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AN APPROXIMATE APPROACH FOR SYSTEMS OF
FRACTIONAL INTEGRO-DIFFERENTIAL EQUATIONS BASED

ON TAYLOR EXPANSION

M. DIDGAR1,2, A. R. VAHIDI3∗, AND J. BIAZAR4

Abstract. The main purpose of this work is to present an efficient approximate
approach for solving linear systems of fractional integro-differential equations based
on a new application of Taylor expansion. Using themth-order Taylor polynomial for
unknown functions and employing integration method the given system of fractional
integro-differential equations will be converted into a system of linear equations
with respect to unknown functions and their derivatives. The solutions of this
system yield the approximate solutions of fractional integro-differential equations
system. The Riemann-Liouville fractional derivative is applied in calculations. An
error analysis is discussed as well. The accuracy and the efficiency of the suggested
method is illustrated by considering five numerical examples.

1. Introduction

During the past decades, fractional calculus and fractional differential equations
have found various applications in sciences and engineering, such as electrical net-
works, rheology, acoustics, electroanalytical chemistry, neuron modeling, viscoelas-
ticity, material sciences, fluid flow, diffusive transport akin to diffusion, probability,
electromagnetic theory, and so on (see [7, 13, 18,24,26]).

Since most of FDEs do not have exact solutions, approximate and numerical tech-
niques have received considerable attention to solve fractional differential equations.
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So far, several analytical and numerical methods have been proposed to solve frac-
tional differential equations which the interested reader can refer to [1–5,10–12,16,19–
23,25,27–30,34] and the references therein.

In this paper, we investigate the approximate solutions of linear fractional integro-
differential equations systems based on a new application of Taylor expansion (see
[6, 8–10,14,15,17,31–33]). By expanding unknown functions as an mth-order Taylor
polynomial and employing integration method, we can convert the given system of
fractional integro-differential equations into a system of linear equations with respect
to unknown functions and their derivatives. Approximate solutions can be obtained
by solving the resulting system of equations according to a standard rule. The results
of the obtained approximations of the suggested method are then compared with
the referenced methods for several examples. In the present investigation, the main
property of this approximate method besides simplicity and reliability is that an mth-
order approximation is equal to exact solution if the exact solution is a polynomial
of degree at most m. The present work may be viewed as an extension of the results
obtained in [10].

The remainder of this paper is organized as follows. In Section 2, some definitions
of fractional calculus are recalled. In Section 3, we describe the proposed method.
In Section 4, we give an error analysis. In Section 5, we investigate some examples,
which demonstrate the effectiveness of our approach. In Section 6, our findings are
concluded.

2. Preliminaries and Basic Definitions

Let’s describe some basic concepts, and properties of the fractional calculus, which
will be used later.

Definition 2.1. A real function φ(x), x > 0, is said to be in the space Cµ, µ ∈ R if
there exists a real number p (> µ), such that φ(x) = xpφ1(x), where φ1(x) ∈ C[0,∞),
and it is said to be in the space Cn

µ if and only if φ(n) ∈ Cµ, n ∈ N.

Definition 2.2. The Riemann-Liouville fractional integral operator of order α ≥ 0,
of a function φ ∈ Cµ, µ ≥ −1, is considered as follows

Jαφ(x) = 1
Γ(α)

∫ x

0
(x− t)α−1φ(t)dt, α > 0, x > 0,

J0φ(x) =φ(x).

Definition 2.3. The Caputo fractional derivative of φ(x) is considered as follows

Dα
∗φ(x) = Jn−α

(
dn

dxn
φ(x)

)
= 1

Γ(n− α)

∫ x

0
(x− t)n−α−1φ(n)(t)dt,

for n− 1 < α ≤ n, n ∈ N, x > 0, φ ∈ Cn
−1.
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Definition 2.4. The Riemann-Liouville fractional derivative of φ(x) is considered as
follows

Dαφ(x) = dn

dxn

(
Jn−αφ(x)

)
,

for n− 1 < α ≤ n, n ∈ N, x > 0, φ ∈ Cn
−1.

3. Description of the Method

Consider the following system of linear fractional integro-differential equations

Dαiψi(x) + λ1

∫ 1

0

ν∑
j=1

K1ij(x, t)ψj(t)dt+ λ2

∫ x

0

ν∑
j=1

K2ij(x, t)ψj(t)dt(3.1)

=fi(x), i = 1, . . . , ν,
with initial conditions
(3.2) ψ

(κ)
i (0) = 0, κ = 0, 1, . . . , n− 1, n− 1 < αi ≤ n, n ∈ N,

where Dαiψi(x) indicates Riemann-Liouville fractional derivative of order αi, and λ1,
λ2 are constants, K1ij(x, t), K2ij(x, t), fi(x) are given known functions which satisfy
certain conditions so that system (3.2) has a unique solution, and ψi(x) are unknown
functions.

According to definition (2.4), system of fractional integro-differential equation (3.1)
can be rewritten as
dn

dxn

(
Jn−αiψi(x)

)
+ λ1

∫ 1

0

ν∑
j=1

K1ij(x, t)ψj(t)dt+ λ2

∫ x

0

ν∑
j=1

K2ij(x, t)ψj(t)dt = fi(x),

or equivalently by using definition (2.2), we have
dn

dxn

(
1

Γ(n− αi)

∫ x

0
(x− t)n−αi−1ψi(t)dt

)
+ λ1

∫ 1

0

ν∑
j=1

K1ij(x, t)ψj(t)dt(3.3)

+ λ2

∫ x

0

ν∑
j=1

K2ij(x, t)ψj(t)dt = fi(x).

In the following, by integrating both hand side of (3.3), n times with respect to x
from 0 to s and with the help of changing the order of the integrations, we obtain

1
Γ(n− αi)

∫ x

0
(x− t)n−αi−1ψi(t)dt+ λ1

ν∑
j=1

∫ 1

0

∫ x

0

(x− s)l−1

(l − 1)! K1ij(s, t)ψj(t)dsdt(3.4)

+ λ2

ν∑
j=1

∫ x

0

∫ x

t

(x− s)l−1

(l − 1)! K2ij(s, t)ψj(t)dsdt = Fi(x), l = 1, . . . , n,

where
Fi(x) =

∫ x

0

(x− t)l−1

(l − 1)! fi(t)dt, i = 1, . . . , ν,

in which the variable s has been replaced by x, for simplicity. Hence we transformed
the system of fractional integro-differential equations (3.1) into a system of mixed



382 M. DIDGAR, A. R. VAHIDI, AND J. BIAZAR

Volterra-Fredholm integral equations. To approximately solve the resulting system, we
reduce Eq. (3.4) into a system of linear equations with respect to unknown functions
and their derivatives. Toward this goal, the method assumes that the desired solutions
ψj(t) to be m+1 times continuously differentiable on the interval I, in other words
ψj ∈ Cm+1(I). Therefore, for ψj ∈ Cm+1(I), ψj(t) can be expressed in terms of the
mth-order Taylor series at an arbitrary point x ∈ I as

ψj(t) = ψj(x) + ψ′j(x)(t− x) + · · ·+ 1
m!ψ

(m)
j (x)(t− x)m + Ej,m(t, x),

where Ej,m(t, x) indicates the Lagrange error bound

Ej,m(t, x) =
ψ

(m+1)
j (ξj)
(m+ 1)! (t− x)m+1,

for some point ξj between x and t. Generally, the Lagrange error bound Ej,m(t, x)
becomes sufficiently small as m gets great enough. Especially, if the solutions ψj(t)
are polynomials of degree up to m, then the last Lagrange error bound becomes zero,
namely, the obtained approximate solutions of system (3.1) yield the true solutions.
With due attention to aforementioned assumption, by omitting the last Lagrange
error bound, we consider the truncated Taylor expansion ψj(t) as

(3.5) ψj(t) ≈
m∑
k=0

ψ
(k)
j (x)(t− x)k

k! .

Inserting the approximate relation (3.5), for unknown functions ψj(t), into (3.4) we
obtain

m∑
k=0

(−1)k
k! ψ

(k)
j (x)

∫ x

0

(x− t)k+n−αi−1

Γ(n− αi)
dt(3.6)

+ λ1

ν∑
j=1

m∑
k=0

ψ
(k)
j (x)
k!

∫ 1

0

∫ x

0

(x− s)l−1

(l − 1)! (t− x)kK1ij(s, t)dsdt

+ λ2

ν∑
j=1

m∑
k=0

ψ
(k)
j (x)
k!

∫ x

0

∫ x

t

(x− s)l−1

(l − 1)! (t− x)kK2ij(s, t)dsdt

=Fi(x), i = 1, . . . , ν.

In fact, system (3.1) was converted into a linear system of ordinary differential equa-
tions with respect to ψj(x) and its derivatives up to order m. In other word, we have
obtained ν linear equations in (3.6) with respect to ν × (m+ 1) unknown functions
ψ

(k)
j , for k = 0, . . . ,m, j = 1, . . . , ν. In the following, we want to determine ψ(k)

j

by solving a system of linear equations. In order to achieve this goal, other ν ×m
independent linear equations with respect to ψj(x), . . . , ψ(m)

j (x) are needed, which can
be achieved by integrating both sides of Eq.(3.4) m times with respect to x. Thus,
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we have ∫ x

0

(x− t)γ+n−αi−1

Γ(γ + n− αi)
ψi(t)dt+ λ1

ν∑
j=1

∫ 1

0

∫ x

0

(x− s)γ+l−1

(γ + l − 1)! K1ij(s, t)ψj(t)dsdt(3.7)

+ λ2

ν∑
j=1

∫ x

0

∫ x

t

(x− s)γ+l−1

(γ + l − 1)! K2ij(s, t)ψj(t)dsdt = F
(γ)
i (x), γ = 1, . . . ,m,

where
F

(γ)
i (x) =

∫ x

0

(x− t)γ−1

(γ − 1)! Fi(t)dt, i = 1, . . . , ν, γ = 1, . . . ,m.

We apply the Taylor expansion again and substituting (3.5) for ψj(t) into E(3.7) leads
to

m∑
k=0

(−1)k
k! ψ

(k)
j (x)

∫ x

0

(x− t)k+γ+n−αi−1

Γ(γ + n− αi)
dt

+ λ1

ν∑
j=1

m∑
k=0

ψ
(k)
j (x)
k!

∫ 1

0

∫ x

0

(x− s)γ+l−1

(γ + l − 1)! (t− x)kK1ij(s, t)dsdt+

λ2

ν∑
j=1

m∑
k=0

ψ
(k)
j (x)
k!

∫ x

0

∫ x

t

(x− s)γ+l−1

(γ + l − 1)! (t− x)kK2ij(s, t)dsdt

=F (γ)
i (x), γ = 1, . . . ,m.(3.8)

In this way, (3.4) and (3.8) construct a system of linear equations with resect to
unknown functions ψj(x) and its derivatives up to order m. The obtained system is
indicated as follows

Q(x)Ψ(x) = F (x),
where

Q(x) =



q10
10(x) · · · q10

ν0(x) · · · q10
1k(x) · · · q10

νk(x) · · · q10
1m(x) · · · q10

νm(x)
... ... ... ... ... ... ... ... ... ... ...

qν0
10 (x) · · · qν0

ν0(x) · · · qν0
1k(x) · · · qν0

νk(x) · · · qν0
1m(x) · · · qν0

νm(x)
... ... ... ... ... ... ... ... ... ... ...

q1γ
10 (x) · · · q1γ

ν0(x) · · · q1γ
1k (x) · · · q1γ

νk(x) · · · q1γ
1m(x) · · · q1γ

νm(x)
... ... ... ... ... ... ... ... ... ... ...

qνγ10 (x) · · · qνγν0 (x) · · · qνγ1k (x) · · · qνγνk (x) · · · qνγ1m(x) · · · qνγνm(x)
... ... ... ... ... ... ... ... ... ... ...

q1m
10 (x) · · · q1m

ν0 (x) · · · q1m
1k (x) · · · q1m

νk (x) · · · q1m
1m(x) · · · q1m

νm(x)
... ... ... ... ... ... ... ... ... ... ...

qνm10 (x) · · · qνmν0 (x) · · · qνm1k (x) · · · qνmνk (x) · · · qνm1m (x) · · · qνmνm(x)



,(3.9)

F(x) =
[
F1(x), . . . , Fν(x), . . . , F (γ)

1 (x), . . . , F (γ)
ν (x), . . . , F (m)

1 (x), . . . , F (m)
ν (x)

]T
,
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Ψ(x) =
[
ψ1(x), . . . , ψν(x), . . . , ψ(k)

1 (x), . . . , ψ(k)
ν (x), . . . , ψ(m)

1 (x), . . . , ψ(m)
ν (x)

]T
.

In coefficient matrix (3.9), the first ν rows refer to coefficients of ψ(k)
j (x) in (3.4) for

k = 0, . . . ,m, j = 1, . . . , ν and the other rows refer to coefficients of ψ(k)
j (x) in (3.8)

for γ = 1, . . . ,m. Application of a standard rule to the resulting new system yields
an mth-order approximate solution of (3.1) as ψim(x). It is to be noted that not only
ψj(x) but also ψ(k)

j (x), for k = 1, . . . ,m, are determined by solving the resulting new
system but in point of fact, it is ψj(x) that we need.

4. Error Analysis

In this section, we expand the error analysis proposed in [9] for derived mth-order
approximate solution of fractional integro-differential equations system (3.1). We
assume that the exact solutions ψj(t) are infinitely differentiable on the interval I; so
ψj(t) can be expressed as an uniformly convergent Taylor series in I as follows

ψj(t) =
∞∑
k=0

ψ
(k)
j (x)(t− x)k

k! .

Using the proposed method in the previous section, system of fractional integro-
differential equations (3.1) can be converted into an equivalent system of linear equa-
tions with respect to unknown functions ψ(k)

i (x), k = 0, 1, . . . as
QΨ = F,

where
Q = lim

ν−→∞
Qνν
νν , Ψ = lim

ν−→∞
Ψν , F = lim

ν−→∞
Fν ,

in which Qνν
νν , Ψν , and Fν , as shown in the previous section, are defined as follows

Qνν
νν =

[
qpqij (x)

]
ν(m+1)×ν(m+1)

, Ψν =
[
ψ

(k)
i (x)

]
ν(m+1)×1

, Fν =
[
f

(l)
i (x)

]
ν(m+1)×1

.

Hence, under the solvability conditions for the above system and letting B = Q−1,
the unique solution is represented as
(4.1) Ψ = BF.
We rewrite relation (4.1) in an alternative matrix form as[

Ψν

Ψ∞

]
=
[
Bνν
νν Bν∞

ν∞
B∞ν∞ν B∞∞∞∞

] [
Fν
F∞

]
.(4.2)

Accordingly, we can find out that the vector Ψν consists of the first ν(m+ 1) elements
of the exact solution vector Ψ must satisfy the following relation
(4.3) Ψν = Bνν

ννFν + Bν∞
ν∞F∞.

According to the proposed process, the unique solution of SFIDE (3.1) can be denoted
as
(4.4) Ψ̃ν = Qνν−1

νν Fν ,
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where Ψν is replaced by Ψ̃ν as its approximate solution.
Subtracting (4.4) from (4.3) leads to

(4.5) Ψν − Ψ̃ν = Dνν
ννFν + Bν∞

ν∞F∞,
where

Dνν
νν = Bνν

νν −Qνν−1

νν .

In the following, we expand the right-hand side of (4.5) and the first ν elements of
the vector at the left-hand side of (4.5) can be expressed as

ψν(x)− ψ̃ν(x) =
m∑
j=0

ν∑
i=1

dp0
ij (x)f (j)

i (x) +
∞∑

j=m+1

ν∑
i=1

bp0
ij (x)f (j)

i (x), p = 1, . . . , ν,

where

ψν(x) =


ψ1(x)
ψ2(x)

...
ψν(x)

 , ψ̃ν(x) =


ψ̃1(x)
ψ̃2(x)

...
ψ̃ν(x)

 ,
and dp0

ij (x), bp0
ij (x) are the elements of Dνν

νν and Bν∞
ν∞, respectively. Thus, according to

the Cauchy-Schwarz inequality we have

∣∣∣ψν(x)− ψ̃ν(x)
∣∣∣ ≤

 m∑
j=0

ν∑
i=1

∣∣∣dp0
ij (x)

∣∣∣2
 1

2
 m∑
j=0

ν∑
i=1

∣∣∣f (j)
i (x)

∣∣∣2
 1

2

+
 ∞∑
j=m+1

ν∑
i=1

∣∣∣bp0
ij (x)

∣∣∣2
 1

2
 ∞∑
j=m+1

ν∑
i=1

∣∣∣f (j)
i (x)

∣∣∣2
 1

2

.

It is to be noted that as lim
ν−→∞

Dνν
νν = 0 and lim

ν−→∞
Bν∞
ν∞ = 0, we have

lim
ν−→∞

|ψν(x)− ψ̃ν(x)| = 0.

5. Illustrative Examples

In this section, the efficiency and the accuracy of the proposed approach is illustrated
by considering some numerical problems. The obtained numerical results are compared
with some existing approaches and it was found that the proposed approximate
approach produces acceptable results and even more accurate results in comparison
with some existing methods. All computations are performed using Mathematica 8.

Example 5.1. Consider the following system of fractional integro-differential equations
(see [5, 29]):

(5.1)


D

1
2ψ1(x)−

∫ 1
0 (ψ1(t) + ψ2(t)) dt = 2

√
x√
π
− 5

6 ,

D
3
2ψ1(x)−

∫ 1
0 (ψ1(t) + ψ2(t)) dt = 4

√
x√
π
− x

6 ,
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in which the initial conditions are chosen all to be zero and the exact solutions are
ψ1(x) = x and ψ2(x) = x2.

Using the present method, the first-order and the second-order approximate solu-
tions at equidistant points are computed. The obtained results and the results given
in [5, 29] are listed in Tables 1 and 2. From Tables 1 and 2, we observe that the
second-order approximate solution yields the exact solution as expected, since the
exact solution is a polynomial function of degree 2.

Table 1. Absolute errors of Example 5.1 for ψ1(x).

x Method in [29] Method in [5] Suggested method
m = 1 m = 2

0.1 8.75559× 10−2 2.78470× 10−3 1.73688× 10−1 0
0.2 1.23823× 10−1 3.93816× 10−3 5.59324× 10−1 0
0.3 1.51651× 10−1 4.82324× 10−3 1.98751 0
0.4 1.75112× 10−1 5.56940× 10−3 4.08095 0
0.5 1.95781× 10−1 6.22678× 10−3 1.10827 0
0.6 2.14467× 10−1 6.82110× 10−3 5.81370× 10−1 0
0.7 2.31651× 10−1 7.36763× 10−3 3.21226× 10−1 0
0.8 2.47646× 10−1 7.87633× 10−3 1.50704× 10−1 0
0.9 2.62668× 10−1 8.35411× 10−3 2.74544× 10−2 0
1.0 2.76876× 10−1 8.80600× 10−3 6.20423× 10−2 0

Table 2. Absolute errors of Example 5.1 for ψ2(x).

x Method in [5] Method in [30] Suggested method
m = 1 m = 2

0.1 1.93140× 10−4 1.29824× 10−4 3.56504× 10−5 0
0.2 1.09257× 10−3 3.77788× 10−4 3.25545× 10−3 0
0.3 3.01076× 10−3 7.13496× 10−4 3.28085× 10−2 0
0.4 6.18049× 10−3 1.12845× 10−3 1.35422× 10−1 0
0.5 1.07969× 10−2 1.61892× 10−3 6.60271× 10−2 0
0.6 1.70314× 10−2 2.18315× 10−3 6.09208× 10−2 0
0.7 2.50391× 10−2 2.82043× 10−3 6.26674× 10−2 0
0.8 3.49621× 10−2 3.53063× 10−3 6.66494× 10−2 0
0.9 4.69331× 10−2 4.31399× 10−3 7.19976× 10−2 0
1.0 6.10763× 10−2 5.17100× 10−3 7.88615× 10−2 0

It is important to note that after converting system (5.1) into a system of linear
equations, the Mathematica command ‘LinearSolve’ is used for the new system.
Example 5.2. Consider the following system of fractional integro-differential equations
(see [29]): 

D
1
2ψ1(x)−

∫ 1
0 xψ2(t)dt = 2

√
x√
π
− x

2 ,

D
1
2ψ2(x)−

∫ 1
0 xψ1(t)dt = 2

√
x√
π
− 1

3 ,
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in which the initial conditions are chosen all to be zero and the exact solutions are
ψ1(x) = x and ψ2(x) = x.

We employ the approach described in Section 3 to evaluate the approximate solu-
tions. For this case, we can find that ψm(x) yields the exact solution only by setting
m = 1. Moreover, we present the results given in [29] in Table 3.

Table 3. Absolute errors of Example 5.2 in [29] for (ψ1(x), ψ2(x)).

x Methode in [29]
0.1 (5.02704× 10−5, 5.02704× 10−4)
0.2 (1.42186× 10−4, 7.10931× 10−4)
0.3 (2.61213× 10−4, 8.70709× 10−4)
0.4 (4.02163× 10−4, 1.00541× 10−3)
0.5 (5.62040× 10−4, 1.12408× 10−3)
0.6 (7.38821× 10−4, 1.23137× 10−3)
0.7 (9.31021× 10−4, 1.33003× 10−3)
0.8 (1.13749× 10−3, 1.42186× 10−3)
0.9 (1.35730× 10−3, 1.50811× 10−3)
1.0 (1.58969× 10−3, 1.58969× 10−3)

Example 5.3. Consider the following system of fractional integro-differential equations
(see [16, 30]):

D
3
4ψ1(x)−

∫ 1

0
(x+ t) [ψ1(t) + ψ2(t)] dt = − 1

20 −
x

12 + 4x 1
4

Γ(1
4) −

128x 9
4

15Γ(1
4) ,

D
3
4ψ2(x)−

∫ 1

0

√
xt2 [ψ1(t)− ψ2(t)] dt = −2

√
x

15 −
4x 1

4

Γ(1
4) + 32x 5

4

5Γ(1
4) ,

in which the initial conditions are chosen all to be zero and the exact solutions are
ψ1(x) = x− x3 and ψ2(x) = x2 − x.

We apply the approach described in Section 3 to determine the approximate solu-
tions. For this case, we can find that ψm(x) yields the exact solution only by setting
m = 3. We present our results when m = 1, 2, 3, and the results given in [30] in Tables
4 and 5.

Example 5.4. Consider the following system of fractional integro-differential equations
(see [16, 30])

D
4
5ψ1(x)−

∫ 1

0
2xt [ψ1(t)− ψ2(t)] dt = 83

80x−
25x 6

5

3Γ(1
5) + 125x 11

5

11Γ(1
5) ,

D
4
5ψ2(x)−

∫ 1

0
(x+ t) [ψ1(t) + ψ2(t)] dt = − 67

160 −
13
24x+ 125x 6

5

8Γ(1
5) ,

in which the initial conditions are chosen all to be zero and the exact solutions are
ψ1(x) = x3 − x2 and ψ2(x) = 15

8 x
2.
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Table 4. Absolute errors of Example 5.3 for ψ1(x)

x Method in [30] Suggested method
m = 1 m = 2 m = 3

0.1 1.86460× 10−3 2.33950× 10−2 4.37610× 10−3 0
0.2 3.38103× 10−3 6.86709× 10−2 1.69027× 10−3 0
0.3 4.91496× 10−3 1.21870× 10−1 1.70008× 10−3 0
0.4 6.51082× 10−3 1.73108× 10−1 3.93799× 10−3 0
0.5 8.18437× 10−3 2.11497× 10−1 4.52983× 10−3 0
0.6 9.94249× 10−3 2.25976× 10−1 3.55933× 10−3 0
0.7 1.17883× 10−2 2.06732× 10−1 1.36667× 10−3 0
0.8 1.37235× 10−2 1.47035× 10−1 1.59402× 10−3 0
0.9 1.57484× 10−2 4.52912× 10−2 4.82795× 10−3 0
1.0 1.78631× 10−2 9.29796× 10−2 7.84433× 10−3 0

Table 5. Absolute errors of Example 5.3 for ψ2(x)

x Method in [30] Suggested method
m = 1 m = 2 m = 3

0.1 1.99879× 10−4 1.46339× 10−2 3.62132× 10−3 0
0.2 4.75397× 10−4 3.25600× 10−2 1.64100× 10−2 0
0.3 7.89170× 10−4 4.88261× 10−2 2.95774× 10−2 0
0.4 1.13069× 10−3 6.04406× 10−2 3.63960× 10−2 0
0.5 1.49445× 10−3 6.45455× 10−2 3.60909× 10−2 0
0.6 1.87697× 10−3 5.84157× 10−2 3.03835× 10−2 0
0.7 2.27584× 10−2 3.97032× 10−2 2.15300× 10−2 0
0.8 2.68925× 10−2 6.79901× 10−3 1.17235× 10−2 0
0.9 3.11582× 10−2 4.07493× 10−2 2.96446× 10−3 0
1.0 3.55442× 10−2 1.01834× 10−1 2.95048× 10−3 0

Applying the approach described in this paper, we determine the approximate
solutions. For this case, we can find that ψm(x) yields the exact solution only by setting
m = 3. We present our numerical results obtained by proposed Taylor expansion
method for m = 1, 2, 3 and the results obtained in [30] in Tables 6 and 7.

Example 5.5. Consider the following system of fractional integro-differential equations

D
3
4ψ1(x)−

∫ x

0

ψ1(t) + ψ2(t)√
x− t

dt = −16x 5
2

15 − 32x 7
2

35 + 32x 5
4

5Γ(1
4) ,

D
1
2ψ2(x)−

∫ x

0

ψ1(t) + ψ2(t)
(x− t) 2

3
dt = −27x 7

3

14 + 16x 5
2

5
√
π
− 243x 10

3

140 ,

in which the initial conditions are chosen all to be zero and the exact solutions are
ψ1(x) = x2 and ψ2(x) = x3.

Based on the proposed method in Section 3, we obtain the approximate results by
setting m = 1, 2, 3 and we observe that the third-order approximate solution yields the
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Table 6. Absolute errors of Example 5.4 for ψ1(x).

x Method in [30] Suggested method
m = 1 m = 2 m = 3

0.1 1.96792× 10−4 1.66987× 10−2 4.37610× 10−3 0
0.2 6.85268× 10−4 4.54650× 10−2 1.69027× 10−3 0
0.3 1.42175× 10−3 7.48952× 10−2 1.70008× 10−3 0
0.4 2.38624× 10−3 9.69101× 10−2 3.93799× 10−3 0
0.5 3.56576× 10−3 1.05439× 10−1 4.52983× 10−3 0
0.6 4.95084× 10−3 9.62850× 10−2 3.55933× 10−3 0
0.7 6.53406× 10−3 6.71607× 10−2 1.36667× 10−3 0
0.8 8.30938× 10−3 1.77783× 10−2 1.59402× 10−3 0
0.9 1.02717× 10−2 5.00357× 10−2 4.82795× 10−3 0
1.0 1.24167× 10−2 1.32209× 10−1 7.84433× 10−3 0

Table 7. Absolute errors of Example 5.4 for ψ2(x).

x Method in [30] Suggested method
m = 1 m = 2 m = 3

0.1 8.20450× 10−4 1.35222× 10−1 4.98795× 10−2 0
0.2 1.58553× 10−3 1.88478× 10−1 8.22827× 10−2 0
0.3 2.41026× 10−3 2.17328× 10−1 9.64328× 10−2 0
0.4 3.30743× 10−3 2.25836× 10−1 9.56954× 10−2 0
0.5 4.28071× 10−3 2.16061× 10−1 8.41589× 10−2 0
0.6 5.33111× 10−3 1.89798× 10−1 6.57542× 10−2 0
0.7 6.45864× 10−3 1.49181× 10−1 4.42508× 10−2 0
0.8 7.66286× 10−3 9.71051× 10−2 2.32810× 10−2 0
0.9 8.94313× 10−3 3.76493× 10−2 6.32948× 10−3 0
1.0 1.02987× 10−2 2.34213× 10−2 3.30327× 10−3 0

exact solution as expected. In the following, our results for m = 1, 2, 3 at equidistant
points in [0, 1] are tabulated in Tables 8 and 9.

Table 8. Absolute errors of Example 5.5 for ψ1(x).

x m = 1 m = 2 m = 3
0.1 4.39572× 10−4 5.63735× 10−8 0
0.2 2.02649× 10−3 1.49505× 10−6 0
0.3 6.38129× 10−3 1.61418× 10−5 0
0.4 1.85611× 10−2 1.16368× 10−4 0
0.5 4.69815× 10−2 6.32737× 10−4 0
0.6 9.46103× 10−2 2.86770× 10−3 0
0.7 1.53109× 10−1 1.22967× 10−2 0
0.8 2.14122× 10−1 7.00457× 10−2 0
0.9 2.76101× 10−1 2.65058× 10−1 0
1.0 3.40830× 10−1 1.19614× 10−1 0
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Table 9. Absolute errors of Example 5.5 for ψ2(x).

x m = 1 m = 2 m = 3
0.1 1.17689× 10−4 2.02948× 10−5 0
0.2 1.61962× 10−3 1.53357× 10−4 0
0.3 9.65962× 10−3 4.69785× 10−4 0
0.4 3.89089× 10−2 8.58738× 10−4 0
0.5 1.13095× 10−1 4.68815× 10−4 0
0.6 2.40454× 10−1 4.31091× 10−3 0
0.7 3.98040× 10−1 2.88928× 10−2 0
0.8 5.63382× 10−1 1.89377× 10−1 0
0.9 7.33038× 10−1 7.60116× 10−1 0
1.0 9.12716× 10−1 3.53191× 10−1 0

6. Conclusion

In this paper, we have proposed an approximate method for solving systems of
fractional integro-differential equations. In the proposed technique, the SFIDE to
be solved, has been converted into integral equations. Then Taylor expansion for
unknown functions and integration method have employed to convert the resulting
integral equations into a system of linear equations with respect to unknown functions
and their derivatives. By applying a standard method the resulting system has been
solved. In particular for such cases when the exact solutions are polynomial functions
of degree up to m, the derived mth-order approximations are exact.
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