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SOME REMARKS ON VARIOUS SCHUR CONVEXITY
FARZANEH GORJIZADEH! AND NOHA EFTEKHARI!

ABSTRACT. The aim of this work is to investigate the Schur convexity, Schur ge-
ometrically convexity, Schur harmonically convexity and Schur power convexity of
some special functions. Some sufficient conditions are obtained to guarantee the
above-mentioned properties satisfy. We attain some special inequalities. Also, we
obtain some applications of main results.

1. INTRODUCTION

Throughout this work, we denote R} = {(x1,...,2,): z; >0, i=1,2,...,n}. For
the convenience of the readers, we recall the relevant material.

Definition 1.1 ([5]). Let n > 2 and z,y € R", where x = (z1,...,2,) and y =
(Y1, ---,Yn). We say that x is majorized by y and denoted by z < y, if

k k
=1 =1

; ) = ; Yils

where x> zg) > -+ = T} and yp) = Yz = -+ = Y[u) are rearrangements of x and
y in decreasing order.

Let £ C R"™ be a set with nonempty interior. We say ¢ : E — R is Schur convex if
x <y implies p(x) < ¢(y) and ¢ is said to be Schur concave if —¢ is Schur convex.

A function f : R" — R is called a symmetric function, if f(Pz) = f(z) for any
xr € R™ and any n x n permutation matrix P. A set £ C R" is called symmetric, if
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x € E implies P € FE for any n X n permutation matrix P. Also, a set £ C R" is
called a convex set if for any z,y € E and X € [0, 1], we have Az + (1 — \)y € E.
In this work, we need the following three lemmas.

Lemma 1.1 ([5]). Let E C R™ be a symmelric convex set with nonempty interior
and ¢ : E — R is a continuous symmetric function on E. If ¢ is differentiable on
int £, then ¢ is Schur convex (Schur concave) on E if and only if

T _ > <
(21 :1:2)< ) 132) 0 or(<L0)

holds for all x = (xq,...,1,) € int E.

Lemma 1.2 ([2,7]). Let E C R} be a symmetric geometrically convex set with a
nonempty interior and ¢ : E — R,y be continuous on E and differentiable on int E.
Then ¢ is Schur geometrically convex (Schur geometrically concave) if and only if ¢
is symmetric on E and

0 0
(1.1) (log 1 — log x2) <xla;i - x28;> >0 or(<0)
holds for all x = (x1,...,x,) € int E, where E is a geometrically convex set, if for

any x,y € E and «, B € [0, 1] such that o + 3 = 1, we have 2*y® € E.
Since for any x1, x5 € R, we have

(x1 — z2)(logxy — logxs) > 0,
we can reduce (1.1) to the following inequality

, - 9o _ 9e > <0).
(1.2) (x1 — x2) <x1 - T 2) 0 or(<0)

Lemma 1.3. ([6, Lemma 2.2]). Let E C R be a symmetric harmonic convex set with
nonempty interior and ¢ : E — Ry be a continuous symmetric function on E. If ©
is differentiable on int E, then ¢ is Schur harmonic convex (Schur harmonic concave)
on F if and only if

0 0
(1 — x2) (:E%az - :13%(932) >0 or(<0)

holds for all x = (1,...,x,) € int E, where E is a harmonic convex set, if for any
x,y € E, we have 213’1’/ € FE.

xT

In 1923, the Schur convexity was discovered by 1. Schur. It has many interested
applications of symmetric functions in Hadamard’s inequality, analytic inequalities,
stochastic ordering and some other branches of graphs and matrices, see for example
[1,3,4].

We organize this paper as follow. We establish the integral mean of fg is Schur
convex, Schur geometrical convex, Schur harmonic convex, and Schur power convex
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on [0,00) x [0,00), for convex, continuous and similarly ordered functions f and g. In
Section 3, we obtain some applications of results in Section 2.

2. MAIN RESULTS

In this section, we obtain some results for special functions to be Schur convex
(Schur concave), Schur geometrically convex, Schur harmonically convex, and Schur
power convex.

We say that f,g: R — R are similarly ordered function if for all x,y € R, we have

(f(z) = f(y)(g(z) —g(y)) >0,

if the above inequality reversed, we say that f and g have oppositely ordered.

Lemma 2.1. Let f,g : R — [0,00) be convez, continuous and similarly ordered
functions. Then for z,y € R, we have

—— [ st <

Proof. Since f and g have similarly ordered, for any z,y € R we have

(f(z) = f(y)(g(z) —g(y)) > 0.

f(x)g(x) + f(y)g(y)
5 .

It follows that
(2.1) f@)gy) + f(y)g(z) < f(x)g(x) + f(y)g(y).

On the other hand, f and g are convex functions, so for z,y € R and t € [0, 1], we
have

fltz+ (1 —=t)y) <tf(x)+ (1 —1)f(y),
g(te 4+ (1 —t)y) <tg(z) + (1 —t)g(y).

By multiplying both sides of the latter inequalities together and integrating on [0, 1],
we get

/01 flte+ (1= t)y)g(te + (1 - t)y)dt

< /Ol[th(x)g(m) +t(1—=t)[f(2)g(y) + g(x) f ()] + (L = )* f(y)g(y)]dt,

with change of variable u =tz + (1 — t)y = t(x — y) + y, it follows

yix /xy Flu)g(u)du < f(:v)g(:t)-;f(y)g(y) L f@)y) Jg F(v)g(x)
_ f@)g@) + FW)gy)
< ; _

Now, (2.1) follows from the last inequality. O
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Theorem 2.1. Let f,g : R — [0,00) be convex, continuous and similarly ordered

functions. Then
1

Flr,y)=q Y77
f(x)g(x), T =y,

[ fgwat, x4y,

is Schur convexr on R2.

Proof. By Lemma 2.1, we have

(aF_aF> (y— ) = [_ 1 /:f(t)g(t)dt—l— FW)9(y)

Oy Oz (y — x)? y—=
IR f@g@)] .
e [ routeyar+ K29
~f@)gla) + Fw)aly) = — [ FOgtra = .
Now Lemma 1.1 implies that F'is Schur convex. 0

Corollary 2.1. Let a > 1. Then
1

Fle,y)=q Y77

e’ T =1,

Yoot
/ t*e'dt, x#y,

is Schur convex on [0,00) x [0, 00).

Proof. Suppose that f,g : [0,00) — [0,00) are defined by f(¢) = t* and g(t) = €".
Since a > 1, the function f is increasing and convex, according to Theorem 2.1, F' is
Schur convex. 0

The next two corollaries are results of Theorem 2.1.

Corollary 2.2. Let f : R — [0,00) be increasing, continuous and convex function.

Then
1

Floyy) =4 y—7 [ et aty

e f(x), T =y,

is Schur convexr on R2.

Corollary 2.3. Let f : [0,00) — [0, 00) be increasing, continuous and convex function

and o« > 1. Then
1

Flr,y)={ Y~7
v f (), T =y,
is Schur convex on [0,00) x [0,00).

[ erwa, w4y,
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Similar to Lemma 2.1, we have the following lemma for concave and oppositely
ordered functions.

Lemma 2.2. Let f,g : R — [0,00) be concave, continuous and oppositely ordered
functions. Then for x,y € R we have

1 Y

t)g(t)dt >
| S0ty >
Theorem 2.2. Let f,g: R — [0,00) be concave, continuous and oppositely ordered
functions. Then

f(@)g(z) + f(y)g(y)
. .

1 Y
R e | g £y,

f(x)g(x), r =y,

is Schur concave on R2.

Proof. The result follows by similar arguments to the proof of Theorem 2.1 and using
Lemma 2.2. [

Theorem 2.2 implies next two corollaries.

Corollary 2.4. Let f : [0,00) — [0,00) be decreasing and concave function and

O0<a<l. Then .

Flz,y)=q Y77
‘/L‘af(x% r=1y,
is Schur concave on [0, 00) X [0, 00).

[ e« #y,

Corollary 2.5. The function

y
/sechtlntdt, T #y,
Fz,y)=q Y- T/

sechz Inx, xr =1,
is Schur concave on [0, 00) X [0, 00).
By Lemmas 1.1, 1.2 and 1.3, we have the following theorem.

Theorem 2.3. Let f and g be two real continuous functions defined on R, then

1 Y
R By A CT LR
f(@)g(x), r =1y,
is Schur convex (concave) on [0,00) X [0,00) if and only if
(2.2) Fla,y) < <Z>f(l’>9(ff) + f(W)9(y)

2 Y
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is Schur geometrically convez (concave) on [0,00) x [0,00) if and only if
zf(x)g(z) +yf(y)g(y)
T+y
and is Schur harmonically convez (concave) on R2 if and only if
2’ f(@)g(x) + v*f (Y)9(y)
24 F < (> )
( ) (I’,y) = (—) 72 +y2
Proof. From Lemma 1.1 it follows that F' is Schur convex (concave) on [0, 00) X [0, 00)
if and only if

(2.3) Fz,y) < (2)

)

-2 (5 -5) 0=

On the other hand, as in the proof of Theorem 2.1, we have
OF OF 2
=) (G - 5 ) = st + Fnatn) - 2
This implies (2.2).
From Lemma 1.2 it follows that F' is Schur geometrically convex (concave) on
[0,00) x [0, 00) if and only if

[ gty

oy ox
But
OF  OF\ Y v yf ()9 ()
-0 (s o5 ) = =) |- [ gt P22
e v/ ()g(a)
o [ roatoe - 00
= 2 (x)gl@) + ufWlalw) - 2 [ FDa(e)at

hence (2.3) follows.
From Lemma 1.3 it follows that F' is Schur harmonically convex (concave) on R%
if and only if

On the other hand, we have

oy (20 _ 2OFN v ()9 (y)
(y )(y oy 8:1:) (y )[ (y_x>2/wf(t)g(t)dt+ i

x> *f (l’)g(l’)]

RO f()g(t)dt + -

=2?f(x)g(x) + y* f(y)g(y) — I; 1—52 zy

f()g(t)dt,
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Therefore, (2.4) holds. O
In [8, Definition 2.3], we put f(x) = x*, then the following definition follows.

Definition 2.1. Let o be a positive real number and £/ C R} be such that r € E

1 1
implies xa = (x,...,x5) € E. A real-valued function F': E — R is said to be Schur
power convex if

F(xla"wmn) SF(yly"'ayn)a

holds for each pair of n-tuples z = (z1,x2,...,2,) and y = (y1, %2, ..., ¥,) in E such
that

(xf, . ,z0) < (yy .. u0),

and F' is Schur power concave if —F' is Schur power convex.

Remark 2.1. Let E C R} and « be a positive real number. Then F : E — (0,00) is
Schur power convex on £ if and only if F (a:é) is Schur convex function.

Lemma 2.3. Let & € R} be a symmetric convex set with nonempty interior and
F: E — R be a continuous symmetric function on E. If F' is differentiable on int F,
then F' is Schur power convex (Schur power concave) on E if and only if

a « —aaF —aaF
(2] — a5) (x% o, — 1 8@) > 0(<0),

for all x = (z1,...,2,) € int E and o € R,
Proof. The result follows by using Definition 2.1 and Remark 2.1 and Lemma 1.1. [

Theorem 2.4. Let « € R,. Let f and g be two real continuous functions defined on

R, then
1

Flz,y)=q Y7
f(x)g(), T =y,

is Schur power convez (concave) on [0,00) X [0,00) if and only if

' f(x)g(x) +y' f(y)g(y)
pl-a 4yl '

[ fgat, a#y,

F,y) < (2)

Proof. Let z,y € [0,00) and = # y. According to Lemma 2.3, F'(z,y) is Schur power
convex (concave) if and only if

LOF . OF
<w—w(¢@—f a)zwsm

X

But we have
oF oF
a L« 11— - 11—«
(y* —x%) (y o " (9:10)
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11—«

~ o) |- [ f0a0ar s

(y — )
s £ (@)g(a)
s [ satans ST

vy f(y)g(y)
Yy—x

- (y -
v f(2)g(x) +y T f(W)gly) a4y
0 (@)g(@) + v S ()aly) = P st
y—ux (y—2)* Ja
As F' is symmetric, that is F'(z,y) = F(y,x), we get the conclusion. O

Corollary 2.6. Let a, € (0,00) and f be a real continuous function defined on R,

then
1

o ) O
T,Y) = x

lﬂf(ﬂf), r=1Y,
is Schur power convez on [0,00) x [0,00) if and only if

a' P f () + 4" P fy)
le—a + yl—a

Proof. In Theorem 2.4, put g(z) = . O

F(r,y) <

Theorem 2.5. Let f,g:[0,00) — [0,00) be convex (concave), continuous and simi-
larly (oppositely) ordered functions on [0,00). Then

1 Y
F(z,y) = y—x/x ft)g(t)dt, = #y,
f(z)g(x), —

(i) is Schur geometrically convex (concave) on |0,
(ii) is Schur harmonically convex (concave) on |0,
(iii) s Schur power convez (concave) on [0,00) X [0,00), if 0 < a < 1.

Proof. (i) As f and ¢ have similarly (oppositely) ordered and nonnegative on [0, 00),
then for all z,y € [0, 00), we have

(2.5) (y —2)(f(y)g(y) — f(x)g(x)) > 0(<0).
This implies that

zf(y)g(y) +yf(x)g(z) < (Z)xf(x)g(z) +yf(v)g(y),
and it follows that

fWgly) + f(@)g(x) _ (>)aff (x)g(x) +yf(y)g(y)
2 - T4y ’

Now, from (2.6) and Lemma 2.1 (Lemma 2.2) together with Theorem 2.3 it follows
that F'(z,y) is Schur geometrically convex (concave) on [0,00) x [0, c0).

(2.6)
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(ii) Since f and g have similarly (oppositely) ordered and nonnegative on [0, 00),
then for all z,y € [0,00), we have (2.5). It follows that

(v* = 2*)(f(¥)g(y) — f(2)9(2)) > 0 (< 0).
This implies that

v f(W)g(y) + v’ f(2)g(x) < (Z)2* f(2)g(x) + v° f(y)g(y),
and it follows that
F)g(0) + £@)ate) _ 2 (@)ale) + 0ot
2 - x% 4 92 '
From (2.7) and Lemma 2.1 (Lemma 2.2) together with Theorem 2.3 it follows that
F(z,y) is Schur harmonically convex (concave) on [0, 00) X [0, 00).

(iii) Since f and ¢ have similarly (oppositely) ordered and nonnegative on [0, co)
and 0 < o < 1, then for all 2,y € [0,00) we have

(' =2 (f(y)gly) — f(x)g(x)) = 0(<0).

(2.7)

It follows that

e (W)g(y) +y T f(@)g(x) < (2 f(@)g(z) + v~ f(y)g(y).
This yields

-« -«
(2.8) TWely) + f(=)gx) _ () f@)g(x) +y*f(y)9(y)
2 xl—a + yl—a
Now, from the inequality (2.8) and Lemma 2.1 (Lemma 2.2) together with Theorem
2.3 it follows that F'(x,y) is Schur power convex (concave) on [0, 00) X [0, 00). O

Corollary 2.7. Let o, € (1,2). Then

1 Y
[eta-n"ta, w4y,
Fla,y)=q y—

N1 — )P, x =1y,

is Schur concave, geometrically Schur concave and harmonically Schur concave on
0, 1] x [0, 1]. Also, for all x,y € [0, 1] such that x # y the following inequalities hold

/ 1911 — )P dt > e M1 —2)’ 4y (1L —y)P !
y—x 2 ’
[ G k)t U k)
y—1xJe - r+y ’
/ 1911 — )P Ldt > 21— 2)P 4y (1 —y)P !
y—x ZL‘2 +y2 .
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Proof. In Theorems 2.2, 2.5, we put f(x) = x°! and g(x) = (1 — x)?~1. Since
a, € (1,2) on [0, 1] the function f is increasing and concave and g is decreasing and
concave. It follows that on [0, 1] the functions f and g are concave, continuous and
oppositely ordered. Now, Theorem 2.3 implies the results. 0

Theorem 2.6. Let a be a positive real number and f : (0,00) — (0,00) be a log-
concave function. Then t“f(t) is log-concave and the following inequality holds

Lo e f(2) -y ()
el A OL ey s ey oy

Proof. For a > 0, function t“ is log-concave. Since Int is concave and a > 0, we have

Aa(Inz) + (1 = Nalny < aln(Ax + (1 — N)y),

S0
AInz®) + (1 =N Iny* <In(Az+ (1 — N)y)*.
Thus, t* is log-concave. Put g(z) = z®f(x), then for t € [0, 1], we have

gtz + (1 —t)y) = (tz+ (1 —t)y)" f(tz + (1 — t)y)
> () (y*)' (@) (fw)™
= (2 f(@))" (y" f ()"
= (9(=))"(g(y))"™*
- (259 s,
that is, g(x) = x f(x) is log-concave. By integrating both sides of the above inequality
on [0, 1] and change of variable u = tx + (1 — t)y, getting w = z:‘;g;, then we have

/ (tw+ (1— Dy) [t + (1 - y)dt = 47 £(y) / (Z% ) .

1

1 /yuaf(u)du >y f(y) ; wtdt

y—x
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Lemma 2.4. Let I be an interval in R and f,g: I — [0,00) be continuous functions.
Then for x € I"™ C R™ the function

F) =3 [ et

is Schur convez if and only if f and g are similarly ordered functions (is Schur concave
if and only if f and g are oppositely ordered functions).

Proof. Clearly F' is symmetric. According to Lemma 1.1, F' is Schur convex if and
only if for zy, x5 € I, we have

oF  OF
(21— 29) (6351 - 8:@) = (21 — x2) (f(z1)g(71) — f(22)g9(72)) > 0,
if and only if f and g are similarly ordered functions. U

Lemma 2.5. Let I be an interval in R and f : I — (0,00) be differentiable on int I.
Then for x € I™ C R"™ the function

n

F(z) =[] f(=:)

=1

is Schur convez if and only iff% is increasing on I (is Schur concave if and only z'ff7,
is decreasing on I).

Proof. Clearly F' is symmetric. According to Lemma 1.1, F' is Schur convex if and
only if for z1,x9 € I, we have

i=2 i=1,i#2

(01— ) (gF-SF) — (21— ) (f’(wl)lﬁ[f(%)—f’(wz) 11 f(x»)
— (21— ) H P (7 ) fs) — f()f(22)) = 0,

if and only if fTI is increasing on I. O

Remark 2.2. As in the literature, the infinite decreasing sequence x = (z,,) majorized
by the infinite decreasing sequence y = (y,) and denoted by z < y, if there exists
an infinite doubly stochastic square matrix P = (p;;) (i.e., p;; > 0 for all 7,5 € N,
and all rows sum and all columns sum are equal one) such that = = y.P. If (a,) be a
sequence in the interval [0, 1], we take x; = ayy; + (1 — aq)y2, 22 = (1 — aq)y1 + a1ya,
and z3 = aays + (1 — a2)ys, 4 = (1 — an)ys + oy, . . ., where y = (y,) is an infinite
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decreasing real sequence. If we put

[ oy 11— 0 0 0 0 0 i
1—0(1 Qaq 0 0 0 0 0
0 0 ap l—ap 0 0 O
P= 0 0 ].—062 (6%) 0 0 0 )
0 0 0 0 0
i . . . . 0 |

then z = yP and x < y.

Ezxample 2.1. In Lemma 2.5, set f(z) = sinz and I = (0, 7). The function f'(z) = cosz
@)
f(z)
x = (z,) and y = (y,) be two decreasing sequence in I = (0, ), such that = < y as

in Remark 2.2. Since F' is Schur concave, we have F'(z) > F(y) and so

and = cotz is decreasing on I. So, F(x) = [[,sinz; is Schur concave. Let

sin(a1y; + (1 — aq)ye) sin((1 — aq)y1 + a1y2) sin(asys + (1 — as)yy)

x sin((1 — as)ys + aoya) - -+ > [ sinys.
i=1

% for all + € N, we have

1
0 2
" (yl ;ryz) “in (ys—;w) s <Hsinyi> ‘
i=1

Erample 2.2. In Lemma 2.5, put f(z) = cosx and I = (0, 7). The function f'(z) =
J},(j)) = —tanx is decreasing on /. So F'(z) = [}, cosx; is Schur concave.
Let 2 = (z,) and y = (y») be two decreasing sequence in I = (0, 7), such that z <y

as in Remark 2.2. Since F' is Schur concave, we have F'(z) > F(y) and so

In the special case, a; =

—sinz and

cos(a1yr + (1 — aq)y2) cos((1 — aq)yr + aqys) cos(aays + (1 — an)yy)
x cos((1 — aa)ys + aoya) - -+ > [] cos yi.
i=1

% for all + € N, we have

oo :
COS (w;m) cos (y3;y4) cee > <Hcosy¢> .
i=1

As in [9], let I = (0,1) and L,, = {x =(x1,...,2,) €R": i T; = ml} for some
i=1

L !
=1

In the special case, a; =

O<m<mn,D,=I1"NL,and Q= (y,...,y), where y =

3=

Lemma 2.6. (|9, Lemma 2.1)). If f: I" — R is a Schur-convex function, then f(2)
is a global minimum in D,,. If f is strictly Schur-convex on I™, then f(2) is the unique
global mimimum in D,
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Remark 2.3. In Example 2.2 and Lemma 2.6, put [ = 7 and z; € (0,3), for i =

1,2,...,n,and } z; =7 Then Q = (Z,...,7) and we have F(r) < F(£2), that is

i=1
n T n
H cosx; < |(cos— | .
i=1 n

Similarly in Example 2.1, for [ = 7, we have
T m\"
Hsm T; < (sm > .
i=1 n

Lemma 2.7. Let I be an interval in R and f : I — (0,00) be continuous, then for
each x € I C R", the function

rw) =11 [ o
L 5 Sy

is Schur convez if and only if =———— is decreasing on I (is Schur concave if and

f(z)
Jy F@)dt

only if @ is increasing on I).

Proof. Clearly F' is symmetric. According to Lemma 1.1, F' is Schur convex if and
only if for z1, 9 € I, we have

w02 (o = G0 ) =t = ) (fm) I/ s s 11 f(t)dt>
—(21 — 2) ﬁ[g/ox F(t)dt
< (st [ r@at= s [ fe)at)
207
if and only if J Oxf];g)dt is decreasing on 1. U

3. APPLICATIONS

In this section, we obtain some inequalities, which are the applications of the results
in Section 2.

The next two examples are the applications of Lemma 2.1 and Theorems 2.1, 2.3
and 2.5.

Example 3.1. Let a > 1 and E,(x) = >.32, F(#kﬂ) be the Mittage-LefHler function.

Let
1

Yy
tYE,(t%)dt, = # vy,
Flow = | 77

Y Ey (%), x=y.




254 F. GORJIZADEH AND N. EFTEKHARI

Since t* and E,(t) are convex, continuous and similarly ordered on [0, 00), then Lemma
2.1 and Theorems 2.1, 2.3 and 2.5 imply that F' is Schur convex, Schur geometrically
convex and Schur harmonically convex on [0,00) x [0,00) and for x,y € [0,00), the
following inequalities hold

1 Yy OcEa o OéEa o
y—1xJo 2
1 Yy a—&—lEa « a+1Ea fo
Yy—Jz T+y
1 y a+2Ea « a+2Ea o
FExample 3.2. Let o > 0 and
1 Y
[ TOEdt w £y,
Flo,y)={ Y= 77
[(x)Ey(x%), T =1.

Since I'(t) and E,(t) are convex, continuous and similarly ordered on [%, oo) , then

Lemma 2.1 and Theorems 2.1, 2.3 and 2.5 imply that F' is Schur convex, Schur
geometrically convex and Schur harmonically convex on [%,oo) X {%,oo) and for
T,y € [%, oo) , the following inequalities hold

1 r E, @ I E «
/y F<t>Ea(ta)dt < (f) a(ZE )+ (y) a(y )’
Yy—TJz 9
1 T Ea fo' T Ea a
/yr(t)Ea(tO‘)dt <L) Ea(x?) + yT(y) Ealy”)
1 2I‘ E o 2F E o
%Xﬂﬁhﬁ%dtgx (2)Eo(2%) + y*T(y) Eo(y X
y — T Jx 1'2 + y2
Remark 3.1. For x,y € [0,00), the following majorizations hold
@2 (it ) < (5 2)
. HZ(x,y)7H2(l"y) x’y 9
T+y v+y
(3.3) ( v > <9,

2
1 -
ty

where Hy (x,y) = 1
Ezample 3.3. Let f,g:]0,00) — [0,00) be convex, continuous and similarly ordered
functions. Then for x,y € [0, 00) with = # y, (3.1), (3.2) and (3.3) and Theorem 2.1
imply the following inequalities

L[ ear < = [ pagtnn

Yy—x )itz T+ Y Jitaty
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! (Hzéc,w) ! (mé,y)) <t /f F(B)g(t)dt,

F(5Y) e (50 < = [ rweo

For increasing, continuous and convex function f : [0,00) — [0,00) and a > 1,
Remark 3.1 and Corollaries 2.1, 2.3 imply the following inequalities

1 I+y —1 1
/ teeldt < / t*e'dt,
Y —T Ji+zx Y +x 1+z+y

« 1
<1> eHz(lac»y) < 11/1y t“etdt,

@ g 1 y
(x—i—y) eTyg t*edt,
Yy— T Jax
1

1+ _ 1
tF(t)dt < / tF(4)dt,
y—J]/—f—x f() x—l—y 1+z+y f(>

1 ¢ 1 1 1 )
(HZ(xy)) f<H2<$ y)) < —i/i £ f(4)dt

1
Y

() (5 == L

For increasing, continuous and convex function f : [0,00) — [0, 00), Remark 3.1 and
Corollary 2.2 imply the following inequalities

[ ewar < [ g,

Yy —T Ji+zx T+ Y Jidaty

| 1 1 3
ey f|—— | < et £ (1) dt
‘ f(Hz(fv,y)>_ —1/; e 1)

oty 1 Y
= (“y> < / et (£)dt.
2 Yy—a Jax
Remark 3.1 and Corollary 2.5 imply the following inequalities

< |-

1 1+y 1 1
/ sechtIntdt > / sech tIn tdt,

Y— Stz T+ Y J1taty
1 1 1 3
sech| —— | In > / "sechtIn tdt,
<H2(x,y)> <H2(a?,y)) s

sech<x+y>ln<m+y>2 ! /ysechtlntdt.

Remark 3.1 and Corollary 2.7 imply the following inequalities, for «, 8 € (1,2),

1 I+y -1 1
/ t N1 — )P dt > / t (1 — )P a,
Y—T Ji4a T+ Y Jitaty
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: - ! . L v jo1 B-1
(fb(wy)) (1_1112(95,y)> i/t (1—t)*at,

<x+y>a—1 (1_ x+y)ﬁ—1 - / 111 — )1,
2 2 Ty—z

Remark 3.1 and Example 3.1 imply the followmg inequalities, for &« > 1 and the

Mittage-Leffler function E,(z) = >3, m

I\/

1 1+ -1
/ 1B, (1) dt < / 1B, (1) dt,
Y—T Jitz x + +J:+y

() = () ) s o s
(5 (52)) < [

Remark 3.2. Let a > 1 and E,(z) = Y32, F(#kﬂ) be the Mittage-Leffler function on
(0,00). In Lemma 2.4, set f(t) = E,(t) and ¢g(t) = 1. Then the function

n oo T tk n oo karl
_;kz:%/o T(ak +1 ;;ﬁo (k+ 1D (ak +1)
S et
_ i zn: ! _ i T
a5 (k+D)l(ak+1) = T(ak+1)

is Schur convex on R?.
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