ (a∗ − bι)
(

∥a∗ − xι∥
a∗ − aι

)2

, ι ≥ 0,

with
∥a∗ − zι∥ ≤ (a∗ − cι)

(
∥a∗ − xι∥
(a∗ − aι)

· ∥a∗ − yι∥
(a∗ − bι)

)
, ι ≥ 0.

Furthermore, by applying the same method to estimate ∥a∗ − zι∥ in (4.12), we can
demonstrate that

∥a∗ − xι+1∥ ≤ (a∗ − aι+1)
[

∥a∗ − xι∥
a∗ − aι

]3

.

Following that, by employing the inductive hypothesis (4.13) on the aforementioned
inequality, we can conclude that (4.13) is applicable to the scenario ι + 1. Since xι

converges to Υ∗ and aι converges to a∗, it can be inferred from (4.13) that a∗∗ = Υ∗.
As a result, Υ∗ stands as the sole root of (1.1) within the region O(x0, a∗). However,
it is still crucial to establish that the nonlinear operator ℑ does not possess any roots
within the region O(x0, ℘)\O(x0, a∗). Let us assume the contrary, supposing that
ℑ has one or more roots in that particular region. This assumption suggests the
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existence of a∗∗ ∈ D ⊂ X, where a∗ < a∗∗ − x0 < ℘ and ℑ(a∗∗) = 0. Our objective is
to demonstrate the falsehood of the aforementioned assumptions. As we are aware,

ℑ(a∗∗) = ℑ(x0) + ℑ′(x0)(a∗∗ − x0) +
∫ 1

0
[ℑ′(xτ

0) − ℑ′(x0)](a∗∗ − x0)dτ,

where xτ
0 := x0 + τ(a∗∗ − x0). One can see that∥∥∥[ℑ′(x0)]−1[ℑ(x0) + ℑ′(x0)(a∗∗ − x0)]

∥∥∥ ≥∥a∗∗ − x0∥ − ∥ℑ′(x0)]−1ℑ(x0)∥
=∥a∗∗ − x0∥ − ℏ(0).

Moreover, we employ the χ-average Lipschitz condition (2.1) to derive∥∥∥∥[ℑ′(x0)]−1
∫ 1

0
[ℑ′(xτ

0) − ℑ′(x0)](a∗∗ − x0)dτ
∥∥∥∥

≤
∫ 1

0

(∫ τ(∥a∗∗−x0∥)

0
χ(h)du

)
∥a∗∗ − x0∥dτ

=
∫ 1

0

[
ℏ′(τ∥a∗∗ − x0∥) − ℏ′(0)

]
· ∥a∗∗ − x0∥

=ℏ(∥a∗∗ − x0∥) − ℏ(0) − ℏ′(0)∥a∗∗ − x0∥.

Considering that ℑ(a∗∗) = 0 and ℏ′(0) = −1, we can deduce from (4.14) that
ℏ(∥a∗∗ − x0∥) − ℏ(0) − ℏ′(0)∥a∗∗ − x0∥ ≥ ∥a∗∗ − x0∥ − ℏ(0).

The inequality ℏ(∥a∗∗ −x0∥) ≥ 0 can be understood as ℏ being strictly positive within
the range of (∥a∗∗ − x0∥,R), as stated in Lemma 3.2. Consequently, we can conclude
that ℘ < |a∗∗ − x0|, which contradicts the initial assumptions. Hence, it follows that
ℑ does not have any roots within O(x0, ℘)\O(x0, a∗), and as a result, a∗ is the only
root of (1.1) in O(x0, ℘). This completes the proof. □

Note 2. The convergence criteria 0 < ♭ ≤ ♮ as presented in Theorem 4.1 were
initially established by Wang [16] to analyze the convergence of the NM (1.2) within
a unified framework. Additionally, to attain fifth-order convergence, it is essential to
satisfy condition (4.10). The results can be extended in the following manner.

Consider ϵ := sup t ≥ 0 : O(x0, t) ⊂ D.
Criteria 2. The operator ℑ′ satisfies the center χ0-average Lipschitz criterion on

the ball O(x0, ϵ) if for every x ∈ O(x0, ϵ), the condition stated below holds true:

(4.14)
∥∥∥[ℑ′(x0)]−1(ℑ′(x) − ℑ′(x0))

∥∥∥ ≤
∫ ∥x−x0∥

0
χ0(h)du.

Consider a n.d. continuous and non-negative function defined on the interval [0, ϵ].
Let us suppose that the equation

∫ ϵ
0 χ0(h)du − 1 = 0 has a smallest positive solution

ϵ0 ∈ (0, ϵ]. We define the ball O(x0, ϵ0). By these definitions, we can observe that:
O(x0, ϵ0) ⊂ O(x0, ϵ),

and as a result,
χ0(h) ≤ χ(h), for each h ∈ [0, ϵ0].
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Furthermore, the linear operator ℑ′(x) has an inverse for x ∈ O(x0, ϵ0), and∥∥∥[ℑ′(x)]−1ℑ′(x0)
∥∥∥ ≤ 1

1 −
∫ ϵ0

0 χ0(h)du
.

This estimation is more accurate than∥∥∥[ℑ′(x)]−1ℑ′(x0)
∥∥∥ ≤ 1

1 −
∫ ϵ

0 χ(h)du

used in the previous sections. The restricted χ-average Lipschitz criterion is formulated
as follows.

Criteria 3. The operator ℑ′ satisfies the restricted χ-average Lipschitz criterion on
the ball O(x0, ϵ0) if, for any x and y satisfying ∥y − x∥ + ∥x − x0∥ ≤ ϵ0, the following
condition is satisfied:∥∥∥[ℑ′(x0)]−1(ℑ′(y) − ℑ′(x))

∥∥∥ ≤
∫ ∥x−x0∥

0
χ(h)du.

By considering χ as a continuous, n.d., and non-negative function defined on the
interval [0, ϵ0], we can conclude from these definitions that:

χ(h) ≤ χ(h), for each h ∈ [0, ϵ0].
Consequently, the more stringent function χ can replace χ in all the previous results,
resulting in convergence criteria that are less restrictive and error estimates ∥xι+1−xι∥
and ∥Υ∗ −xι∥ that are at least as accurate. It should be noted that χ0 = χ0(O(x0, ϵ)),
χ = χ(O(x0, ϵ)), while χ = χ(O(x0, ϵ)). Furthermore, it is worth highlighting that the
functions χ0 and χ are specific cases derived from the original function χ, without the
need for additional conditions to achieve these improvements. Moreover, it is possible
to provide a more precise characterization of the uniqueness region of the solution.
Now, we turn our attention to the new result.

Theorem 4.2. Let us consider the following assumptions: there exists a solution
a∗∗ ∈ O(x0, ℘1) of the equation ℑ(x) = 0 for some ℘1 > 0, the condition (4.14) is
satisfied on the ball O(x0, ℘1), and there exists ℘2 ≥ ρ1 such that for ϑτ = (1 − τ)
∥Υ∗ − x0∥ + τ∥a∗∗ − x0∥∫ 1

0

∫ (1−τ)℘1+τρ2

0
χ0(h)dudτ < 1.(4.15)

Let us define the set D1 = O(x0, ϵ0)∩O(x0, ℘2). Then, within the set D1, the equation
ℑ(x) = 0 possesses a single solution given by Υ∗.

Proof. Let us define the linear operator S =
∫ 1

0 ℑ′(Υ∗ +τ(a∗∗ −Υ∗))dτ , where a∗∗ ∈ D1
and ℑ(a∗∗) = 0. By this definition, and considering conditions (4.14) and (4.15), it
follows that: ∥∥∥[ℑ′(x0)]−1(S − ℑ′(x0))

∥∥∥ ≤
∫ 1

0

∫ ϑτ

0
χ0(h)dudτ < 1,

since ϑτ < (1 − τ)℘1 + τρ2. Thus, S is invertible and
a∗∗ − a∗ = S−1(ℑ(a∗∗) − ℑ(a∗)) = S−1(0) − 0.
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Based on the aforementioned analysis, we can conclude that a∗∗ = a∗. Thus, we have
successfully completed the proof. □

Remark 4.1. (i) The limit point a∗ in Theorem 4.1 can be replaced by ℘.
(ii) If all the assumptions of Theorem 4.1 hold, we can choose ℘1 = a∗ and a∗∗ = a∗

in Theorem 4.2.

Exploring Special Cases in the Study. Subsequently, by applying Theorem 4.1,
we will establish several corollaries by considering different variations of the positive
function χ. To begin with, let’s examine the scenario where χ is a positive constant. In
this scenario, the χ-average Lipschitz condition (2.1) can be simplified to the following
Lipschitz condition.

Corollary 4.1. Consider a nonlinear operator ℑ : D ⊂ ¯̄U → ¯̄V , which is continuously
Fréchet differentiable in a convex subset, including D. Let x0 ∈ D be an i.g. such that
[ℑ′(x0)]−1 exists. Furthermore, assume that ℑ satisfies the Lipschitz condition:

(4.16)
∥∥∥[ℑ′(x0)]−1(ℑ′(y) − ℑ′(x))

∥∥∥ ≤ κ∥y − x∥, x, y ∈ O(x0, ℘0),

in which ℘0 = 1/χ. The expression of the m.f. ℏ introduced in equation (3.4) can be
written as follows:

ℏ(a) = ♭ − a + χ

2 a2, a ∈ [0,ð].

The value of ð can be computed using equation (3.3) as ð = 2/χ. The constant
♮, defined in equation (3.6), can be expressed as ♮ = 1/(2κ). Moreover, Lemma 3.2
suggests that if χ♭ ≤ 1/2, then the roots of ℏ within the intervals (0, 1/χ) and (1/χ, 2/χ)
are as follows:

(4.17) a∗ = 1 −
√

1 − 2κ♭

χ
and a∗∗ = 1 +

√
1 − 2κ♭

χ
.

Let {xι} represent the iterates generated by the fsns (1.3) with the i.g. x0. Under
the assumption that 0 < χ♭ ≤ 1/2, the iterates {xι} are well-defined and converge
Q-cubically to a unique solutiona∗ ∈ O(x0, a∗) of equation (1.1), where a∗ < ℘ < a∗∗

and the values of a∗ and a∗∗ are given by (4.18). Furthermore, if 0 < χ♭ ≤ 3/8, the
convergence order is at least five, and the following error bound holds:

(4.18) ∥Υ∗ − xι+1∥ ≤ 1
2 · χ4

(1 − 2κ♭)2 · 1
2
√

1 − 2κ♭ − 1
∥Υ∗ − xι∥5, ι ≥ 0.

Next, suppose that ⋎ > 0. We introduce the positive function χ, which is defined
as follows:

χ(h) := 2⋎
(1 − ⋎u)3 , h ∈

[
0,

1
⋎

)
.(4.19)

Corollary 4.2. Suppose that ℑ : D ⊂ ¯̄U → ¯̄V is a nonlinear operator that is
continuously Fréchet differentiable in a convex subset D, which is also open. Let
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x0 ∈ D be an i.g. satisfying the conditions: [ℑ(x0)]−1 exists and ℑ satisfies the
following condition:
(4.20)∥∥∥[ℑ′(x0)]−1(ℑ′(y) − ℑ′(x))

∥∥∥ ≤ 1
(1 − ⋎∥x − x0∥ − ∥y − x∥)2 − 1

(1 − ⋎∥x − x0∥)2 .

The expression of the m.f. ℏ defined by equation (3.4) can now be written as follows:

ℏ(a) = ♭ − a + ⋎t2

1 − ⋎t
, a ∈

[
0,

1
⋎

]
.

The value of ℘0 can be determined using equation (3) as ℘0 = (1 − 1√
2) 1

⋎ . The
constant ♮, defined in equation (3.6), can be expressed as ♮ = 0.1715728

⋎ , respectively.

Letting θ := ♭⋎ ≤ 0.1715728, the roots of ℏ are given by a∗ = 1+θ−
√

(1+θ)2−8θ

4⋎ and

a∗∗ = 1+θ+
√

(1+θ)2−8θ

4⋎ , respectively. The constant ℏ∗ := ℏ′′(a∗)
ℏ′(a∗) given in Theorem

4.1, now has a specific form: ℏ∗ = − 32⋎√
(1+θ)2−8θ.(3−θ+

√
(1+θ)2−8θ)2)

. The sequence of
iterates {xι} is generated by the fsns method given in equation (1.3) with the i.g.
x0. Assuming that 0 < θ ≤ 0.1715728, the iterates xι are well-defined and converge
Q-cubically to a unique solution a∗ of (1.1). The solution a∗ ∈ O(x0, a∗), where
a∗ < ℘ < a∗∗ and a∗ and a∗∗ are the bounds of the solution. Furthermore, if 0 < θ ≤
1
6

(
17 − 49

(937−48
√

330)1/3 − (937 − 48
√

330)1/3
)
, the convergence order is guaranteed to

be at least five. In this case, the following error bound can be established:

(4.21) ∥Υ∗ − xι+1∥ ≤ l

2(ℏ∗)4∥Υ∗ − xι∥5, ι ≥ 0,

where l := − 7−θ3+
√

1−6θ+θ2+θ2(9+
√

1−6θ+θ2)−3θ(5+2
√

1−6θ+θ2)
1+θ3−9

√
1−6θ+θ2−θ2(9+

√
1−6θ+θ2)+θ(23+6

√
1−6θ+θ2) .

5. Numerical Illustration: Application and Results

In this part, we will demonstrate the practical application of the s.c. results derived
in the previous part.

Example 5.1. Consider ¯̄U = C[0, 1], which denotes the space of continuous functions
(c.f.) defined on the interval [0, 1]. The norm is given by

∥x∥ = max
b∈[0,1]

|x(b)|.

Let ℧ = ¯̄U [0, 1], which represents the function ℑ defined on ℧.

(5.1) ℑ(x)(b) = x(b) − 2λ
∫ 1

0
γ(b, a)x(a)3da.
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Table 1. Analysis of Domains of Uniqueness and Existence of Solution
for fsns

λ Ball of convergence
Existence O(x0, a∗) Uniqueness O(x0, a∗∗)

1 O(0.25, 0.00409923) O(0.25, 1.26672)
0.5 O(0.25, 0.00200157) O(0.25, 2.60217)
0.25 O(0.25, 0.00098834) O(0.25, 5.26984)
0.125 O(0.25, 0.00049118) O(0.25, 10.6037)
0.0625 O(0.25, 0.000244864) O(0.25, 21.2706)

The symbol γ represents the Green’s function kernel defined on the interval [0, 1]×[0, 1],
which can be expressed as follows:

γ(b, a) =

(1 − b)a, a ≤ b,

b(1 − a), b ≤ a.

We consider b belonging to the interval [0, 1] and λ as a real number. The function
x ∈ C[0, 1] is the variable to be determined. Consequently, the obtained result is as
follows:

(5.2) ℑ′(x)y(b) = y(b) − 6λ
∫ 1

0
γ(b, a)x(a)2h(a)da, y ∈ ϕ.

We proceed by defining S as the maximum value of the integral
∫ 1

0 |γ(b, a)|da over the
interval [0, 1], which yields S = 1/8. Furthermore, considering the initial approximate
solution x0(a) = 0.25, for any x and y belonging to the set ϕ, we can determine the
corresponding values of

(5.3) ♭ =
∥∥∥[ℑ′(x0)]−1ℑ(x0)

∥∥∥ ≤ 0.0039063 · |λ|
1 − 0.046875 · |λ|

.

By utilizing the definition of χ-average and referring to corollary (4.1), we can derive
the expression χ = 3

2 |λ|· 1
1−0.046875×|λ| . Since ♭ < ♮, the convergence criterion is satisfied.

This theorem allows us to conclude that the fsns sequence (1.3) generated with the
i.g. x0 converges to the zero of ℑ. Table 1 presents the domain of uniqueness and
existence of the solution for different values of λ, namely λ = 0.0625, 0.125, 0.25, 0.5, 1.

Table 2 presents the convergence criteria χβ < 3/8 and the corresponding error
bounds for various values of λ. A comparison with the s.c. of the two-step method
described in reference [9] reveals that the novel convergence criteria demonstrated in
this study are stronger.

6. Conclusions

In conclusion, this study successfully investigated the s.c. for multistep fsns (1.3)
for solving nonlinear equations in a b.s. environment using unique majorant and χ-
average Lipschitz conditions (2.1). The proposed scheme provides a more flexible
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Table 2. Analysis of Convergence Criteria and Error Bounds for fsns

λ χ♭ < 3/8 Error bound
1 0.006449 3.18912

0.5 0.00153602 0.17556
0.25 0.000374952 0.0103885
0.125 0.0000926362 0.00063303
0.0625 0.0000230232 0.0000390852

and versatile way of addressing a broader class of issues by reducing the rigorous
Lipschitz and Hölder continuity requirements. The convergence analysis in Theorem
4.1 gave rigorous guarantees on the solution’s existence and uniqueness, as well as
computable error limitations. The provided majorant function with average Lipschitz
conditions has been shown to be an excellent tool for characterizing the scheme’s
convergence behaviour. The derived radii of convergence balls allow us to specify the
range of initial values for which convergence is guaranteed, increasing the scheme’s
practical applicability. The numerical experiments performed on several benchmark
issues indicated that the suggested system outperformed existing methods that relied
exclusively on Lipschitz or Hölder continuity assumptions.
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