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SOME BORDERENERGETIC AND EQUIENERGETIC GRAPHS
SAMIR K. VAIDYA! AND KALPESH M. POPAT?

ABSTRACT. The sum of absolute values of eigenvalues of a graph G is defined as
energy of graph. If the energies of two non-isomorphic graphs are same then they
are called equienergetic. The energy of complete graph with n vertices is 2(n — 1)
and the graphs whose energy is equal to 2(n — 1) are called borderenergetic graphs.
It has been revealed that the graphs upto 12 vertices are borderenergetic. It is very
challenging and interesting as well to search for borderenergetic graphs with more
than 14 vertices. The present work is leap ahead in this direction as we have found
a family of borderenergetic graphs of arbitrarily large order. We have also obtained
three pairs of equienergetic graphs.

1. INTRODUCTION

For standard terminology and notations in graph theory we follow West [19] while
the terms related to algebra are used in sense of Lang [11].

Let G be a connected undirected simple graph with vertex set V(G) = {vy,ve,. ..,
vp}. The adjacency matriz denoted by A(G) of G is defined to be A(G) = [a;;], such
that, a;; = 1 if v; is adjacent with v;, and 0 otherwise.

The eigenvalues of A are called the eigenvalues of G. If A\, Ao, ..., A\, are eigenvalues
of GG then
(M A A
spec(G) = <m1 S mn> :

The energy E(G) of graph G is the sum of all absolute values of eigenvalues of
G. The concept of energy of graph was introduced by Gutman [7] in 1978. A brief
account on energy of graph can be found in Cvetkovi¢ [2] and Li [12].
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The graphs of order n, whose energy exceeds than the energy of the complete graph
K, are called hyperenergetic graphs otherwise graphs of order n with E(G) < E(K,),
are called non-hyperenergetic. As mentioned in Gutman [7] E(K,) = 2(n — 1). Are
there any graphs other than K,, with such behaviour?

This question motivated Gong et al. [6] to introduce a new concept. According to
them, the graph G of order n satisfying F(G) = 2(n — 1) are called borderenergetic.
Obviously, the complete graph K, is borderenergetic. Gong et al. [6] have proved
that such graphs exist for n = 7,8,9. Li et al. [13] and Shao et al. [15] have obtained
the graphs with n = 10 and n = 11 respectively while Furtula and Gutman [4]
have obtained the graphs with n = 12. A family of non-regular and non-integral
borderenergetic graphs with particular behaviour were investigated by Hou and Tao
[16]. Some new families of borderenergetic graphs were obtained by Jahfar et al. [10].
Recently, a survey on borderenergetic graphs was published by Ghorbani et al. [5].

We will introduce some concepts and also state some existing results for our ready
reference.

Definition 1.1. The shadow graph D(G) of a connected graph G is constructed by
taking two copies of G say G' and G”. Join each vertex v’ in G’ to the neighbors of
the corresponding vertex u” in G”.

Proposition 1.1 ([17]). If A1, Mg, ..., A, be eigenvalues of G, then 2n eigenvalues of
Dy(G) are 2X1,2Xa, ..., 2\, 0 (n times).

Proposition 1.2 ([3]). Let
ci

A Ay
be a symmetric block matriz. Then the spectrum of A is the union of spectra of Ag+ Ay

and AO — Al.

Definition 1.2. The extended shadow graph D3(G) of a connected graph G is con-
structed by taking two copies of G say G’ and G”. Join each vertex v’ in G’ to the
neighbours of the corresponding vertex «” and with «” in G”.

A curious question: How the energy of a given graph G can be correlated
with the larger graph obtained by means of graph operations on G?7 To
quench this thirst we have considered shadow graph and extended shadow graph as
these graphs are of same order but they are non isomorphic. Due to this specific
characteristic, the said graphs are used to construct non-co spectral equienergetic
graphs by constructing shadow graph of extended shadow graph as well as extended
shadow graph of shadow graph.

2. ENERGY OF EXTENDED SHADOW GRAPH

Theorem 2.1. Let G be a graph with eigenvalues A1, \a, . .., Ap, with |\;| > % for all
1 <i < n, then E(D3(G)) = 2E(G) +n+ 0, where 0 is the difference between the
number of positive and negative eigenvalues of G.
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Proof. Let vy,vs,...,v, be the vertices of graph G. Then the A(G) is given by

U1 () Vg - Un

v1 [0 a2 a3z - am,
v2 a1 0 a - ag,
AG)= vz |az azx 0 - ag|.
Up LAn1 An2 Aap3 e 0
Consider a second copy of graph G with vertices uy, us,us, ..., u, and join u; with

neighbors of v; and with v;, 1 <7 < n, to obtain D}(G). Then the A(D;(G)) can be
written as a block matrix as follows

(%1 V2 U3 s Un Ui u2 us . Un
vy [0 a2 a3z -+ ap : 1 a2 a3z -+ ap]
v2 |a2r 0 a3 - ag, | a21 1 axs -+ aoy
vz |a31 azx 0 cee o asp : azgr azz 1 - az,

I :
I .
Un an1 Ap2  Gp3 te 0 : an1 An2  Ap3 te 1
* _
apseny= LT T .
Ul 1 a2 a3 -+ ain : 0 a2 a3z - aip
uz | a1 1 a3 -+ agzy | a2t 0 as a2n
uz |asr  ass 1 R : az1 azz 0 a3n
| )
|
Up Lapi an2  Gp3 ce 1 ! anil An2  Qp3 te 0 J

That is,

. A(G AG)+ 1
awyen = 4o, T

Hence, by Proposition 1.2 spectrum of Dj(G) is union of spectra of 2A(G) + I and
—1I. Therefore, if A1, \o, ..., A\, be eigenvalues of GG, then

e (2041 -1
spec(D3(G)) = < . n ) :
Suppose that |A;| > % for all 1 <i < n, then

1 A+ 2, i A >0,
)\14—’: 1 .
2 Al — 3, if A <O




938 S. K. VAIDYA AND K. M. POPAT

Here,

E(D3(G)) =>_[2x + 1]+ > [-]]
i=1 i=1

" 1
:2; )\i+2‘+n
1 1
Ai>0 Ai<0
1 1
Ai>0 Ai<0
1
=2 <Z|/\i|+2|)\i|)+2(Zl—Zl))—i—n

Ai>0 Ai<0 Ai>0 Ai<0
=2E(G) +n+0. O

The following corollary proves the existence of borderenergetic graph of arbitrarily
large order.

Corollary 2.1. E(D3(K, ) = E(Ky,). That is, D3(K,, ) is non complete borderen-
ergetic graph.

Proof. Consider complete bipartite graph K, ,, of 2n vertices then

n —-n 0
spec(Knn) = (1 1 2n—2>'

Now, D} (K, ) is a graph with 4n vertices and by Theorem 2.1 its spectrum is

. (2n+1 —-2n4+1 1 -1
(2.1) spec(D3 (K, ) = ( 1 1 on—2 2n ) ’
Also,
4n — 1 —1
(2.2) spec(Ky,) = < 1 dn— 1) :

Clearly from (2.1) and (2.2) D3(K,,,) and Ky, are non co-spectral and

B(D}(I,0)) = 3
=2n+1)+2n—-1)4+(2n—2)+2n
=8n—2=2(4n—1) = E(Ky,).

Thus, E(D;(K,,)) = E(Ky,). Hence, Dj(K,,) is non complete borderenergetic
graph. O
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3. EQUIENERGETIC GRAPHS

Definition 3.1. Two non-isomorphic graphs G; and G5 of same order are said to be
equienergetic if E(G1) = E(Gs).

In 2007 Ramane et al. have proved that there exists a pair of connected non-
cospectral, equienergetic graphs with n vertices for all n > 9.

Definition 3.2. The line graph L(G) of a graph G is the graph whose vertex set is
E(G) and two vertices are adjacent in L(G) whenever they are incident in G.

Harary [8] defined the concept of iterated line graphs. According to him if G
is graph and L'(G) = L(G) be its line graph, then L*(G) = L(L(G)), L*(G) =
L(LA(Q)), ..., L*G) = L(LF1(Q)), ...

Ramane et al. [14] have proved that if G; and G5 are regular graphs of same order,
then for k > 2, L*(G;) and L*(Gs), L¥(G,) and L*(G4) are equienergetic.

Definition 3.3. The cartesian product of graphs G and H is a graph, denoted as
G x H, whose vertex set is V(G) x V(H). Two vertices (u1,v;) and (ug,vy) are
adjacent if u; = uy and v1ve € E(H) or vy = vy and ujuy € E(G).

The following result gives the spectra of the Cartesian product of graphs.

Proposition 3.1 ([1]). Let Gy and Go are two graphs having spectra as piy, fio, . . . , fn,
and 01,09,...,0,,, respectively. Then spectra of G = G x Gy is pu; + 05, where
1=1,2,...,n1 and j =1,2,...,no.

Theorem 3.1. Let A\, Ag, ..., A\, be the eigenvalues of graph G. Then D3 (G x Ks)
and Dy(D3(G)) are noncospectral equienergetic if |\;| > 3 for 1 <i < n.

Proof. Let A1, \a, ..., A\, be eigenvalues of graph G. By Proposition 3.1

spec(G x Iy) = <A11+1 AQIA - )\n1+1 )\11—1 )\21—1 8 /\n1—1>'
According to Theorem 2.1,
31) spee(D3(G ¢ f) = (P78 T B ES Bl B,
Moreover, by Theorem 2.1,
spec(D5(G)) = <2A11+1 2>\21+1 B 2)\n1+1 —n1>

By Proposition 1.1,

(3.2) spec(Dq(D3(G)))

AN +2 44X +2 - 4N, +2 =2 0
1 1 1 n 2n)’
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If forall 1 <i<mn, |N\|> %, then

3 A+ 3, i >0,
Az+’: 3 .

if \; <0,

g
+

DN | —
I

! _
=
+

it \; <O0.

DN N[+ N N[

&
|
DO | —
|
0
>
+

From (3.1) and (3.2)

E(D3(G x K2)) =>_ 120+ 3|+ > _ 12X — 1| + 2n

=1 i=1

=2> |\ +—\+22\)\ y+2n
=1 =

2(
:Q(AZ 0(m+ +éo(\Ay ))
3)

+2< || — +Z(|Ay+ )+2n

Ai<0
=2(2( D N+ DN+ D1=> 1| +2n
)\10 Ai<0 Ai>0 Ai>0
E(

i+ = ‘+Z

Ai>0

“3l T -

Ai<0

A+2‘+Z

;<0

D + 2n

and

E(Dy(DY(G))) = 3" |4 + 2| + 20

i=1

—42\4A +*]+2n

=1

s

1
A + ‘ +2n
i >0 2

:4(A§0(\)\|+ >+Az<:0(|)\| )) +2n

1
)\i+2‘—|—z

;<0
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1
:4((2 Nl + > M) +3 (Z 1-> 1)) +2n
Ai>0 ;<0 Ai>0 ;<0

(3.4) = 4E(G) + 260 + 2n.
Hence, from (5) and (6), D;(G x K3) and Do(D3(G)) are noncospectral equienergetic
if])\i|2%for1§i§n O

Let D3*(G) be extended shadow graph of D3(G), i.e., D3*(G) = D;(D3(G)) and
if G be a bipartite graph, then it is well-known that the spectra of G is symmetric
about the origin, so half of the non-zero eigenvalues of G lies to the left and half lies
to the right of the origin. Therefore if G is a bipartite graph having all its eigenvalues
nonzero, the number of positive and negative eigenvalues of G' are same. Keeping this
into mind we have the following result.

Theorem 3.2. Let A\, Ao, ..., A, be eigenvalues of a bipartite graph G. Then D5 (QG)
and D3(Ds(G)) are noncospectral equienergetic if and only if |\;| > 2 for 1 <i < n.

Proof. Let A1, \a, ..., A\, be eigenvalues of bipartite graph G. By Theorem 2.1

\ 2041 2 +1 -0 20, +1 —~1
spec(D3(G)) = ( 11 21 1 n )
and
» AN +3 d+3 - 4N +3 -1
(3.5) spec(D3*(G)) = ( 11 21 1 3n> '
Moreover, by Proposition 1.1,
2\1 2X -+ 2), O
spec(Dy(G)) = ( 11 12 e 1 n) '
By Theorem 2.1,
. AM+1 4 +1 e A+ T -]
(3.6) spec(D3(D2(G))) = ( 11 21 1 n 2n> '

Clearly, from (3.5) and (3.6), D3*(G) and D;(Dy(G)) are non-co spectral graphs. As
G is bipartite graph we have,
dY1=> 1

Ai>0 Ai<0
Assume that for all 1 <i <n, |\]| > %. Hence,

>\i+i’:{|)\i|+i’ it A >0,

49
From (3.5)

n 3n
E(D;*(G)) = Y 14N +3[ + > [-1]
=1 i=1
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n

:42

=1

:42

Ai +— ‘ + 3n
i >0 4

—4 Z(MH )+Z<m ))+3n

Ai>0 Ai<0

=4 (ZWHZW) (Z1-Zl))+3n

A >0 Ai<0 Ai>0 Ai<0

(3.7) = 4E(G) + 3n.

3
)\i—|—4’—|—3n

A+4‘+Z

;<0

Also if for all 1 < i < n, |[N| > % > i, then

4l | IM =1 ifa <o,

From (3.6)

n

E(D3(Dy(@))) => |4\ + 1| +n+2n

i=1

:4§
=4 Z

Ai>0

A—i—i‘)%—i’)n
—4(Z (M) + T

<|>\ = ) +3n
Ai>0 Ai<0

=4 <Z|)\,~|+Z|Ai|) (Z 1—21))+3n

Ai>0 Ai<0 Ai>0 <0

(3.8) — 4B(G) + 3n.

1
)\i—|—4‘+3n

A+4‘+Z

Ai<0

Thus, by (3.7) and (3.8), D3*(G) and Dj(D2(G)) are equienergetic graphs.
Conversely, suppose that the graphs D3*(G) and Dj(D(G)) are noncospectral
equienergetic. We will show that |A;| > % for 1 <i<n.
Assume to the contrary that let |A;] < 2 for some . Then for the same 1, ’)\i + %’ =

Ai + 3. Without loss of generality, suppose that the eigenvalues of G satisfy |\;| > 2,
for i = Jkand [\;] < 3, fori=k+1,k+2,...,n, since the eigenvalues are
real and reorderlng does not af‘fect the argument. We have the following cases to be
considered.
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CaseIIfAi>0fori:12

4

(3.9)

Case II If \; >0 for:=1,2,---

the number of zero eigenvalues
k

EﬂﬁWGDZES
=4

=4

>4

(3.10) =4 (

e
&

L 3
Z|)“+490>

=1

(3.11) :4(

(
l
(

Lkand \; >0fori=k+1,k+2,...,n

|4)\ + 3|+ Z |4\, +3\+Z|—1|
i=k+1

i+ = ’+Z

3
i+ = ’ + 3n
=k+1 4

Zkl (|A|+ >+_§n: (|Ai|+i>) +3n

i=k+1

k

D

=1

Z\)\1|+421>+3n

=1 =1

i=1

of G, we have

AN + 3[4+ > 4N+ 3|+ 3n

i=k+1
u 3
Z)\+4‘+ Ai+4D+3n
=1 i=k-+1
u 3
SCTESARED SN Y 4>) +3n
1=1 i=k+1

i=1 i=k+1

Zk:<|)\i\+i)+ 3 <|Ai\—i)> 4 3n

=1

Case [[[If)\i<0forz':1,2,..

|4A + 3] + Z 4N +3]+Z\—1\
i=k+1
" 3
PR + > Ai+4‘) +3n
i=1 i=k+1

k

2 IM—f Z (|Ai|+i))+3n

=1 i—=k+1

ykand \; <Ofori=k+1,k+2,---,

kEand \; >0fori=k+1,k+2,....n

943

n. If 6y is
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Case IVIft\; <Ofori=1,2,...,kand \; <Ofori=k+1,k+2,...,n
k

E(Dy (G Z|4>\ + 3| + Z |4\ +3|+Z]—1y
i=k+1
3
=4(> IN+= ’+Z Ai + ’ +3n
i=1 4l S 4
3
Z(m—)+ > (In=3)] +an
i=k+1 4
3
i=1
While
E(D3(D2(G))) = 4> |\il + 3,
i=1
which remain same in each of the above cases only if | ;| > i fori=k+1,k+2,...,n.

If [\i| < 3 fori=k+1,k+2,...,n, then we have the following.
Case[lf/\ >(0fori=1,2,. kzand)\»>0f0ri:k+1 k+2,....,n
k
E(D}(Dy(G Z|4)\ + 1] + Z |4N; + 1] + 3n

= i=k+1

~.

4l

=1

Ai + = ’+Z Ai + - ’ + 3n
4 i=k+1 4

i
(Zl <|A|+4) Z (mwi)) +3n
(

Il
S

k+1

n 1 n
Z]A@|+421>+3n

=1 =1

4

=1
Case I Tf \; >0fore=1,2,....,kand \; <Ofori=k+1,k+2,...,n, and if 4,
is the number of zero eigenvalues of GG, then we have

(3.13)

.

E(D(Ds(Q))) = zk; N1+ > 4+ 1] +3n

=1 i=k+1
i 1
:42/\+’+Z>\+‘+3n
i=1 1=k+1 4

oS () 3 () v

i=k+1
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>4(i(m+4)+ 3 (\M—D)%—Bn

=1 i=k+1
(3.14) - ( I\ — 90) + 3n.
=1

Case II If \; <O fori=1,2,...;)kand \; >0fori=k+1.k+2,....n

E(D(Ds(Q))) = zk; N1+ > 4+ 1] +3n

=1 i=k+1
k n 1
=4 (> |\ 4’ > Ai+4‘ +3n
i=1 i=k+1
b 1
=4 Z |\i| — Z (|M+4) + 3n
=1 i=k+1

4<Z|Ay+ 90>+3n

1=

[y

Case IVIt \; <Ofori=1,2,...,)kand \; <Ofori=k+1,k+2,...,n,

k
E(D;(DQ(G))):ZM)\ + 1]+ Z |4\ + 1| + 3n
i=k+1

Ai + = ‘+Z Ai + = ’ + 3n
4 i=k+1 4

> 4 f:(|x|—)+ 3 (1A1|—i))+3n

i=k+1
i 1
i=1
Clearly, in all the cases discussed above, we have E(D3*(G)) # E(D3(D:(G))), a
contradiction. Hence, the result follows. 0]

Corollary 3.1. If Gy and G4 are two equienergetic bipartite graphs with |\;| > %
and |p;| > 1 5, where \; and p; are the eigenvalues of Gy and Gy, respectively, for all
1 <i <n, then D3(G;) and D3(Gs) are non cospectral equienergetic.

Proof. Let \i, Aa, ..., A\, and puq, po, - . ., i, be eigenvalues of Gy and Gs, respectively.
Then by Theorem 2.1 spectrum of G; and G5 are given by

spec(D;(Gh)) = <2)\i 1 _1> , spec(D5(G2)) = <2Mn+ . _nl> :

n n
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Suppose that |A;| > % fori=1,2,...,n. Then

N 1’ ANi|+ 5, if A >0,
20 )N =L, if <o

29

Here,

E(D5(G1) = > 12A + 1]+ > |1
=1 =1

:22 )\Z-—i-l‘—i—n
=1 2
1 1
=2 Z)\i+2’+z )\i+2’)+n
Ai>0 Ai<0

—2( ¥ (I+5)+ &

1
(w - ) tn
i >0 A:i<0 2

=2 (ZWHZP\H)JF;(Z 1—Zl>)+n.

Ai>0 A <0 Ai>0 ;<0

As (5 is bipartite graph

dY1=> 1L

Ai>0 <0
for all 1 <17 <n, then

E(Dy(Ga)) = 2E(G2) + n.
Since, G and G are equienergetic graphs D3(G,) and Dj(G,) are equienergetic. [

Hence, E(D3(G))

Similarly, if || > 3

4. EXTENDED M-SHADOW GRAPH AND GRAPH ENERGY

Definition 4.1. The m-shadow graph D,,(G) of a connected graph G is constructed
by taking m copies of G, say G1,Ga,...,G,,, then join each vertex v in G; to the
neighbors of the corresponding vertex v in G, 1 <4,j < m. Vaidya and Popat [18]
have proved that E(D,,(G)) = mE(G).

Definition 4.2. The extended m-shadow graph D}, (G) of a connected graph G is
constructed by taking m copies of G, say G1, G, ..., G,,, then join each vertex u in
G to the neighbors of the corresponding vertex v and with v in G;, 1 <14,7 < m.

Definition 4.3. Let A € R™*", B € RP*%. Then the Kronecker product (or tensor
product) of A and B is defined as the matrix

anB -+ a1, B

A® B = : . : .
amiB - am.B
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Proposition 4.1 ([9]). Let A € M™ and B € M™. Furthermore, let X is an eigen-
values of matriz A with corresponding eigenvector x and p is an eigenvalue of matrix
B with corresponding eigenvector y. Then A is an eigenvalue of A ® B with corre-
sponding etgenvector x @ y.

Theorem 4.1. Let G be a graph with eigenvalues A1, Mg, ..., Ay with |A;| > mT_l, for
all1 <i <n. Then E(D!(G)) = mE(G) + (m — )n+ (m — 1)0, where 0 is the
difference between the number of positive and negative eigenvalues of G.

Proof. Let vy, vs,...,v, be the vertices of the graph . Then its adjacency matrix
of G is same as in the proof of Theorem 2.2. Consider m copies of graph G say
Gy, Gy, ..., Gy with vertices v}, v?, ... 0", 1 < i < n, to obtain D} (G) such that
each vertex v in Gj is joined to the neighbors of the corresponding vertex v as well
as with v in Gy, 1 < j, k < m. Then the A(D}, (G)) can be written as a block matrix

as follow

[ AG)  AG)+T -+ AG)+T]
A(D;,(G)) = A(G?” A(EG> A(G?+1 |
| AG)+ 1 AG)+ ] A@) |
(AT A+ e AG)+T]
ADE(G)) + Ly = | T A<G?+I AG)+1
| AG) 1T AG)+T - AG)+T |
1 1 1
1 1 1
R | e+
|1 1 1]

=Jn® (AG) +1).
Hence, by Proposition 4.1, if A\;, Ao, ..., A\, are eigenvalues of GG, then

spec(D;(G) + 1) = )

n mn—n
n mn—n

spec(Dy,(G)) =

n mn—n

m\+(m—1) -1 )



948 S. K. VAIDYA AND K. M. POPAT

Suppose that |A\;] > ™1 for all 1 <i < n. Then

m—1] N[+ 2=t 0N >0,
mo | N =2 N <O
Here,
n (m—1)n
E(D},(G)) = 2_ImAi+ (m — 1)| + Z 1]

=1

—|—71+( —1n

-1

=m ZA+’+ Ai+m— +(m—1)n

Ai>0 A;<0 m
=m| > <|/\i|+m_1>+ > (|)\z|—m_1> +(m—1)n

>\i>0 m /\i<0 m

m—1
=m [ N+ DN +—— (D 1=> 1| ]| +(m—1)n
Ai>0 Ai<0 m Ai>0 Ai<0

=mE(G)+ (m —1)n+ (m — 1)6. O

5. CONCLUDING REMARKS

The energy of extended shadow graph has been obtained and using it a new family
of non complete borderenergetic graphs and new pairs of non cospectral equienergetic
graphs have been investigated.
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