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PROPERTIES OF (C, r)-HANKEL OPERATORS AND
(R, r)-HANKEL OPERATORS ON HILBERT SPACES

JYOTI BHOLA1 AND BHAWNA GUPTA2

Abstract. We introduce the operators which are generalizations of Hankel-type
operators, called the (C, r)-Hankel operator and (R, r)-Hankel operator on general
Hilbert spaces. Our main result is to obtain characterizations for a bounded operator
on general Hilbert spaces to be a (C, r)-Hankel operator (or (R, r)-Hankel operator).
We also discuss some algebraic properties like boundedness (for |r| ̸= 1) of these
operators and the relationship between them. Moreover, some characterizations for
the commutativity of these operators are explored.

1. Introduction

The notion of Hankel matrices made its first appearance in 1861 when Hankel began
the study of finite matrices with entries being a function of the sum of the coordinates
only [6], the Hilbert matrix being the most prominent example of the same [2]. Hankel,
Kronecker, Nehari and Hartman are the most celebrated names in this area for their
contribution towards the most classical results about Hankel operators. For a pivot
study on Hankel operators, one can refer [3, 5, 13].

Since inception, a lot of research has been done on this class of matrices, corre-
sponding operators and associated variants due to their high scores of applications in
the fields of perturbation theory, interpolation process, rational approximation, proba-
bility, moment problems, theory of systems and control etc. (refer [11–13]). The rapid
development of this domain has led to numerous generalizations both in terms of twists
in the operator form as well as the space of play. To adduce a few, Hankel operators,
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slant Hankel operators, essentially Hankel operators, λ-Hankel operators, weighted
Hankel operators, small Hankel operators, slant little-Hankel operators, essentially
slant-Hankel operators, kth-order slant Hankel operators etc. have been studied on
different spaces like Hardy spaces, Bergmann spaces, Fock spaces, weighted Fock
spaces, Harmonic Dirichlet spaces and so on [1, 3, 4, 8–10,14] and references therein.

Recently, Mirotin et al. introduced the idea of µ-Hankel operators on Hilbert spaces
in the following way and discussed this class on Hardy space in particular [10]: Let
µ be a complex number, α = (αn)n≥0 be a sequence of complex numbers, H and H ′

be separable Hilbert spaces. The operator Aµ,α : H → H ′ is called µ-Hankel operator
if for some orthonormal bases (ek)k≥0 ⊂ H and (e′

j)j≥0 ⊂ H ′, the matrix (ajk)k,j≥0 of
this operator consists of elements of the form ajk = µkαj+k. All these developments
motivated the authors to define two new classes of operators on general Hilbert spaces
that are closely related to Hankel operators in the sense that these classes result in
Hankel-type operators if alternate columns of one or alternate rows of the other are
deleted. Interesting results are established to derive the connection between these
classes, over and above the discussion of their algebraic properties. Characterizations
are obtained for which these operators commute. It is also proved that these classes
neither contain any Fredholm operator nor unitary operator.

We begin with the following preliminaries.
A bounded linear operator T on a Hilbert space H is said to be Hilbert-Schmidt

operator if the Hilbert-Schmidt norm ∥T∥2
HS = ∑

n ∥T (un)∥2 < + for an orthonormal
basis (un)n∈N0 of H, where ∥ · ∥ represents the norm of H. A bounded operator T on
H is said to be a Fredholm operator if Range of T is closed, dimension of kernel T
and dimension of kernel T ∗ are finite. In this case, index of T is defined as

index T = dim ker T − dim ker T ∗.

A bounded operator T on H is said to be isometry if T ∗T = IH , and unitary if T
is bijective and T ∗T = TT ∗ = IH , where IH denotes the identity operator on H.
Throughout the paper, we restrict the symbols H1 and H2 for any separable Hilbert
spaces. If H1 = H2, then it is denoted by H. We denote by (ui)i∈N0 and (vi)i∈N0 , the
orthonormal bases for H1 and H2, respectively. The symbols U1 and U2 denote the
right shift operators on H1 and H2, respectively and are defined as U1(ui) = ui+1 and
U2(vi) = vi+1 for all i ∈ N0. The symbols C, Z and N0 denote the set of all complex
numbers, integers and non-negative integers, respectively.

2. The (C, r)-Hankel Operator and (R, r)-Hankel Operator

We now introduce (C, r)-Hankel operators and (R, r)-Hankel operators on general
Hilbert spaces as under.

Definition 2.1. Let r be a non-zero complex number and (αn)n∈N0 be a sequence
of complex numbers. Then the operator (C, r)-Hankel operator, Cr,α from a Hilbert
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space H1 to Hilbert space H2 is defined as

Cr,α(ui) =
+∞∑
j=0

riαi+2jvj, for all i ∈ N0,

where (ui)i∈N0 and (vi)i∈N0 are orthonormal bases for H1 and H2, respectively.

For i, j ∈ N0, the (i, j)th-entry of the matrix representation of Cr,α with respect to
the orthonormal bases is Ci,j, where

Ci,j = ⟨Cr,α(uj), vi⟩ =
〈+∞∑

l=0
rjαj+2lvl, vi

〉
=

+∞∑
l=0

rjαj+2l⟨vl, vi⟩ = rjαj+2i,

and hence, the corresponding matrix is given as:

[Cr,α] =



α0 rα1 r2α2 r3α3 r4α4 · · ·
α2 rα3 r2α4 r3α5 r4α6 · · ·
α4 rα5 r2α6 r3α7 r4α8 · · ·
α6 rα7 r2α8 r3α9 r4α10 · · ·
α8 rα9 r2α10 r3α11 r4α12 · · ·
... ... ... ... ... . . .


.

Definition 2.2. Let r be a non-zero complex number and (αn)n∈N0 be a sequence
of complex numbers. Then the operator (R, r)-Hankel operator, Rr,α from a Hilbert
space H1 to Hilbert space H2 is defined as

Rr,α(ui) =
+∞∑
j=0

riα2i+jvj, for all i ∈ N0,

where (ui)i∈N0 and (vi)i∈N0 are orthonormal bases for H1 and H2, respectively.

Observe that for i, j ∈ N0, if Ri,j is the (i, j)th-entry of the matrix representation
of Rr,α with respect to the orthonormal bases, then

Ri,j = ⟨Rr,α(uj), vi⟩ = rjα2j+i,

and the corresponding matrix is given as:

[Rr,α] =



α0 rα2 r2α4 r3α6 r4α8 · · ·
α1 rα3 r2α5 r3α7 r4α9 · · ·
α2 rα4 r2α6 r3α8 r4α10 · · ·
α3 rα5 r2α7 r3α9 r4α11 · · ·
α4 rα6 r2α8 r3α10 r4α12 · · ·
... ... ... ... ... . . .


.

Note 2.1. (A) A (C, r)-Hankel operator becomes r2-Hankel operator if its alternate
columns are deleted and a (R, r)-Hankel operator becomes r-Hankel operator if its
alternate rows are deleted.
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(B) For every non-zero complex number r and complex sequence (αn)n∈N0 , the
(C, r)-Hankel operator, Cr,α and (R, r)-Hankel operator, Rr,α may not correspond to
bounded linear operators.

Example 2.1. Take r = 1 + i, αn = 1√
n+1 , for all n ∈ N0, and x = ∑+∞

n=0
1

(1+i)n un ∈ H.
Then,

∥x∥2 =
+∞∑
n=0

|xn|2 =
+∞∑
n=0

∣∣∣∣∣ 1
(1 + i)n

∣∣∣∣∣
2

is finite whereas

∥Cr,α(x)∥2 =
+∞∑
j=0

∣∣∣∣∣
+∞∑
n=0

1
(1 + i)n

rnαn+2j

∣∣∣∣∣
2

=
+∞∑
j=0

∣∣∣∣∣
+∞∑
n=0

1√
n + 2j + 1

∣∣∣∣∣
2

→ +∞

and

∥Rr,α(x)∥2 =
+∞∑
j=0

∣∣∣∣∣
+∞∑
n=0

1
(1 + i)n

rnα2n+j

∣∣∣∣∣
2

=
+∞∑
j=0

∣∣∣∣∣
+∞∑
n=0

1√
2n + j + 1

∣∣∣∣∣
2

→ +∞.

3. Boundedness of (C, r)-Hankel Operators and (R, r)-Hankel
Operators

In this section, we study conditions under which these operators become bounded.
Characterizations of these operators are also derived.

Theorem 3.1. Let r be a non-zero complex number such that |r| < 1 and (αn)n∈N0

be a complex sequence. Then the following hold.
(A) The operator Cr,α : H1 → H2 is bounded if and only if ∑n∈N0 |βn|2 < +∞

where

(3.1) βn =

αn, if n is even,

rαn, if n is odd.

(B) The operator Rr,α : H1 → H2 is bounded if and only if ∑+∞
n=0 |αn|2 < +∞.

Proof. (A) Let |r| < 1. If Cr,α is bounded, then there exists a positive constant
C such that ∥Cr,α(x)∥2 ≤ C∥x∥2 for every x ∈ H1. Take in particular x = u0, we
get ∑n∈N0 |α2n|2 = ∥Cr,α(u0)∥2 ≤ C∥u0∥2 = C. Again, taking x = u1, it follows
that |r|2∑n∈N0 |α2n+1|2 = ∥Cr,α(u1)∥2 ≤ C∥u1∥2 = C. Therefore, ∑n∈N0 |βn|2 =∑

n∈N0 |α2n|2 + |r|2∑n∈N0 |α2n+1|2 is finite.
Conversely, suppose that (3.1) holds. Consider

+∞∑
i=0

+∞∑
j=0

|Ci,j|2 =
+∞∑
n=0

|α2n|2
(
1 + |r2|2 + |r4|2 + · · · + |r2n|2

)
+

+∞∑
n=0

|α2n+1|2

×
(
|r|2 + |r3|2 + |r5|2 + · · · + |r2n+1|2

)
=

+∞∑
n=0

|α2n|2
(
1 + |r|4 + |r|8 + · · · + |r|4n

)
+

+∞∑
n=0

|α2n+1|2
(
|r|2 + |r|6
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+ |r|10 + · · · + |r|2(2n+1)
)

=
+∞∑
n=0

|α2n|2
(
1 + |r|4 + (|r|4)2 + · · · + (|r|4)n

)
+ |r|2

+∞∑
n=0

|α2n+1|2
(
1 + |r|4

+ (|r|4)2 + · · · + (|r|4)n
)

=
(+∞∑

n=0
|α2n|2 + |r|2

+∞∑
n=0

|α2n+1|2
)

(1 + |r|4 +
(
|r|4)2 + · · · + (|r|4)n

)

=
(+∞∑

n=0
|α2n|2 + |r|2

+∞∑
n=0

|α2n+1|2
)(

1 − |r|4n

1 − |r|4

)

≤
(

1
1 − |r|4

)(+∞∑
n=0

|α2n|2 + |r|2
+∞∑
n=0

|α2n+1|2
)

=
(

1
1 − |r|4

)(+∞∑
n=0

|βn|2
)

.

Using (3.1), it follows that ∑+∞
i=0

∑+∞
j=0 |Ci,j|2 < +∞. Therefore, the operator Cr,α is

Hilbert-Schmidt and hence bounded.
(B) Let |r| < 1 and Rr,α be bounded, then there exists a positive constant C such

that ∥Rr,α(x)∥2 ≤ C∥x∥2 for every x ∈ H1. Taking in particular x = u0, we get∑
n∈N0 |αn|2 = ∥Cr,α(u0)∥2 ≤ C∥u0∥2 = C.
Conversely, suppose that ∑+∞

n=0 |αn|2 < +∞. Consider

+∞∑
i=0

+∞∑
j=0

|Ri,j|2 =
+∞∑
n=0

|α2n|2
(
1 + |r|2 + |r2|2 + · · · + |rn|2

)
+

+∞∑
n=0

|α2n+1|2

×
(
1 + |r|2 + |r2|2 + · · · + |rn|2

)
=
(+∞∑

n=0
|α2n|2 +

+∞∑
n=0

|α2n+1|2
)(

1 + |r|2 + |r|4 + · · · + |r|2n
)

=
(+∞∑

n=0
|α2n|2 +

+∞∑
n=0

|α2n+1|2
)(

1 + |r|2 + (|r|2)2 + · · · + (|r|2)n
)

=
(+∞∑

n=0
|α2n|2 +

+∞∑
n=0

|α2n+1|2
)(

1 − |r|2n

1 − |r|2

)

≤
(

1
1 − |r|2

)(+∞∑
n=0

|α2n|2 +
+∞∑
n=0

|α2n+1|2
)

=
(

1
1 − |r|2

)(+∞∑
n=0

|αn|2
)

.

Using ∑+∞
n=0 |αn|2 < +∞, it follows that ∑+∞

i=0
∑+∞

j=0 |Ri,j|2 < +∞. Therefore, the
operator Rr,α is Hilbert-Schmidt and hence bounded. □
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The next theorem gives characterizations of bounded linear (C, r)-Hankel and (R, r)-
Hankel operators in terms of operator equations involving shift operator.

Theorem 3.2. Let U1 and U2 be the right shift operators on H1 and H2, respectively.
Let r be a non-zero complex number. Then the following hold.

(A) A bounded operator T : H1 → H2 is a (C, r)-Hankel operator for some complex
sequence (αn)n∈N0 if and only if TU2

1 = r2U∗
2 T .

(B) A bounded operator T : H1 → H2 is a (R, r)-Hankel operator for some complex
sequence (αn)n∈N0 if and only if TU2

1 = r2(U4
2 )∗T and Ti,1 = rTi+2,0 for all

i ∈ N0, where (Ti,j) represents matrix representation of T with respect to
orthonormal bases of H1 and H2, respectively.

Proof. (A) Suppose T : H1 → H2 is a (C, r)-Hankel operator for some complex
sequence (αn)n∈N0 . For each i, j ∈ N0,

⟨TU2
1 (ui), vj⟩ = ⟨T (ui+2), vj⟩ = ri+2αi+2+2j

and
⟨r2U∗

2 T (ui), vj⟩ = r2⟨T (ui), U2(vj)⟩ = r2⟨T (ui), vj+1⟩ = r2riαi+2+2j = ri+2αi+2+2j.

Using the boundedness of T , it follows that TU2
1 = r2U∗

2 T .
Conversely, let TU2

1 = r2U∗
2 T . We define a complex sequence (αn)n∈N0 as follows:

(3.2) αn =

⟨T (u0), vn/2⟩, if n is even,

(1/r)⟨T (u1), v(n−1)/2⟩, elsewhere.
Then, for all non-negative integers i, j such that i ≥ 2,

⟨T (ui), vj⟩ = ⟨TU2
1 (ui−2), vj⟩ = ⟨r2U∗

2 T (ui−2), vj⟩ = r2⟨T (ui−2), U2(vj)⟩
= r2⟨T (ui−2), vj+1⟩ = · · · = r4⟨T (ui−4), vj+2⟩ = · · · =

=

ri⟨T (u0), vj+i/2⟩, if i is even,
ri−1⟨T (u1), vj+(i−1)/2⟩, if i is odd,

=

riα2j+i, if i is even,
ri−1rα2j+i, if i is odd,

= riα2j+i.

Hence, T = Cr,α for the sequence (αn)n∈N0 defined in (3.2).
(B) Suppose T : H1 → H2 is a (R, r)-Hankel operator for some complex sequence

(αn)n∈N0 . Clearly, Ti,1 = rTi+2,0 for all i ∈ N0. Now, for each i, j ∈ N0,
⟨TU2

1 (ui), vj⟩ = ⟨T (ui+2), vj⟩ = ri+2α2i+4+j

and
⟨r2(U4

2 )∗T (ui), vj⟩ = r2⟨T (ui), U4
2 (vj)⟩ = r2⟨T (ui), vj+4⟩ = r2riα2i+j+4 = ri+2α2i+4+j.

Using the boundedness of T , it follows that TU2
1 = r2(U4

2 )∗T .
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Conversely, suppose that TU2
1 = r2(U4

2 )∗T and
(3.3) Ti,1 = rTi+2,0, for all i ∈ N0,

where (Ti,j) represents matrix representation of the operator T . For each n ∈ N0, let

(3.4) αn =


⟨T (u0), vn⟩, if n is even,
⟨T (u0), v1⟩, if n = 1,

(1/r)⟨T (u1), vn−2⟩, elsewhere.
Then (αn)n∈N0 is a sequence in the complex plane. Using (3.3) and (3.4), for all
non-negative integers i, j such that i ≥ 2, evaluating

⟨T (ui), vj⟩ = ⟨TU2
1 (ui−2), vj⟩ = ⟨r2(U4

2 )∗T (ui−2), vj⟩ = r2⟨T (ui−2), U4
2 (vj)⟩

= r2⟨T (ui−2), vj+4⟩ = · · · = r4⟨T (ui−4), vj+8⟩ = · · · =

=

ri⟨T (u0), vj+2i⟩, if i is even,

ri−1⟨T (u1), vj+2(i−1)⟩, if i is odd,

=


riαj+2i, if i, j both are even,

ri−1⟨T (u1), vj+2i−2)⟩, if i is even and j is odd,

ri−1rαj+2i, and i, j both are odd,
ri−1r⟨T (u0), vj+2i⟩, if i is odd and j is even,

= riαj+2i.

Hence, T = Rr,α for complex sequence (αn)n∈N0 . □

Proposition 3.1. Let r be a non-zero complex number and (αn)n∈N0 ⊂ C be a
sequence. Then the adjoint of bounded (C, r)-Hankel operator, Cr,α : H1 → H2 is the
(R, s)-Hankel operator, Rs,β from H2 to H1, where s = 1

r2 and βn = rnαn for each
n ∈ N0.

Proof. Let i, j ∈ N0. Evaluating
⟨C∗

r,α(vj), ui⟩ = ⟨vj, Cr,α(ui)⟩ = ⟨Cr,α(ui), vj⟩ = riαi+2j = riαi+2j

and
⟨Rs,β(vj), ui⟩ = sjβi+2j =

( 1
r2

)j

ri+2jαi+2j = riαi+2j.

Hence, C∗
r,α = Rs,β, where s = 1

r2 and βn = rnαn for each n ∈ N0. □

Theorem 3.3. Let U1 and U2 be the right shift operators on H1 and H2, respectively.
Let r be a non-zero complex number. Then a bounded operator T : H1 → H2 is a (R, r)-
Hankel operator for some complex sequence (αn)n∈N0 if and only if TU1 = r(U∗

2 )2T .

Proof. Suppose that T is a (R, r)-Hankel operator for some complex sequence (αn)n∈N0 .
Using Proposition 3.1, it follows that T = Rr,α = C∗

s,β, where Cs,β : H2 → H1

is (C, s)-Hankel operator, s =
(

1
r

) 1
2 and βn =

(
1

rn

) 1
2 αn for each n ∈ N0. Now,
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Theorem 3.2 gives Cs,βU2
2 = s2U∗

1 Cs,β. Taking adjoint on both sides, it follows that
(U∗

2 )2C∗
s,β = s2C∗

s,βU1. That is, TU1 = r(U∗
2 )2T .

Conversely, if an operator T is such that TU1 = r(U∗
2 )2T , then, by reversing the

steps above and by using Theorem 3.2 and Proposition 3.1, we can conclude that T
is a (R, r)-Hankel operator for some complex sequence (αn)n∈N0 . □

Corollary 3.1. The kernel of (R, r)-Hankel operator is an invariant subspace of shift
operator.

Proposition 3.2. For a non-zero complex number r ∈ C, if an operator T is a (C, r)-
Hankel operator as well as (R, r)-Hankel operator on H for some complex sequence
(αn)n∈N0, then U∗T is r-Toeplitz operator on H, where U is the right shift operator
on H.

Proof. Suppose that T is a (C, r)-Hankel operator as well as (R, r)-Hankel operator on
H for some complex sequence (αn)n∈N0 . Since T is (C, r)-Hankel operator, therefore,
by using Theorem 3.2, it follows that
(3.5) TU2 = r2U∗T.

Also, T is (R, r)-Hankel operator, therefore, Proposition 3.3 gives
(3.6) TU = r(U∗)2T.

Using (3.5) and (3.6), we obtain that
r2U∗T = TU2 = (TU)U = r(U∗)2TU = rU∗(U∗T )U.

This implies that U∗(U∗T )U = r(U∗T ) which means that U∗T is r-Toeplitz operator
[7] on H. □

In Theorem 3.1, boundedness conditions of these operators for the case |r| < 1 have
been discussed. We discuss boundedness of these operators for |r| > 1 in the next
result.

Theorem 3.4. Let r be a non-zero complex number such that |r| > 1 and (αn)n∈N0

be a complex sequence. Then the following hold.
(A) The operator Cr,α : H1 → H2 is bounded if and only if

+∞∑
n=0

|r|2n|αn|2 < +∞.

(B) Then the operator Rr,α : H1 → H2 is bounded if and only if
+∞∑
n=0

|γn|2 < +∞,

where

γn =


(

1
rn

) 1
2 αn, if n is even,(

1
rn+1

) 1
2 αn, if n is odd.
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Proof. Let |r| > 1 and (αn)n∈N0 be a complex sequence.
(A) Let s = 1

r2 and (βn)n∈N0 be a sequence, where βn = rnαn for each n ∈ N0.
The operator Cr,α is bounded if and only if C∗

r,α is bounded. Using Proposition 3.1, it
follows that the operator C∗

r,α is bounded if and only if Rs,β is bounded. Since |s| < 1,
therefore, using Theorem 3.1 (B), it is concluded that Rs,β is bounded if and only if∑+∞

n=0 |βn|2 < +∞, that is, ∑+∞
n=0 |r|2n|αn|2 < +∞.

(B) Let s =
(

1
r

) 1
2 and βn =

(
1

rn

) 1
2 αn for each n ∈ N0. Since |r| > 1, so |s| < 1.

The operator Rr,α is bounded if and only if R∗
r,α is bounded. Using Proposition 3.1,

it follows that the operator R∗
r,α is bounded if and only if Cs,β is bounded. Since

|s| < 1, therefore, using Theorem 3.1 (A), it gives Cs,β is bounded if and only if∑+∞
n=0 |γn|2 < +∞, where

γn =

βn, if n is even,

sβn, if n is odd.

That is,

γn =


(

1
rn

) 1
2 αn, if n is even,(

1
rn+1

) 1
2 αn, if n is odd.

□

For r ∈ C\{0}, let Cr(H1, H2) and Rr(H1, H2) denote the classes of all bounded
(C, r)-Hankel operators and (R, r)-Hankel operators, respectively defined from H1 to
H2. They are denoted by Cr(H) and Rr(H) if H1 = H2. It can easily be seen that
the classes Cr(H1, H2) and Rr(H1, H2) are weakly closed and hence strongly closed,
vector subspaces of the space B(H1, H2), where B(H1, H2) is the class of all bounded
linear operators from H1 to H2.

Proposition 3.3. Let r ∈ C\{0}. Then there does not exist any Fredholm operator
in the classes Cr(H1, H2) and Rr(H1, H2).

Proof. Suppose that there exist a Fredholm (C, r)-Hankel operator, Cr,α in Cr(H1, H2)
for some complex sequence (αn)n∈N0 , whose index is n. Using Theorem 3.2 (A), it
follows that Cr,αU2

1 = r2U∗
2 Cr,α, where U1 and U2 are right shift operators on H1

and H2, respectively. Since Cr,α is Fredholm of index n, this implies that Cr,αU2
1 is

Fredholm of index n − 2. On the other hand, r2U∗
2 Cr,α is Fredholm of index n + 1.

This means that n − 2 = n + 1 which is a contradiction. Hence, there does not exist
any Fredholm operator in the class Cr(H1, H2).

Similarly, using Theorem 3.2 (B), one can obtain that there does not exist any
Fredholm operator in the class Rr(H1, H2). □

4. Commutativity of (C, r)-Hankel Operators and (R, r)-Hankel
Operators

This section is devoted to explore the characterizations for commutativity of oper-
ators in Cr(H) and Rr(H).
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Theorem 4.1. Let r and s be non-zero complex numbers and (αn)n∈N0 and (βn)n∈N0

be two complex sequences. Then the following hold.
(A) The bounded operators Cr,α and Cs,β on Hilbert space H commute if and only

if
+∞∑
j=0

siβi+2jr
jαj+2k =

+∞∑
j=0

riαi+2js
jβj+2k,

for all i, k ∈ N0, provided the series converge.
(B) The bounded operators Cr,α and Rs,β on H commute if and only if

+∞∑
j=0

siβ2i+jr
jαj+2k =

+∞∑
j=0

riαi+2js
jβ2j+k,

for all i, k ∈ N0, provided the series converge.

Proof. (A) For each i ∈ N0, consider

Cr,αCs,β(ui) = Cr,α

+∞∑
j=0

siβi+2juj

 =
+∞∑

j=0
siβi+2jCr,α(uj)


=
+∞∑

j=0
siβi+2j

(+∞∑
k=0

rjαj+2kuk

)
=
+∞∑

k=0

+∞∑
j=0

siβi+2jr
jαj+2k

uk

 .(4.1)

Similarly, we obtain that

(4.2) Cs,βCr,α(ui) =
+∞∑

k=0

+∞∑
j=0

riαi+2js
jβj+2k

uk

 .

Since (ui)i∈N0 is an orthonormal basis for H, therefore, using (4.1) and (4.2), it follows
that the bounded operators Cr,α and Cs,β commute if and only if

+∞∑
j=0

siβi+2jr
jαj+2k =

+∞∑
j=0

riαi+2js
jβj+2k,

for all i, k ∈ N0.
(B) For each i ∈ N0, evaluate

Cr,αRs,β(ui) = Cr,α

+∞∑
j=0

siβ2i+juj

 =
+∞∑

j=0
siβ2i+jCr,α(uj)


=
+∞∑

j=0
siβ2i+j

(+∞∑
k=0

rjαj+2kuk

)
=
+∞∑

k=0

+∞∑
j=0

siβ2i+jr
jαj+2k

uk

 .(4.3)
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Similarly, it is obtained that

(4.4) Rs,βCr,α(ui) =
+∞∑

k=0

+∞∑
j=0

riαi+2js
jβ2j+k

uk

 .

Using (4.3) and (4.4), it follows that the bounded operators Cr,α and Rs,β commute
if and only if

+∞∑
j=0

siβ2i+jr
jαj+2k =

+∞∑
j=0

riαi+2js
jβ2j+k,

for all i, k ∈ N0. □

The following example demonstrates commuting operators in Cr(H).

Example 4.1. If r = s = i
2 , α(n) = ( i

2)n and β(n) = in

2n+1 for all n ∈ N0, then one can
easily see that the operators Cr,α and Cs,β are bounded (using Theorem 3.1) and they
satisfy the following expression:

+∞∑
j=0

siβi+2jr
jαj+2k =

+∞∑
j=0

riαi+2js
jβj+2k,

for all i, k ∈ N0. Hence, the operators Cr,α and Cs,β commute on H.

Let C0,0 denote the set of all complex sequences whose only finitely many terms are
non-zero.

Theorem 4.2. Let r, s ∈ C\{0} and α, β ∈ C0,0 be non-zero sequences, where α =
(αj)j∈N0 and β = (βj)j∈N0. Let n and m be the largest non-negative integers such that

αn ̸= 0 and βm ̸= 0.

Then the operators Rr,α and Rs,β on Hilbert space H commute if and only if n = m,
r = s and there exists λ ∈ C such that βj = λαj for all j ∈ N0.

Proof. Let the operators Rr,α and Rs,β commute. That is,
(4.5) Rr,αRs,β(x) = Rs,βRr,α(x),
for all x ∈ H. Two cases arise.

Case 1. If n = m. Let n = 2p + r1 where p ∈ N0 and r1 = 0 or 1. In particular,
take x = up in (4.5), we have
(4.6) Rr,αRs,β(up) = Rs,βRr,α(up).

Subcase 1. If r1 = 0. Consider

Rr,αRs,β(up) = Rr,α

+∞∑
j=0

spβ2p+juj

 = spβ2pRr,α(u0) = spβ2p

+∞∑
j=0

αjuj


= spβ2p

 n∑
j=0

αjuj

 =
n∑

j=0
(spβ2pαj)uj.(4.7)
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Similarly, we can obtain that

(4.8) Rs,βRr,α(up) =
n∑

j=0
(rpα2pβj)uj.

Since (uj)j∈N0 is an orthonormal basis of H, therefore, using (4.6), (4.7) and (4.8), we
get spβ2pαj = rpα2pβj for all 0 ≤ j ≤ n. Let λ = βn

αn
. This implies that rp = sp and

βj = λαj for all 0 ≤ j ≤ n.
Subcase 2. If r1 = 1. Consider

Rr,αRs,β(up) = Rr,α

+∞∑
j=0

spβ2p+juj

 = Rr,α

 1∑
j=0

spβ2p+juj


= spβ2p

+∞∑
j=0

αjuj

+ spβ2p+1

+∞∑
j=0

rα2+juj


= spβ2p

 n∑
j=0

αjuj

+ spβ2p+1

n−2∑
j=0

rα2+juj


=
n−2∑

j=0
sp (β2pαj + β2p+1rα2+j) uj

+ spβ2pαn−1un−1 + spβ2pαnun.(4.9)

Similarly, we can obtain that

(4.10) Rs,βRr,α(up) =
n−2∑

j=0
rp (α2pβj + α2p+1sβ2+j) uj

+rpα2pβn−1un−1+rpα2pβnun.

Again using the fact that the set (uj)j∈N0 is an orthonormal basis of H, therefore,
using (4.6), (4.9) and (4.10), we get spβ2pαn = rpα2pβn, spβ2pαn−1 = rpα2pβn−1 and
sp (β2pαj + β2p+1rα2+j) = rp (α2pβj + α2p+1sβ2+j) for each 0 ≤ j ≤ n − 2. Let λ = βn

αn
.

On solving successively, it follows that sp = rp and βj = λαj for all 0 ≤ j ≤ n.
Using (4.5) at x = u1, together with sp = rp and βj = βn

αn
αj for all 0 ≤ j ≤ n, one

can obtain s = r in both the subcases.
Case 2. If n ̸= m. Without loss of generality, we can assume that n > m. Let

n = 2p + r1 and m = 2q + r2, where p, q ∈ N0 and r1, r2 ∈ {0, 1}. In this case, we
claim that the operators Rr,α and Rs,β do not commute. Assume on the contrary that
Rr,α and Rs,β commute.

Subcase 1. If m = 0. Using (4.5), we get Rr,αRs,β(u0) = Rs,βRr,α(u0) which
gives β0

(∑n
j=0 αjuj

)
= β0α0u0. On comparing the coefficients of un, it follows that

β0αn = 0, which is not possible as β0 ̸= 0 and αn ̸= 0.
Subcase 2. If m = 1. Again using (4.5) for x = u0, we get β0

(∑n
j=0 αjuj

)
+

β1
(∑n−2

j=0 rαj+2uj

)
= ∑1

j=0 α0βjuj. On comparing the coefficients of un and un−2, we
get β0αn = 0 and β0αn−2 + β1rαn = 0, which is not possible as β1 ̸= 0 and αn ̸= 0.
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Subcase 3. If m = 2q. Take x = uq in (4.5), we get

sqβ2q

n∑
j=0

αjuj =
min(n−m,q)∑

j=0

m−2j∑
k=0

rqsjαm+jβ2j+kuk.

On comparing the coefficients of un, it follows that sqβ2qαn = 0. It follows that αn = 0,
which is not true.

Subcase 4. If m = 2q + 1. Take x = uq in (4.5), we get sqβ2q
∑n

j=0 αjuj +
sqβ2q+1

∑n−2
j=0 αj+2uj = ∑min(n−2q,q)

j=0
∑m−2j

k=0 rqsjα2q+jβ2j+kuk. On comparing the coef-
ficients of un, it follows that sqβ2qαn = 0. It follows that αn = 0, which is not
true.

Hence, from all the subcases, it follows that the operators Rr,α and Rs,β can not
commute. □

As a consequence of this result and by using Proposition 3.1, we get the following
result.

Corollary 4.1. Let r, s ∈ C\{0} and α, β ∈ C0,0 be non-zero sequences, where
α = (αj)j∈N0 and β = (βj)j∈N0. Let n and m be the largest non-negative integers such
that

αn ̸= 0 and βm ̸= 0.

Then the operators Cr,α and Cs,β on Hilbert space H commute if and only if n = m,
r2 = s2 and there exists λ ∈ C such that sjβj = λrjαj for all j ∈ N0.

Now, we show that the class Cr(H) and hence, Rr(H) does not contain any unitary
operator.

Proposition 4.1. The class Cr(H) does not contain any unitary operator for any
non-zero r ∈ C.

Proof. Suppose there exists unitary operator Cr,α in Cr(H) for some complex sequence
(αn)n∈N0 . This implies that

(4.11) ∥Cr,α(x)∥2 = ∥x∥2 = ∥C∗
r,α(x)∥2,

for all x ∈ H.
Case 1. If |r| < 1. For x = u0 in (4.11), we get

(4.12)
+∞∑
j=0

|α2j|2 = 1.

Now take x = u2 in (4.11), we get

(4.13)
+∞∑
j=0

|r|4|α2j+2|2 = 1.

On solving (4.12) and (4.13), we obtain that |α0|2 = 1 − 1
|r|4 < 0, a contradiction.
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Case 2. If |r| > 1. Using Proposition 3.1, it follows that C∗
r,α = Rs,β, where s = 1

r2

and βn = rnαn for each n ∈ N0. For x = u0 in (4.11), we get

(4.14)
+∞∑
j=0

|βj|2 = 1.

Now take x = u1 in (4.11), we get

(4.15)
+∞∑
j=0

|s|2|βj+2|2 = 1.

On solving (4.14) and (4.15), it follows that |β0|2+|β1|2 = 1− 1
|s|2 < 0 (a contradiction),

since |r| > 1 implies |s| < 1.
Case 3. If |r| = 1. For each i ∈ N0, take x = ui in (4.11), we get ∑+∞

j=0 |α2j|2 =
1,
∑+∞

j=0 |r|2|α2j+1|2 = 1,
∑+∞

j=0 |r|4|α2j+2|2 = 1, . . . On solving these equations, we get
αi = 0 for all i ∈ N0, a contradiction.

Hence, there does not exist any unitary operator in the class Cr(H) for any non-zero
complex number r. □

As a consequence of this result, we get the following result.

Corollary 4.2. Let r be a non-zero complex number, then the following hold.
(A) If |r| < 1, then the class Cr(H) does not contain any isometry.
(B) If |r| > 1, then the class Rr(H) does not contain any isometry.
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