SOME INEQUALITIES FOR THE POLAR DERIVATIVE OF A POLYNOMIAL

M. H. GULZAR1, B. A. ZARGAR1, AND RUBIA AKHTER1

Abstract. Let $P(z)$ be a polynomial of degree n which has no zeros in $|z| < 1$, then it was proved by Liman, Mohapatra and Shah \cite{11} that

$$
\left| zD_\alpha P(z) + n\beta \left(\frac{|\alpha| - 1}{2} \right) P(z) \right|
\leq \frac{n}{2} \left\{ |\alpha + \beta \left(\frac{|\alpha| - 1}{2} \right)| + |z + \beta \left(\frac{|\alpha| - 1}{2} \right)| \right\} \max_{|z|=1} |P(z)|
- \frac{n}{2} \left\{ |\alpha + \beta \left(\frac{|\alpha| - 1}{2} \right)| - |z + \beta \left(\frac{|\alpha| - 1}{2} \right)| \right\} \min_{|z|=1} |P(z)|,
$$

for any β with $|\beta| \leq 1$ and $|z| = 1$. In this paper we generalize the above inequality and our result also generalizes certain well known polynomial inequalities.

1. Introduction

Let \mathcal{P}_n denote the class of all complex polynomials of degree at most n. If $P \in \mathcal{P}_n$, then according to Bernstein theorem \cite{5}, we have

$$
\max_{|z|=1} |P'(z)| \leq n \max_{|z|=1} |P(z)|.
$$

Bernstein proved it in 1912. Later, in 1930 he \cite{6} revisited his inequality and proved the following result from which inequality (1.1) can be deduced for $Q(z) = Mz^n$, where $M = \max_{|z|=1} |P(z)|$.

Key words and phrases. Polynomial, Bernstein inequality, polar derivative.

2010 Mathematics Subject Classification. Primary: 30A10, 30C15, 30D15.

DOI

Received: March 17, 2020.

Accepted: September 28, 2020.
Theorem 1.1. Let $P(z)$ and $Q(z)$ be two polynomials with degree of $P(z)$ not exceeding that of $Q(z)$. If $P(z)$ has all its zeros in $|z| \leq 1$ and

$$|P(z)| \leq |Q(z)|, \quad \text{for } |z| = 1,$$

then

$$|P'(z)| \leq |Q'(z)|, \quad \text{for } |z| = 1 \quad (1.2)$$

More generally, it was proved by Malik and Vong [12] that for any β with $|\beta| \leq 1$, inequality (1.2) can be replaced by

$$\left| z P'(z) + \frac{n \beta}{2} P(z) \right| \leq |z Q'(z) + \frac{n \beta}{2} Q(z)|, \quad \text{for } |z| = 1. \quad (1.3)$$

By restricting the zeros of a polynomial, the maximum value may be smaller. Indeed, if $P \in \mathcal{P}_n$ has no zero inside the unit circle $|z| < 1$, then inequality (1.1) can be replaced by

$$\max_{|z|=1} |P'(z)| \leq \frac{n}{2} \max_{|z|=1} |P(z)|. \quad (1.4)$$

Inequality (1.4) was conjectured by Erdős and later proved verified by Lax [10]. This result was further improved by Aziz and Dawood [2] who, under the same hypothesis, proved that

$$\max_{|z|=1} |P'(z)| \leq \frac{n}{2} \left\{ \max_{|z|=1} |P(z)| - \min_{|z|=1} |P(z)| \right\}. \quad (1.5)$$

Jain [8] generalized the inequality (1.4) and proved that if $P \in \mathcal{P}_n$ and $P(z) \neq 0$ in $|z| < 1$, then for every real or complex number β with $|\beta| \leq 1$, $|z| = 1$,

$$\left| z P'(z) + \frac{n \beta}{2} P(z) \right| \leq \frac{n}{2} \left\{ \max_{|z|=1} |P(z)| - \min_{|z|=1} |P(z)| \right\} \left(1 + \frac{\beta}{2} - \frac{1}{2} \right)^2 \max_{|z|=1} |P(z)|. \quad (1.6)$$

As a refinement of (1.5), Deewan and Hans [7] proved the following.

Theorem 1.2. If $P \in \mathcal{P}_n$ and $P(z) \neq 0$ in $|z| < 1$, then for every real or complex number β with $|\beta| \leq 1$

$$\left| z P'(z) + \frac{n \beta}{2} P(z) \right| \leq \frac{n}{2} \left\{ \max_{|z|=1} |P(z)| - \min_{|z|=1} |P(z)| \right\} \left(1 + \frac{\beta}{2} - \frac{1}{2} \right)^2 \max_{|z|=1} |P(z)|. \quad (1.6)$$

Let $D_\alpha P(z)$ be an operator that carries n^{th} degree polynomial $P(z)$ to the polynomial

$$D_\alpha P(z) = nP(z) + (\alpha - z)P'(z), \quad \alpha \in \mathbb{C},$$

of degree at most $(n - 1)$. $D_\alpha P(z)$ generalizes the ordinary derivative $P'(z)$ in the sense that

$$\lim_{\alpha \to \infty} \frac{D_\alpha P(z)}{\alpha} = P'(z).$$
Aziz was among the first to extend these results to polar derivatives. It is proved by Aziz [1] that for $P \in \mathcal{P}_n$ having no zeros in $|z| < 1$ and $|\alpha| \geq 1$,
\[|D_{\alpha}P(z)| \leq \frac{n}{2}(|\alpha z^{n-1}| + 1) \max_{|z|=1} |P(z)|, \quad \text{for } |z| \geq 1. \]

As an extension of (1.1) for the polar derivative Aziz and Shah [4] proved the following.

Theorem 1.4. If $P(z)$ is a polynomial of degree n, then for every $\alpha \in \mathbb{C}$ with $|\alpha| \geq 1$
\[|D_{\alpha}P(z)| \leq n|\alpha z^{n-1}| \max_{|z|=1} |P(z)|, \quad \text{for } |z| \geq 1. \]

Liman et al. [11] extended (1.3) to the polar derivative and proved the following result.

Theorem 1.4. Let $Q(z)$ be a polynomial of degree n having all its zeros $|z| \leq 1$ and $P(z)$ be a polynomial of degree at most n. If $|P(z)| \leq |Q(z)|$ for $|z| = 1$, then for all $\alpha, \beta \in \mathbb{C}$ with $|\alpha| \geq 1$, $|\beta| \leq 1$,
\[|zD_{\alpha}P(z) + n\beta \left(\frac{|\alpha| - 1}{2}\right) P(z)| \leq |zD_{\alpha}Q(z) + n\beta \left(\frac{|\alpha| - 1}{2}\right) Q(z)|, \quad \text{for } |z| \geq 1. \]

2. **Main Result**

In this paper, we first prove the following result which is generalization of Theorem 1.4 and also obtain some compact generalization for polar derivative.

Theorem 2.1. Let $Q(z)$ be a polynomial of degree n having all its zeros $|z| \leq k$, $k \geq 1$ and $P(z)$ be a polynomial of degree at most n. If $|P(z)| \leq |Q(z)|$ for $|z| = k$, then for all $\alpha, \beta \in \mathbb{C}$ with $|\alpha| \geq k$, $|\beta| \leq 1$,
\[|zD_{\alpha}P(z) + n\beta \left(\frac{|\alpha| - k}{1 + k^n}\right) P(z)| \leq |zD_{\alpha}Q(z) + n\beta \left(\frac{|\alpha| - k}{1 + k^n}\right) Q(z)|, \quad \text{for } |z| \geq k. \]

Remark 2.1. For $k = 1$, Theorem 2.1 reduces to the Theorem 1.4.

Dividing both sides of (2.1) by $|\alpha|$ and letting $|\alpha| \to \infty$ we get following generalization of (1.3).

Corollary 2.1. Let $Q(z)$ be a polynomial of degree n having all its zeros $|z| \leq k$, $k \geq 1$ and $P(z)$ be a polynomial of degree at most n. If $|P(z)| \leq |Q(z)|$ for $|z| = k$, then $\beta \in \mathbb{C}$ with $|\beta| \leq 1$
\[|z'P(z) + \frac{n\beta}{1 + k^n} P(z)| \leq |z'Q(z) + \frac{n\beta}{1 + k^n} Q(z)|, \quad \text{for } |z| \geq k. \]

By applying Theorem 2.1 to the polynomials $P(z)$ and $Q(z) = M(z/k^n)$, where $M = \max_{|z|=k} |P(z)|$, we get the following result.
Corollary 2.2. If \(P(z) \) is a polynomial of degree \(n \), then for any \(\alpha, \beta \), with \(|\alpha| \geq k, |\beta| \leq 1 \) and \(|z| \geq k \)

\[
|zD_\alpha P(z) + n\beta \left(\frac{|\alpha| - k}{1 + k^n} \right) P(z)| \leq n\frac{|z|^n}{k^n} \left| \alpha + \beta \left(\frac{|\alpha| - k}{1 + k^n} \right) \right| M.
\]

By applying Theorem 2.1 to the polynomials \(P(z) \) and \(Q(z) = m \frac{z^n}{k^n} \), where \(m = \min_{|z|=k} |P(z)| \), we get the following result.

Corollary 2.3. If \(P(z) \) is a polynomial of degree \(n \) having all its zeros in \(|z| \leq k \), \(k \geq 1 \), then for any \(\alpha, \beta \) with \(|\alpha| \geq k, |\beta| \leq 1 \) and \(|z| \geq k \)

\[
|zD_\alpha P(z) + n\beta \left(\frac{|\alpha| - k}{1 + k^n} \right) P(z)| \geq n\frac{|z|^n}{k^n} \left| \alpha + \beta \left(\frac{|\alpha| - k}{1 + k^n} \right) \right| m.
\]

Theorem 2.2. Let \(Q(z) \) be a polynomial of degree \(n \) having all its zeros \(|z| \leq k \), \(k \geq 1 \) and \(P(z) \) be a polynomial of degree at most \(n \). If \(|P(z)| \leq |Q(z)| \) for \(|z| = k \), then for all \(\alpha \in \mathbb{C} \) with \(|\alpha| \geq k \)

\[
|zD_\alpha P(z)| + n \left(\frac{|\alpha| - k}{1 + k^n} \right) |Q(z)| \leq |zD_\alpha Q(z)| + n \left(\frac{|\alpha| - k}{1 + k^n} \right) |P(z)|.
\]

Dividing both sides of (2.2) by \(\alpha \) and letting \(|\alpha| \rightarrow \infty \), we get the following result.

Corollary 2.4. Let \(Q(z) \) be a polynomial of degree \(n \) having all its zeros \(|z| \leq k \), \(k \geq 1 \) and \(P(z) \) be a polynomial of degree at most \(n \). If \(|P(z)| \leq |Q(z)| \) for \(|z| = k \), then for \(|z| = 1 \)

\[
\left| \frac{P'(z)}{n} \right| + \left| \frac{Q(z)}{1 + k^n} \right| \leq \left| \frac{Q'(z)}{n} \right| + \left| \frac{P(z)}{1 + k^n} \right|.
\]

Theorem 2.3. If \(P(z) \) is a polynomial of degree \(n \) which does not vanish in \(|z| < k \), \(k \geq 1 \) then for all \(\alpha, \beta \in \mathbb{C} \) with \(|\alpha| \geq k, |\beta| \leq 1 \) and for \(|z| \geq k \)

\[
|zD_\alpha P(z) + n\beta \left(\frac{|\alpha| - k}{1 + k^n} \right) P(z)| \leq \frac{n}{2} \left\{ \left| z^n \right| \alpha + \beta \left(\frac{|\alpha| - k}{1 + k^n} \right) + k^n \right| z + \beta \left(\frac{|\alpha| - k}{1 + k^n} \right) \} \max_{|z|=1} |P(z)|
\]

\[
- \frac{n}{2} \left\{ \left| z^n \right| \alpha + \beta \left(\frac{|\alpha| - k}{1 + k^n} \right) - \left| z + \beta \left(\frac{|\alpha| - k}{1 + k^n} \right) \right| \right\} m,
\]

where \(m = \min_{|z|=k} |P(z)| \).

Dividing both sides of (2.3) by \(|\alpha| \) and letting \(|\alpha| \rightarrow \infty \), we get the following generalization of a result due to Dewan and Hans [7].
Corollary 2.5. If \(P(z) \) is a polynomial of degree \(n \) which does not vanish in \(|z| < k \), \(k \geq 1 \), then for all \(\beta \in \mathbb{C} \) with \(|\beta| \leq 1 \) and for \(|z| \geq k \)
\[
\left| zP(z) + \frac{n\beta}{1 + k^n} P(z) \right| \leq \frac{n}{2} \left\{ |z|^n \left| 1 + \frac{\beta}{1 + k^n} \right| + k^n \left| \frac{\beta}{1 + k^n} \right| \right\} \max_{|z|=1} |P(z)|
- \frac{n}{2} \left\{ \frac{|z|^n}{k^n} \left| 1 + \frac{\beta}{1 + k^n} \right| - \left| \frac{\beta}{1 + k^n} \right| \right\} m,
\]
where \(m = \min_{|z|=k} |P(z)|. \)

3. **Lemma**

For the proofs of these theorems we need the following lemmas. The first lemma which we need is due to Laguerre (see [9, page 38]).

Lemma 3.1. If all the zeros of an \(n \)th degree polynomial \(P(z) \) lie in a circular region \(C \) and \(w \) is any zero of \(D_\alpha P(z) \), then at most one of the points \(w \) and \(\alpha \) may lie outside \(C \).

Lemma 3.2. Let \(A \) and \(B \) be any two complex numbers, then the following holds.

(i) If \(|A| \geq |B| \) and \(B \neq 0 \), then \(A \neq vB \) for all complex numbers \(v \) with \(|v| < 1 \).

(ii) Conversely, if \(A \neq vB \) for all complex number \(v \) with \(|v| < 1 \), then \(|A| \geq |B| \).

Lemma 3.2 is due to Xin Li [13].

Lemma 3.3. If \(P(z) \) is a polynomial of degree \(n \), then for \(k \geq 1 \)
\[
\max_{|z|=k} |P(z)| \leq k^n \max_{|z|=1} |P(z)|.
\]

Lemma 3.3 is simple consequence of maximum modulus theorem.

Lemma 3.4. If the polynomial \(P(z) \) has all its zeros in \(|z| \leq k \), \(k \geq 1 \), then for every \(\alpha \in \mathbb{C} \) with \(|\alpha| \geq k \)
\[
n(|\alpha| - k)|P(z)| \leq (1 + k^n)|D_\alpha P(z)|.
\]

Lemma 3.4 is due to Aziz and Rather [3].

Lemma 3.5. If \(P(z) \) is a polynomial of degree \(n \), then for any \(\alpha \) with \(|\alpha| \geq k \), \(|\beta| \leq 1 \) and \(|z| = k \)
\[
\left| zD_\alpha P(z) + n\beta \left(\frac{|\alpha| - k}{1 + k^n} \right) P(z) \right| + \left| zD_\alpha q(z) + n\beta \left(\frac{|\alpha| - k}{1 + k^n} \right) q(z) \right|
\leq n \left\{ |z|^n \alpha + \beta \left(\frac{|\alpha| - k}{1 + k^n} \right) + k^n \beta \left(\frac{|\alpha| - k}{1 + k^n} \right) \right\} \max_{|z|=1} |P(z)|,
\]
where \(q(z) = \left(\frac{z}{k} \right)^n \frac{P(k^2)}{n}. \)
Proof. Let \(M = \max_{|z|=k} |P(z)| \). An application of Rouche’s Theorem shows that all the zeros of the polynomial \(G(z) = k^n P(z) + \lambda M z^n \) lie in \(|z| < k \), \(k \geq 1 \) for every \(\lambda \) with \(|\lambda| > 1 \). If \(H(z) = \left(\frac{1}{k} \right)^n \bar{G} \left(\frac{1}{k} \bar{z} \right) = k^n Q(z) + \bar{\lambda} M k^n \), then \(|G(z)| = |H(z)| \) for \(|z| = k \) and hence for any \(\gamma \) with \(|\gamma| < 1 \) the polynomial \(\gamma H(z) + G(z) \) has all its zeros in \(|z| < k \), \(k \geq 1 \). By applying Lemma 3.4, we have for any \(\alpha \) with \(|\alpha| \geq k \)

\[
(1 + k^n)z(\gamma D_\alpha H(z) + D_\alpha G(z)) \geq n(|\alpha| - k)|\gamma H(z) + G(z)|.
\]

Since \(\gamma H(z) + G(z) \neq 0 \) for \(|z| \geq k \), \(k \geq 1 \), so the right hand side is non zero. Thus, by using (i) of Lemma 3.2 we have for all \(\beta \) satisfying \(|\beta| < 1 \) and for \(|z| \geq k \)

\[
T(z) = \beta n(|\alpha| - k)\gamma H(z) + G(z) + (1 + k^n)z(\gamma D_\alpha H(z) + D_\alpha G(z)) \neq 0,
\]
or, equivalently, for \(|z| \geq k \)

\[
T(z) = \gamma (1 + k^n)zD_\alpha H(z) + n\beta(|\alpha| - k)H(z) + (1 + k^n)zD_\alpha G(z) + n\beta(|\alpha| - k)G(z) \neq 0.
\]

Using (ii) of Lemma 3.2 we have for \(|\gamma| < 1 \) and for \(|z| \geq k \)

\[
|zD_\alpha q(z) + n\beta \left(\frac{|\alpha| - k}{1 + k^n} \right) q(z)| - n|\lambda| |z + \beta \left(\frac{|\alpha| - k}{1 + k^n} \right)| M
\]

\[
|zD_\alpha P(z) + n\beta \left(\frac{|\alpha| - k}{1 + k^n} \right) P(z) + n\lambda z^n \left(\alpha + \beta \left(\frac{|\alpha| - k}{1 + k^n} \right) \right) M|.
\]

By Corollary 2.2, it is possible to choose the argument of \(\lambda \) such that

\[
|zD_\alpha P(z) + n\beta \left(\frac{|\alpha| - k}{1 + k^n} \right) P(z)| = n \frac{|z|^n}{k^n} \alpha + \beta \left(\frac{|\alpha| - k}{1 + k^n} \right) M.
\]

Using (3.3) in (3.2) and letting \(|\lambda| \to 1 \) we get for \(|\alpha| > k \) and \(|\beta| < 1 \)

\[
|zD_\alpha q(z) + n\beta \left(\frac{|\alpha| - k}{1 + k^n} \right) q(z)| - n |z + \beta \left(\frac{|\alpha| - k}{1 + k^n} \right)| M
\]

\[
\leq n \frac{|z|^n}{k^n} \alpha + \beta \left(\frac{|\alpha| - k}{1 + k^n} \right) M - |zD_\alpha P(z) + n\beta \left(\frac{|\alpha| - k}{1 + k^n} \right) P(z)|.
\]

That is

\[
|zD_\alpha P(z) + n\beta \left(\frac{|\alpha| - k}{1 + k^n} \right) P(z)| + |zD_\alpha q(z) + n\beta \left(\frac{|\alpha| - k}{1 + k^n} \right) q(z)|
\]

\[
\leq n \left\{ \frac{|z|^n}{k^n} \alpha + \beta \left(\frac{|\alpha| - k}{1 + k^n} \right) + |z + \beta \left(\frac{|\alpha| - k}{1 + k^n} \right)| \right\} M.
\]
Using Lemma 3.3 in (3.4) we get
\[|zD_\alpha P(z) + n\beta \left(\frac{1}{1+k^n} \right) P(z)| + |zD_\alpha q(z) + n\beta \left(\frac{1}{1+k^n} \right) q(z)| \leq n \left\{ |z|^n \right\} \alpha + \beta \left(\frac{1}{1+k^n} \right) + k^n \left| z + \beta \left(\frac{1}{1+k^n} \right) \right| \max_{|z|=1} |P(z)|.

That proves Lemma 3.5 completely. □

4. Proof of Theorems

Proof of Theorem 2.1. By Rouche’s Theorem, the polynomial \(\lambda P(z) - Q(z) \) has all its zeros in \(|z| \leq k, k \geq 1 \) for \(|\lambda| < 1 \). Therefore, for \(r > 1 \), all the zeros of \(\lambda P(rz) - Q(rz) \) lie in \(|z| \leq \frac{r}{k} < k \). By applying Lemma 3.4 to the polynomial \(\lambda P(rz) - Q(rz) \), we have for \(|z| = 1 \)
\[n(|\alpha| - k)|\lambda P(rz) - Q(rz)| \leq (1+k^n)|z(\lambda D_\alpha P(rz) - D_\alpha Q(rz))|. \]
As in the proof of Lemma 3.1, we have for \(|\beta| < 1 \) and for \(|z| \geq k \)
\[(1+k^n)z\{\lambda D_\alpha P(rz) - D_\alpha Q(rz)\} + n\beta(|\alpha| - k)\{\lambda P(rz) - Q(rz)\} \neq 0. \]
This implies for \(|z| \geq k \)
\[(1+k^n)|zD_\alpha Q(z)| \geq n(|\alpha| - k)|Q(z)|. \]

This gives for every \(\beta \) with \(|\beta| \leq 1 \)
\[(1+k^n)|zD_\alpha Q(z)| - n|\beta|(|\alpha| - k)|Q(z)| \geq 0. \]
Therefore, it is possible to choose the argument of \(\beta \) in the right hand side of Theorem 2.1 such that
\[(1+k^n)|zD_\alpha Q(z) - n|\beta|(|\alpha| - k)|Q(z)| = |zD_\alpha Q(z)| - n|\beta| \left(\frac{|\alpha| - k}{1+k^n} \right) |Q(z)|. \]
Using (4.2) in Theorem 2.1 and letting \(|\beta| \to 1 \), we get the desired result. □

Proof of Theorem 2.3. Let \(P(z) \) be a polynomial of degree \(n \) which does not vanish in \(|z| \leq k, k \geq 1 \). If \(q(z) = \left(\frac{z}{k} \right)^n P \left(\frac{k^2}{z^2} \right) \), then \(q(z) \) has all its zeros in \(|z| \leq k, k \geq 1 \)
and \(|P(z)| = |q(z)| \) for \(|z| = k \). Hence, by Theorem 2.1, we have for all \(\alpha, \beta \) satisfying \(|\alpha| \geq k, \ |\beta| \leq 1 \)

\[
(4.3)
\begin{align*}
|zD_\alpha P(z) + n\beta \left(\frac{|\alpha| - k}{1 + k^n} \right) P(z)| &\leq |zD_\alpha q(z) + n\beta \left(\frac{|\alpha| - k}{1 + k^n} \right) q(z)|, \quad \text{for } |z| \geq k.
\end{align*}
\]

Let \(m = \min_{|z|=k} |P(z)| \). If \(P(z) \) has a zero in \(|z| = k \), then \(m = 0 \) and result follows by combining Lemma 3.5 with (4.3). Therefore, we suppose that all the zeros of \(P(z) \) lie in \(|z| > k \) and so \(m > 0 \). We have \(|\gamma m| < |P(z)| \) on \(|z| = k \) for any \(\gamma \) with \(|\gamma| < 1 \). By Rouche’s Theorem the polynomial \(F(z) = P(z) + \gamma m \) has no zeros in \(|z| < k \).

Therefore, the polynomial \(G(z) = \left(\frac{z}{k} \right)^n F \left(\frac{k^n}{z} \right) = q(z) - \gamma m z^n \) will have all its zeros in \(|z| \leq k \). Also \(|F(z)| = |G(z)| \) for \(|z| = k \). On applying Theorem 2.1, we get for any \(\beta, \alpha \) with \(|\beta| \leq 1, |\alpha| \geq k \)

\[
|zD_\alpha F(z) + n\beta \left(\frac{|\alpha| - k}{1 + k^n} \right) F(z)| \leq |zD_\alpha G(z) + n\beta \left(\frac{|\alpha| - k}{1 + k^n} \right) G(z)|, \quad \text{for } |z| \geq k.
\]

Equivalently,

\[
(4.4)
\begin{align*}
|zD_\alpha P(z) + n\beta \left(\frac{|\alpha| - k}{1 + k^n} \right) P(z)| - n|\gamma| |z + \beta \left(\frac{|\alpha| - k}{1 + k^n} \right) m| &\leq |zD_\alpha q(z) + n\beta \left(\frac{|\alpha| - k}{1 + k^n} \right) q(z) - n\gamma \frac{z^n}{k^n} \left(\alpha + \left(\frac{|\alpha| - k}{1 + k^n} \right) m \right)|.
\end{align*}
\]

Since \(q(z) \) has all its zeros in \(|z| \leq k \) and \(\min_{|z|=k} |p(z)| = \min_{|z|=k} |q(z)| = m \), therefore, by Corollary 2.3, we have

\[
(4.5)
\begin{align*}
|zD_\alpha q(z) + n\beta \left(\frac{|\alpha| - k}{1 + k^n} \right) q(z)| &\geq n \left| \frac{z^n}{k^n} \right| + \beta \left(\frac{|\alpha| - k}{1 + k^n} \right) m.
\end{align*}
\]

Therefore, we can write (4.4) in view of (4.5) as

\[
(4.6)
\begin{align*}
|zD_\alpha P(z) + n\beta \left(\frac{|\alpha| - k}{1 + k^n} \right) P(z)| - n |z + \beta \left(\frac{|\alpha| - k}{1 + k^n} \right) m| &\leq |zD_\alpha q(z) + n\beta \left(\frac{|\alpha| - k}{1 + k^n} \right) q(z) - n \left| \frac{z^n}{k^n} \right| + \beta \left(\frac{|\alpha| - k}{1 + k^n} \right) m|.
\end{align*}
\]

Letting \(|\gamma| \to 1 \), we get from inequality (4.6)

\[
(4.7)
\begin{align*}
|zD_\alpha P(z) + n\beta \left(\frac{|\alpha| - k}{1 + k^n} \right) P(z)| - |zD_\alpha q(z) + n\beta \left(\frac{|\alpha| - k}{1 + k^n} \right) q(z)| &\leq - n \left| \frac{z^n}{k^n} \right| + \beta \left(\frac{|\alpha| - k}{1 + k^n} \right) - |z + \beta \left(\frac{|\alpha| - k}{1 + k^n} \right) m|.
\end{align*}
\]
Now, by Lemma 3.5, we have
\[
\left|zD_\alpha P(z) + n\beta \left(\frac{\vert \alpha \vert - k}{1 + k^n}\right) P(z)\right| + \left|zD_\alpha q(z) + \beta \left(\frac{\vert \alpha \vert - k}{1 + k^n}\right) q(z)\right| \\
\leq n \left\{ \left|z\right|^n \alpha + \beta \left(\frac{\vert \alpha \vert - k}{1 + k^n}\right) \left|z + \beta \left(\frac{\vert \alpha \vert - k}{1 + k^n}\right)\right| \right\} \max_{\left|z\right|=1} |P(z)|.
\]
Inequalities (4.7) and (4.8) together lead to
\[
\left|zD_\alpha P(z) + n\beta \left(\frac{\vert \alpha \vert - k}{1 + k^n}\right) P(z)\right| \\
\leq \frac{n}{2} \left\{ \left|z\right|^n \alpha + \beta \left(\frac{\vert \alpha \vert - k}{1 + k^n}\right) \left|z + \beta \left(\frac{\vert \alpha \vert - k}{1 + k^n}\right)\right| \right\} \max_{\left|z\right|=1} |P(z)| \\
- \frac{n}{2} \left\{ \left|z\right|^n \alpha + \beta \left(\frac{\vert \alpha \vert - k}{1 + k^n}\right) \left|z + \beta \left(\frac{\vert \alpha \vert - k}{1 + k^n}\right)\right| \right\} m.
\]
That proves Theorem 2.3 completely.

Acknowledgements. The research of second and third author is financially supported by NBHM, Government of India, under the research project 02011/36/2017/R&D-II. The authors are highly grateful to the anonymous referee for the valuable suggestions regarding the paper.

References

1Department of Mathematics, University of Kashmir, Hazratbal Srinagar-190006, J&K, India

Email address: gulzarmh@gmail.com

Email address: bazargar@gmail.com

Email address: rubiaakhter039@gmail.com