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REMARKS ON THE DEGREE KIRCHHOFF INDEX

M. MATEJIĆ, I. MILOVANOVIĆ, AND E. MILOVANOVIĆ

Abstract. Let G be a simple connected graph with n vertices and m edges, with
normalized Laplacian eigenvalues ρ1 ≥ ρ2 ≥ · · · ≥ ρn−1 > ρn = 0. The degree
Kirchhoff index Kf∗(G) is defined as Kf∗(G) = 2m

∑n−1
i=1

1
ρi
. In this paper we

obtain lower and upper bounds for Kf∗(G).

1. Introduction

Let G = (V,E), V = {1, 2, . . . , n}, be a simple connected graph with n, n ≥ 3,
vertices and m edges. Denote with ∆ = d1 ≥ d2 ≥ · · · ≥ dn = δ > 0, a sequence of
vertex degrees of G, A the adjacency matrix of graph, and by D = diag(d1, d2, . . . , dn)
the diagonal matrix of its vertex degrees. Matrix L = D − A is the Laplacian
matrix of G. Eigenvalues of L, µ1 ≥ µ2 ≥ · · · ≥ µn−1 > µn = 0, form the so-called
Laplacian spectrum of graph G. Provided that the graph G has no isolated vertices,
the normalized Laplacian matrix is defined as L∗ = D−1/2LD−1/2 = I−D−1/2AD−1/2.
Its eigenvalues, ρ1 ≥ ρ2 ≥ · · · ≥ ρn−1 > ρn = 0, represent normalized Laplacian
eigenvalues of G. The following identities are valid for ρi, i = 1, 2, . . . , n− 1, (see [5])

n−1∑
i=1

ρi = n and
n−1∑
i=1

ρ2
i = n+ 2R−1,

where
R−1 =

∑
i∼j

1
didj

,

is the general Randić index (also called branching index) introduced in [19]. A symbol
i ∼ j denotes that vertices i and j are adjacent.
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In [9], Klein and Randić, introduced the notion of resistance distance, rij, defined
as the resistance between the nodes i and j in an electrical network corresponding to
the graph G in which all edges are replaced by unit resistors. The sum of resistance
distances of all pairs of vertices of a graph G is named as the Kirchhoff index, i.e.,

Kf(G) =
∑
i<j

rij.

Eventually, it was shown [7] (see also [8]) that the resistance distance can be expressed
in terms of Laplacian matrix and its spectrum. Namely, it was proven that

Kf(G) = n
n−1∑
i=1

1
µi
.

The Kirchhoff index spawned a family of resistance indices, such as degree Kirchhoff
index, multiplicative-degree-Kirchhoff index and additive-degree Kirchhoff index (see
for example [2, 16,17]). The degree Kirchhoff index, introduced in [4], is defined as

Kf ∗(G) =
∑
i<j

didjrij.

In analogy with the Kirchhoff index, the degree Kirchhoff index can also be repre-
sented as

Kf ∗(G) = 2m
n−1∑
i=1

1
ρi
.

The graph invariants Kf(G) and Kf ∗(G) are currently much studied in the mathe-
matical and mathematico-chemical literature; see for example [11] and the references
cited therein.

In this paper, inspired by the inequality for Kf(G) reported in [18], we determine
an upper bound for Kf ∗(G) which depends on n, m and k, where k is an arbitrary
real number such that ρn−1 ≥ k > 0. We also prove one general inequality that sets
up a lower bound for Kf ∗(G) in terms of n, m and s, where s is an arbitrary real
number such that ρ1 ≥ s ≥ ρn−1. For some particular values of s we obtain some
lower bounds for Kf ∗(G) reported in the literature.

2. Preliminaries

In this section we recall some results reported in the literature on lower and upper
bounds for Kf(G) and Kf ∗(G), and an analytic inequality for real number sequences
which will be used in the subsequent considerations.

The following upper bound for Kf(G) that depends on parameters n, m and k,
where k is an arbitrary real number with the property µn−1 ≥ k > 0, was established
in [18]

(2.1) Kf(G) ≤ (n+ k)(n− 1)− 2m
k

,

with equality if and only if k = n and G ∼= Kn, or k = 1 and G ∼= K1,n−1, or k = n
2

and G ∼= Kn
2 ,

n
2
, or k = n− 2 and G ∼= Kn − e.
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In [15] (see also [1, 6, 8, 12]) the following inequality was proven

(2.2) Kf ∗(G) ≥ 2m(n− 1)2

n
,

with equality if and only if G ∼= Kn.
In [6] the following lower bound for Kf ∗(G) in terms of parameters n, m, and ∆

was determined

(2.3) Kf ∗(G) ≥ 2m
(

∆
∆ + 1 + (n− 2)2

n− 1− 1
∆

)
,

with equality if and only if G ∼= Kn.
In [3] it was proven that

(2.4) Kf ∗(G) ≥ 2m
(

1
P

+ (n− 2)2

n− P

)
,

where

P = 1 +
√

2R−1

n(n− 1) .

Equality in (2.4) is attained if and only if G ∼= Kn.
In [10] the following upper bound for Kf ∗(G) was established

(2.5) Kf ∗(G) ≤ 2m(n− 1)(ρ1 + ρn−1)− n
ρ1ρn−1

.

Let ak1 , ak1+1, . . . , an−k2 and bk1 , bk1+1, . . . , bn−k2 be two non-negative real number
sequences of similar monotonicity, and pk1 , pk1+1, . . . , pn−k2 be positive real number
sequence, 1 ≤ k1 ≤ n− k2, 0 ≤ k2 ≤ n− 1. Then the following inequality holds (see,
for example, [13,14])

(2.6)
n−k2∑
i=k1

pi

n−k2∑
i=k1

piaibi ≥
n−k2∑
i=k1

piai

n−k2∑
i=k1

pibi.

3. Main Results

In the following theorem we establish an upper bound for Kf ∗(G) in terms of
parameters n, m and k, ρn−1 ≥ k > 0. The inequality proven in this theorem is
analogous to the inequality (2.1) for Kf(G).

Theorem 3.1. Let G be a simple connected graph with n, n ≥ 3, vertices and m
edges. Then, for any real k with the property ρn−1 ≥ k > 0, holds

(3.1) Kf ∗(G) ≤ m
n− 2 + k(n− 1)

k
,

with equality if and only if k = n
n−1 and G ∼= Kn, or k = 1 and G ∼= Kr,n−r,

1 ≤ r ≤
⌊
n
2

⌋
, or k = 3

n−1 and G ∼= Cn.
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Proof. Consider the function

f(x) = (n− 1)(x+ ρn−1)− n
x

, x > 0.

This is an increasing function for x > 0. Since 0 < x = ρ1 ≤ 2, we have f(x) =
f(ρ1) ≤ f(2), and according to (2.5) we get

(3.2) Kf ∗(G) ≤ 2m(n− 1)(2 + ρn−1)− n
2ρn−1

= m
(n− 1)ρn−1 + n− 2

ρn−1
.

Now, consider the function

g(x) = n− 2
x

, x > 0.

This is a decreasing function for x > 0. Since x = ρn−1 ≥ k > 0, then g(ρn−1) ≤ g(k),
and therefore from (3.2) we get

Kf ∗(G) ≤ m
n− 2 + k(n− 1)

k
,

which completes the proof. �

Corollary 3.1. Let G be a simple connected planar graph with n, n ≥ 3, vertices and
m edges. Then, for any real k with the property ρn−1 ≥ k > 0, holds

(3.3) Kf ∗(G) ≤ 3(n− 2)(n− 2 + (n− 1)k)
k

,

with equality if and only if k = 3
2 and G ∼= K3, or k = 4

3 and G ∼= K4.

Proof. Since for simple connected planar graphs holds m ≤ 3(n − 2), the inequality
(3.3) directly follows from (3.1). �

In the next theorem we determine a lower bound for the degree Kirchhoff index
in terms of parameters n, m and s, where s is a real number with the property
ρ1 ≥ s ≥ ρn−1.

Theorem 3.2. Let G be a simple connected graph with n, n ≥ 3, vertices and m
edges. Then, for any real s with the property ρ1 ≥ s ≥ ρn−1, holds

(3.4) Kf ∗(G) ≥ 2m
(

1
s

+ (n− 2)2

n− s

)
,

with equality if and only if s = n
n−1 and G ∼= Kn, or s = 2 and G ∼= Kr,n−r,

1 ≤ r ≤
⌊
n
2

⌋
.

Proof. For k1 = 1, k2 = 2, pi = ρi, ai = bi = 1
ρi
, i = 1, 2, . . . , n − 2, the inequality

(2.6) becomes
n−2∑
i=1

ρi
n−2∑
i=1

1
ρi
≥
(
n−2∑
i=1

1
)2

,
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i.e.

(n− ρn−1)
(
n−1∑
i=1

1
ρi
− 1
ρn−1

)
≥ (n− 2)2,

wherefrom follows

(3.5) Kf ∗(G) ≥ 2m
(

1
ρn−1

+ (n− 2)2

n− ρn−1

)
,

with equality if and only if ρ1 = ρ2 = · · · = ρn−2.
For k1 = 2, k2 = 1, pi = ρi, ai = bi = 1

ρi
, i = 2, 3, . . . , n − 1, the inequality (2.6)

transforms into
n−1∑
i=2

ρi
n−1∑
i=2

1
ρi
≥
(
n−1∑
i=2

1
)2

,

i.e., (
n−1∑
i=1

ρi − ρ1

)(
n−1∑
i=1

1
ρi
− 1
ρ1

)
≥ (n− 2)2,

wherefrom follows

(3.6) Kf ∗(G) ≥ 2m
(

1
ρ1

+ (n− 2)2

n− ρ1

)
,

with equality if and only if ρ2 = ρ3 = · · · = ρn−1.
Consider the function

f(x) = 1
x

+ (n− 2)2

n− x
.

This is an increasing function for x ≥ n
n−1 , monotone decreasing for x ≤ n

n−1 and has
a minimum for x = n

n−1 . Then for any real s, such that ρ1 ≥ s ≥ n
n−1 , from (3.6)

follows
Kf ∗(G) ≥ 2mf(ρ1) ≥ 2mf(s) = 2m

(
1
s

+ (n− 2)2

n− s

)
.

Also, for any real s with the property n
n−1 ≥ s ≥ ρn−1, from (3.5) follows

Kf ∗(G) ≥ 2mf(ρn−1) ≥ 2mf(s) = 2m
(

1
s

+ (n− 2)2

n− s

)
.

Finally, from the last two inequalities we obtain (3.4). �

According to (3.5) and (3.6) we have the following corollary of Theorem 3.2.

Corollary 3.2. Let G be a simple connected graph with n, n ≥ 3, vertices and m
edges. Then

Kf ∗(G) ≥ 2mmax
{

1
ρ1

+ (n− 2)2

n− ρ1
,

1
ρn−1

+ (n− 2)2

n− ρn−1

}
,

with equality if and only if G ∼= Kn, or G ∼= Kr,n−r, 1 ≤ r ≤
⌊
n
2

⌋
.
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Remark 3.1. In [3] the following inequalities were proven

ρ1 ≥ P ≥ ∆ + 1
∆ ≥ n

n− 1 ≥ ρn−1.

Now, for s = n
n−1 from (3.4) the inequality (2.2) is obtained, for s = ∆+1

∆ we get (2.3),
and for s = P it follows (2.4).
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