COMPACTNESS ESTIMATE FOR THE $\bar{\partial}$-NEUMANN PROBLEM
ON A q-PSEUDOCONVEX DOMAIN IN A STEIN MANIFOLD

SAYED SABER1 AND ABDULLAH ALAHMARI2

ABSTRACT. We consider a smoothly bounded q-pseudoconvex domain Ω in an n-dimensional Stein manifold X and suppose that the boundary $b\Omega$ of Ω satisfies $(q-P)$ property, which is the natural variant of the classical P property. Then, one proves the compactness estimate for the $\bar{\partial}$-Neumann operator $N_{r,s}$ in the Sobolev k-space. Applications to the boundary global regularity for the $\bar{\partial}$-Neumann operator $N_{r,s}$ in the Sobolev k-space are given. Moreover, we prove the boundary global regularity of the $\bar{\partial}$-operator on Ω.

1. INTRODUCTION AND MAIN RESULTS

The existence and regularity properties of the solutions of the system of Cauchy-Riemann equations $\bar{\partial}f = g$ on strongly pseudo-convex domains have been a central theme in the theory of several complex variables for many years. Classically many different approaches have been used: a) Vanishing of the $\bar{\partial}$-cohomology group, b) The abstract L^2-theory of the $\bar{\partial}$-Neumann problem, and c) The construction of rather explicit integral solution operators for $\bar{\partial}$, in analogy to the Cauchy transform in C^1. The first approach used by Grauert–Riemenschneider [6]. Saber [15], used this method and studied the solvability of the $\bar{\partial}$-problem with C^∞ regularity up to the boundary on a strictly q-convex domain of an n-dimensional Kähler manifold X. The second approach was first used by Kohn [11] in studying the boundary regularity of the $\bar{\partial}$-equation when Ω is pseudoconvex with C^∞ boundary. For solvability with regularity up to the boundary in a pseudoconvexity domain without corners, one refer to Kohn...
Zampieri [18] introduced a new type of notion of \(q \)-pseudoconvexity in \(\mathbb{C}^n \). Under this condition he proved local boundary regularity for any degree \(\geq q \). Other results in this direction belong to Heungju [10], Baracco-Zampieri [1] and Saber [16]. Thus the method of \(L^2 \) a priori estimates for the weighted \(\overline{\partial} \)-Neumann operator has yielded many important results on the local and global boundary regularity of the \(\overline{\partial} \)-problem. The integral formula approach was pioneered by Henkin [8] and Grauert-Lieb [7] for strictly pseudoconvex domains. They obtained uniform and Hölder estimates for the solution of \(\overline{\partial} \) on such domains. For the related results for \(\overline{\partial} \) on the pseudoconcave domains in \(\mathbb{P}^n \), see Henkin-Iordan [9].

In this paper, he compactness estimate proved in Khanh and Zampieri [17] is extended \(E \)-valued forms. Such compactness estimates immediately lead to very important qualitative properties of the \(\overline{\partial} \)-operator, such as smoothness of solutions and closed range. The main theorem generalizes Khanh and Zampieri [17] result to forms with values in a vector bundle. The proof starting with the known estimate on scalar differential forms and then obtains a similar estimate locally on bundle-valued forms using a local frame. Then, by using a partition of unity, we globalize this estimate at the cost of the constants. Consequently, we study the boundary regularity of the \(\overline{\partial} \)-equation, \(\overline{\partial}u = f \), for forms in a vector bundle on bounded \(q \)-pseudoconvex domain \(\Omega \) in a Stein manifold \(X \) of dimension \(n \). Moreover, some standard consequences of compactness are deduced.

2. \((q-P)\) PROPERTY

Let \(\Omega \) be a bounded domain of \(\mathbb{C}^n \) with \(C^1 \)-boundary \(b\Omega \) and \(\rho \) its a \(C^1 \)-defining function. An \((r,s)\)-form on \(\Omega \) is given by

\[
f = \sum_{I,J} f_{I,J} dz^I \wedge d\bar{z}^J,
\]

where \(I = (i_1, \ldots, i_r) \) and \(J = (j_1, \ldots, j_s) \) are multiindices and \(dz^I = dz_1 \wedge \cdots \wedge dz_r \), \(d\bar{z}^J = d\bar{z}_1 \wedge \cdots \wedge d\bar{z}_s \). Here, the coefficients \(f_{I,J} \) are functions (belonging to various function classes) on \(\Omega \). Then for two \((r,s)\)-forms

\[
f = \sum_{I,J} f_{I,J} dz^I \wedge d\bar{z}^J,
\]

\[
g = \sum_{I,J} g_{I,J} dz^I \wedge d\bar{z}^J.
\]

One defines the inner product and the norm as

\[
(f,g) = \sum_{I,J} f_{I,J} \overline{g_{I,J}},
\]

\[
|f| = (f,f).
\]

The notation \(\sum' \) means the summation over strictly increasing multiindices. This definition is independent of the choice of the orthonormal basis. Denote by \(C_{r,s}^\infty(\Omega) \)
the space of complex-valued differential forms of class C^∞ and of type (r, s) on Ω that are smooth up to the boundary and $D_{r,s}(U)$ denotes the elements in $C^\infty(\overline{\Omega})$ that are compactly supported in $U \cap \overline{\Omega}$. $L^2_{r,s}(\Omega)$ consists of the (r, s)-forms u satisfies
\[\|u\|^2 = \sum_{|I|=r, |J|=s} |u_{I,J}|^2 dV < \infty. \]

Let
\[\mathcal{D} : L^2_{r,s}(\Omega) \to L^2_{r,s+1}(\Omega) \]
be the maximal closed extension and
\[\mathcal{D}^* : L^2_{r,s}(\Omega) \to L^2_{r,s-1}(\Omega) \]
its Hilbert space adjoint. The Laplace-Beltrami operator $\Box_{r,s}$ is defined as
\[\Box_{r,s} = \overline{\partial} \partial + \overline{\partial}^* \overline{\partial} : \text{dom} \, \Box_{r,s} \to L^2_{r,s}(\Omega). \]

Let
\[\mathcal{H}^{r,s} = \{ \varphi \in \text{dom} \mathcal{D} \cap \text{dom} \mathcal{D}^* : \mathcal{D} \varphi = 0 \text{ and } \text{dom} \mathcal{D}^* \varphi = 0 \}. \]

One defines the $\bar{\partial}$-Neumann operator
\[N : L^2_{r,s}(\Omega) \to L^2_{r,s}(\Omega), \]
as the inverse of the restriction of $\Box_{r,s}$ to $(\mathcal{H}^{r,s})^\perp$. For nonnegative integer k, one defines the Sobolev k-space
\[W^k_{r,s}(\Omega) = \{ f \in L^2_{r,s}(\Omega) : \|f\|_k < +\infty \}, \]
where the Sobolev norm of order k is defined as
\[\|f\|^2_{W^k} = \int_{\Omega} \sum_{|\alpha| \leq k} |D^\alpha f|^2 dV, \]
\[D^\alpha = \left(\frac{\partial}{\partial x_1} \right)^{\alpha_1} \cdots \left(\frac{\partial}{\partial x_{2n}} \right)^{\alpha_{2n}}, \text{ for } \alpha = (\alpha_1, \ldots, \alpha_{2n}), |\alpha| = \sum \alpha_j, \]
and x_1, \ldots, x_{2n} are real coordinates for Ω. Detailed information on Sobolev spaces may be found for example in [4], [5]. Let p be a point in the boundary of Ω. Then one can choose a neighborhood U of p and a local coordinate system $(x_1, \ldots, x_{2n-1}, \rho) \in \mathbb{R}^{2n-1} \times \mathbb{R}$, satisfies the last coordinate is a local defining function of the boundary. Call $(U, (x, \rho))$ a special boundary chart. Denote the dual variable of x by ξ, and define
\[\langle x, \xi \rangle = \sum_{j=1}^{2n-1} x_j \xi_j. \]

The tangential Fourier transform for $f \in \mathcal{D}(\overline{\Omega} \cap U)$ is given in this special boundary chart by
\[\tilde{f}(\xi, \rho) = \int_{\mathbb{R}^{2n-1}} e^{-2\pi i \langle x, \xi \rangle} f(x, \rho) dx, \]
where \(dx = dx_1 \cdots dx_{2n-1} \). For each \(k \geq 0 \), the standard tangential Bessel potential operator \(\Lambda^k \) of order \(k \) (see e.g., Chen-Shaw [4], Section 5.2) is defined as

\[
(\Lambda^k f)(x, \rho) = \int_{\mathbb{R}^{2n-1}} e^{-2\pi i (x, \xi)} (1 + |\xi|^2)^{\frac{k}{2}} \hat{f}(\xi, \rho) d\xi.
\]

The tangential \(L^2 \)-Sobolev norm of \(f \) of order \(k \) is defined as

\[
|||f|||^2_{W^k_2(\Omega)} = ||\Lambda^k f||^2 = \int_{-\infty}^{0} \int_{\mathbb{R}^{2n-1}} (1 + |\xi|^2)^k |\hat{f}(\xi, \rho)|^2 d\xi d\rho.
\]

Clearly, for \(k > 0 \), this norm is weaker than the full \(L^2 \)-Sobolev norm of order \(k \), since it just measures derivatives in the tangential directions.

Let \(T^2 b\Omega \) be the complex tangent bundle to the boundary, \(L_{b\Omega} = (\rho_{ij})_{\tau^{c}M} \) the Levi form of \(b\Omega \) and \(\lambda_1 \leq \lambda_2 \leq \cdots \leq \lambda_{n-1} \) are the ordered eigenvalues of \(L_{b\Omega} \). For every positive number \(M \) and if \(\varphi^M \in C^\infty(\overline{\Omega} \cap V) \), one denote by

\[
\lambda^M_1 \leq \lambda^M_2 \leq \cdots \leq \lambda^M_{n-1}
\]

the ordered eigenvalues of the Levi form \((\varphi^M_{ij}) \). Choose an orthonormal basis of \((1,0)\)-forms \(\omega_1, \omega_2, \ldots, \omega_n = \partial \rho \) and the dual basis of \((1,0)\)-vector fields \(L_1, L_2, \ldots, L_n \); note that \(T^{1,0} \partial \Omega = \text{Span}\{L_1, L_2, \ldots, L_{n-1}\} \). We denote by \(\rho_j \) and \(\rho_{ij} \) the coefficients of \(\partial \rho \) and \(\partial \overline{\partial} \rho \) in this basis. Following Khanh and Zampieri [17] in Section 2, we have the following definitions.

Definition 2.1. \(b\Omega \) is called \(q \)-pseudoconvex in a neighborhood \(V \) of \(z_0 \) if there exist a bundle \(\Xi \subset T^{1,0} b\Omega \) of rank \(q_0 < q \) with smooth coefficients in \(V \), say the bundle of the first \(q_0 \) vector fields \(L_1, \ldots, L_{q_0} \) of our basis of \(T^{1,0} b\Omega \), satisfies

\[
\sum_{j=1}^{q} \lambda_j - \sum_{j=1}^{q_0} \rho_{jj} \geq 0 \quad \text{on} \quad b\Omega \cap V.
\]

Since \(\sum_{j=1}^{q_0} \rho_{jj} \) is the trace of the restricted form \((\rho_{jj})|_{\Xi} \), then Definition 2.1 depends only on the choice of the bundle \(\Xi \), not of its basis. Condition (2.1) is equivalent to

\[
\sum_{|I|=r}^{n-1} \sum_{i,j=1}^{n-1} \rho_{ij}u_{IiK}\overline{u}_{IjK} - \sum_{j=1}^{q_0} \rho_{jj}|u|^2 \geq 0,
\]

for any \((r, s)\) form \(u \) with \(s \geq q \). It is in this form that (2.1) will be applied. In some case, it is better to consider instead of (2.2), the variant

\[
\sum_{|I|=r}^{n-1} \sum_{i,j=1}^{n-1} \rho_{ij}u_{IiK}\overline{u}_{IjK} - \sum_{|I|=r}^{q_0} \sum_{j=1}^{q_0} \rho_{jj}|u_{IjK}|^2 \geq 0.
\]
It is obvious that if $L_{\Omega}|z$ is assumed to be diagonal, instead of less than or equal to 0, then the left side of (2.3) equals
\[
\sum_{|I|=r} \sum_{i,j=q_0+1}^{n-1} \rho_{ij} u_{i\bar{k}} \bar{u}_{i\bar{k}}.
\]
Thus, if $\overline{\nabla}$ is the Levi-orthogonal complement of Ξ, then (2.3) is equivalent to $L_{\Omega}|z \geq 0$. The condition in the definition below generalizes to domains which are not necessarily pseudoconvex, the celebrated P property by Catlin [3].

Definition 2.2. $b\Omega$ is said to has the $(q-P)$ property in V if for every positive number M there exists a function $\varphi^M \in C^\infty(\overline{\Omega} \cap V)$ with

(i) $|\varphi^M| \leq 1$ on Ω;
(ii) $\sum_{j=1}^{q} \lambda_j^M - \sum_{j=1}^{q_0} \varphi_{jj}^M \geq c \sum_{j=1}^{q_0} |\varphi_j^M|^2$ on $\overline{\Omega} \cap V$;
(iii) $\sum_{j=1}^{q} \lambda_j^M - \sum_{j=1}^{q_0} \varphi_{jj}^M \geq M$ on $b\Omega \cap V$,
where the constant $c > 0$ does not depend on M. (The point here is that (ii) holds in the whole $\overline{\Omega}$, (iii) only on $b\Omega$.)

There are obvious variants of (ii) and (iii) adapted to (2.3). Condition (iii) is a modification of (ii) in Definition 2 of [14]. The bigger flexibility of our condition consists in allowing subtraction of φ_{jj}^M for $j = 1, \ldots, q_0$. We say that a compact subset $F \subset b\Omega \cap V$ satisfies $(q-P)$ if and only if (iii) holds for any $z \in F$.

Theorem 2.1 ([13]). Let X be a complete manifold of complex dimension n with a Hermitian metric g and Ω be a bounded domain of X. Let $\Omega \Subset X$ be an submanifold with smooth boundary. Suppose the compactness estimate (3.1) holds on Ω. Suppose further that the $\overline{\partial}$-closed (r,s)-form α is in $W^k(\Omega)$ and $\alpha \perp \mathcal{H}^r$, there exists a constant C_k so that the canonical solution u of $\overline{\partial}u = \alpha$, with $u \perp \ker \overline{\partial}$ satisfies
\[
||u||_{W^k} \leq C_k(||\alpha||_{W^k} + ||u||).
\]
Since $C^\infty(\overline{\Omega}) = \cap_{k=0}^\infty W^k(\Omega)$, it follows that if $\alpha \in C^\infty_{r,s}(\overline{\Omega})$, then $u \in C^\infty_{r,s-1}(\overline{\Omega})$.

3. Solvability of $\overline{\partial}$ in C^a

Following Khanh and Zampieri [17], one obtains the following theorem.

Theorem 3.1. Let Ω be a smoothly bounded q-pseudoconvex domain in \mathbb{C}^n, and suppose that $b\Omega$ satisfies property $(q-P)$ in a neighborhood V of z_0. Then for every $\epsilon > 0$ there exists a function $C_\epsilon \in \mathcal{D}(\Omega)$ satisfying
\[
||u||^2 \leq \epsilon Q(u,u) + C_\epsilon ||u||^2_{W^{r-1}_{r,s}(\Omega)},
\]
for $u \in \mathcal{D}_{r,s}(\overline{\Omega} \cap V) \cap \text{dom } \overline{\partial}$ and for any $s \geq q$. Here
\[
Q(u,u) = ||\overline{\partial}u||^2 + ||\overline{\partial}^* u||^2 + ||u||^2,
\]
and $||u||_{W^{r-1}_{r,s}(\Omega)}$ is the Sobolev norm of order -1.
The same statement holds if \(q \)-pseudoconvexity is understood in the sense of the variant (2.3) and if \((q - P) \) property has the corresponding variants.

Definition 3.1. We will refer to (3.1) as a compactness estimate.

Theorem 3.2. Let \(\Omega \) be the same as in Theorem 3.1. Then, for \(f \in C^\infty_{r,s}(\overline{\Omega}) \), \(q \leq s \leq n - 2 \), satisfying \(\overline{\partial} f = 0 \), there exists \(u \in C^\infty_{r,s-1}(\overline{\Omega}) \), satisfies \(\overline{\partial} u = f \).

Proof. The proof follows from the estimate (3.1) and Theorem 2.1.

Property \((q - P) \) is related to the \(\overline{\partial} \)-Neumann problem by the following theorem.

Remark 3.1. It is easy to observe that (3.1) implies for \(u \in \text{dom} \Box_{r,s} \):

\[
\|u\|^2 \leq \varepsilon \|\Box_{r,s} u\|^2 + C\varepsilon \|u\|_{W^{2,1}_r(\Omega)}^2.
\]

We now discuss the global regularity for \(N_{r,s} \). From the estimate (3.1) one can derive a priori estimates for \(N_{r,s} \) in the Sobolev \(k \)-space.

Theorem 3.3. Let \(\Omega \) be the same as in Theorem 3.1. A compactness estimate implies boundedness of the \(\overline{\partial} \)-Neumann operator \(N_{r,s} \) in \(W^k_{r,s}(\Omega) \) for any \(k > 0 \).

Proof. By a standard fact of elliptic regularization, one sees that the global regularity for the \(\overline{\partial} \)-Neumann operator \(N_{r,s} \) holds if

\[
\|u\|_{W^k_{r,s}(\Omega)} \lesssim \|\Box_{r,s} u\|_{W^k_{r,s}(\Omega)},
\]

for any \(u \in C^\infty_{r,s}(\overline{\Omega}) \cap \text{dom} \Box_{r,s} \). Hence,

\[
\|u\|_{W^k_{r,s}(\Omega)}^2 \lesssim \|\Box_{r,s} u\|_{W^{k-2}_{r,s}(\Omega)}^2 + \|\Lambda^{k-1} Du\|_{W^{k-2}_{r,s}(\Omega)}^2,
\]

where \(\Lambda \) is the tangential differential operator of order \(k \). By Theorem 3.1, the estimate (3.1) implies that

\[
\|\Lambda^{k-1} Du\|_{W^{k-2}_{r,s}(\Omega)}^2 \lesssim Q(u, u) + C\|u\|_{W^{2,1}_r(\Omega)}^2.
\]

In fact, it follows by the non-characteristic with respect to the boundary of \(L_n \); the operator \(D \) can be understood as \(D_r \) or \(\Lambda \).

Now we estimate the last term of (3.3), we have

\[
\|\Lambda^{k-1} Du\|^2 \lesssim \|\Lambda^{k-1} \Lambda^k u\|^2 + C\|u\|_{W^{2,1}_r(\Omega)}^2
\]

\[
\lesssim Q(\Lambda^k u, \Lambda^k u) + C\|u\|^2_{W^{2,1}_r(\Omega)}
\]

\[
\lesssim < \Lambda^k \Box_{r,s} u, \Lambda^k u > + \|\overline{\partial}, \Lambda^k u\|^2 + \|\overline{\partial}, \Lambda^k u\|^2
\]

\[
+ \|\overline{\partial}, \Lambda^k u\|^2 + \|\overline{\partial}, \Lambda^k u\|^2 + C\|u\|^2_{W^{2,1}_r(\Omega)}
\]

\[
\lesssim \|\Lambda^k \Box_{r,s} u\|^2 + \|\Lambda^{k-1} Du\|^2 + \|\Lambda^{k-2} D^2 u\|^2 + C\|u\|^2_{W^{2,1}_r(\Omega)}
\]

\[
\lesssim \|\Box_{r,s} u\|^2_{W^{2,1}_r(\Omega)} + \|\Lambda^{k-1} Du\|^2 + C\|u\|^2_{W^{2,1}_r(\Omega)}.
\]
where the second inequality follows by (3.4). Then the term $\|\Lambda^{k-1}Dv\|^2$ can be absorbed by the left-hand side term. By induction method, we obtain the estimate (3.2).

\[\Box\]

Proposition 3.1. Let Ω be the same as in Theorem 3.1. Then the following are equivalent.

(i) The validity of global compactness estimates.

(ii) The embedding of the space $\text{dom} \mathcal{D} \cap \text{dom} \mathcal{D}^*$, provided with the graph norm

$$\|u\| + \|\mathcal{D}u\| + \|\mathcal{D}^* u\|,$$

into $L^2_{r,s}(\Omega)$ is compact.

(iii) The \mathcal{D}-Neumann operators

$$N_{r,s} : L^2_{r,s}(\Omega, E) \to L^2_{r,s}(\Omega, E),$$

for $q \leq s \leq n - 1$ are compact from $L^2_{r,s}(\Omega)$ to itself.

(iv) The canonical solution operators to \mathcal{D} given by

$$\mathcal{D}^* N_{r,s} : L^2_{r,s}(\Omega) \to L^2_{r,s-1}(\Omega),$$

$$N_{r,s+1} \mathcal{D}^* : L^2_{r,s+1}(\Omega) \to L^2_{r,s}(\Omega),$$

are compact.

\[\text{Proof.}\] The equivalence of (ii) and (i) is a result of Lemma 1.1 in [13]. The general L^2-theory and the fact that $L^2_{r,s}(\Omega)$ embeds compactly into $W^{-1}_{r,s}(\Omega)$ shows that (iii) is equivalent to (ii) and (i). Finally, the equivalence of (iii) and (iv) follows from the formula

$$N_{r,s} = (\mathcal{D}^* N_{r,s})^* \mathcal{D}^* N_{r,s} + \mathcal{D}^* N_{r,s+1} (\mathcal{D}^* N_{r,s+1})^*,$$

(see [4], page 55). We refer the reader to [14] for similar calculations.

\[\Box\]

4. **Solvability of \mathcal{D} in Stein manifold**

Let X be complex manifold of complex dimension n with a Hermitian metric g and Ω be a bounded domain of X. Let $\pi : E \to X$ be a vector bundle, of rank p, over X with Hermitian metric h. Let $\{U_j\}$, $j \in J$, be an open covering of X by charts with coordinates mappings $z_j : U_j \to \mathbb{C}^n$ satisfies $E|_{U_j}$ is trivial, namely $\pi^{-1}(U_j) = U_j \times \mathbb{C}$, and $(z_j^1, z_j^2, \ldots, z_j^n)$ be local coordinates on U_j. Let $\{\zeta_j\}_{j \in J}$ be a partition of unity subordinate to the holomorphic atlas (U_j, z_j), of X. We denote by $T_z X$ the tangent bundle of X at $z \in X$. An E-valued differential (r, s)-form u on X is given locally by a column vector $u = (u^1, u^2, \ldots, u^p)$, where u^a, $1 \leq a \leq p$, are \mathbb{C}-valued differential forms of type (r, s) on X. The spaces $C^\infty_r(X, E)$, $\mathcal{D}_r,s(X, E)$, $C^\infty_r(\overline{\Omega}, E)$, $\mathcal{D}_r,s(\overline{\Omega}, E)$ and $W^k_{r,s}(\Omega, E)$ are defined as in Section 2 but for E-valued forms. Let $L^2_{r,s}(\Omega, E)$ be the Hilbert space of E-valued differential forms u on Ω, of type (r, s), satisfies

$$\|u\|_\Omega = \sum_j \sum_{a=1}^p \|u^a\|_{U_j \cap \Omega} < \infty,$$
where \(\|u_0^a\|_{U_j \cap \Omega} \) is defined in (2.1). Let \(\overline{\mathcal{J}} : L^2_{r,s}(\Omega, E) \to L^2_{r,s+1}(\Omega, E) \) be the maximal closed extension of the original \(\mathcal{J} \) and \(\overline{\mathcal{J}}' : L^2_{r,s}(\Omega, E) \to L^2_{r,s-1}(\Omega, E) \) its Hilbert space adjoint. For \(k \in \mathbb{R} \), we define a \(W^k(X, E) \)-norm by the following:

\[
\|u\|_{k(X)}^2 := \sum_j \|\zeta_j u_j\|_{k(W_j)}^2,
\]

where \(W_j = z_j(U_j) \) and \(\sum_j \|\zeta_j u_j\|_{k(W_j)}^2 \) is defined as in the Euclidean case.

Theorem 4.1. Let \(\Omega \) be a smoothly bounded \(q \)-pseudoconvex domain in an \(n \)-dimensional Stein manifold \(X \), \(n \geq 3 \), and suppose that \(b\Omega \) satisfies property \((q-P)\) in a neighborhood \(V \) of \(z_0 \). Let \(E \) be a vector bundle, of rank \(p \), on \(X \). Then, for \(f \in C^\infty(\overline{\Omega}, E) \), \(q \leq s \leq n - 2 \), satisfying \(\mathcal{D} f = 0 \) in the distribution sense in \(X \), there exists \(u \in C^\infty_{r,s-1}(\Omega, E) \), satisfies \(\mathcal{D} u = f \) in the distribution sense in \(X \).

Proof. Let \(\{U_j\}_{j=1}^N \) be a finite covering of \(b\Omega \) by a local patching. Let \(e_1, e_2, \ldots, e_p \) be an orthonormal basis on \(E_z = \pi^{-1}(z) \), for every \(z \in U_j \), \(j \in J \). Thus, every \(E \)-valued differential \((r,s)\)-form \(u \) on \(X \) can be written locally, on \(U_j \), as

\[
u(z) = \sum_{a=1}^p u^a(z) e_a(z),
\]

where \(u^a \) are the components of the restriction of \(u \) on \(U_j \). Since \(b\Omega \) is compact, there exists a finite number of elements of the covering \(\{U_j\} \), say, \(U_j, j = 1, 2, \ldots, m \) satisfies \(\bigcup_{j=1}^m U_j \) cover \(b\Omega \). Let \(\{\zeta_j\}_{j=0}^m \) be a partition of the unity satisfies \(\zeta_0 \in \mathcal{D}_{r,s}(\Omega) \), \(\zeta_j \in \mathcal{D}_{r,s}(U_j) \), \(j = 1, 2, \ldots, m \), and

\[
\sum_{j=0}^m \zeta_j^2 = 1 \quad \text{on} \quad \overline{\Omega},
\]

where \(\{U_j\}_{j=1, \ldots, m} \) is a covering of \(b\Omega \). Let \(U \) be a small neighborhood of a given boundary point \(\zeta_0 \in b\Omega \) satisfies \(U \in V \subseteq U_{j_0} \), for a certain \(j_0 \in I \). If \(u \in \mathcal{D}_{r,s}(\Omega, E) \), \(0 \leq r \leq n \), \(q \leq s \leq n - 2 \), on applying the compactness estimate of Khanh and Zampieri [17] to each \(u^a \) and adding for \(a = 1, \ldots, p \), one gets compactness estimate for \(u|_{\Omega \cap U} \)

\[
\|\zeta_0 u\|^2 \lesssim \epsilon Q(\zeta_0 u, \zeta_0 u) + C_c \|\zeta_0 u\|_{W^{r-1}_{s+1}(\Omega)}^2
\]

\[
\lesssim \epsilon Q(u, u) + C_c \|u\|_{W^{r-1}_{s+1}(\Omega)}^2.
\]

Similarly, for \(j = 1, \ldots, m \), we obtain compactness estimate for \(u|_{\Omega \cap U_j} \)

\[
\|\zeta_j u\|^2 \lesssim \epsilon Q(\zeta_j u, \zeta_j u) + C_c \|\zeta_j u\|_{W^{r-1}_{s+1}(\Omega)}^2
\]

\[
\lesssim \epsilon Q(u, u) + C_c \|u\|_{W^{r-1}_{s+1}(\Omega)}^2.
\]

Summing up over \(j \), we obtain

\[
\|u\|^2 \lesssim \epsilon Q(u, u) + C_c \|u\|_{W^{r-1}_{s+1}(\Omega)}^2.
\]

Thus the proof follows by using Theorem 2.1 and the compactness estimate (4.2). \(\square \)
Theorem 4.2. Denote by Ω, E and X as in Theorem 4.1. A compactness estimate (4.2) implies boundedness of the $\overline{\mathcal{J}}$-Neumann operator $N_{r,s}$ in $W^{k}_{r,s}(\Omega, E)$ for any $k > 0$.

Proof. By a standard fact of elliptic regularization, one sees that the boundary global regularity for the ∂-Neumann operator $N_{r,s}$ holds if

$$
\|u\|_{W^{k}} \lesssim \|\Box_{r,s} u\|_{W^{k}},
$$

for any $u \in C^\infty_{r,s}(\overline{\Omega}, E) \cap \text{dom } \Box_{r,s}$ and for any positive integer k. As in the proof of Theorem 4.1, let U be a small neighborhood of a given boundary point $\zeta_0 \in \partial \Omega$ satisfies $U \Subset V \Subset U_{j_0}$, for a certain $j_0 \in I$. If $u \in \mathcal{D}_{r,s}(\Omega, E)$, $0 \leq r \leq n$, $q \leq s \leq n - 2$, on applying the estimate (3.2) to each u^a and adding for $a = 1, \ldots, p$, one gets compactness estimate for $u|_{\Omega \cap U}$

$$
\|\zeta_0 u\|_{W^{k}} \lesssim \|\Box_{r,s} \zeta_0 u\|_{W^{k}}.
$$

Similarly, for $j = 1, \ldots, m$, one gets compactness estimate for $u|_{\Omega \cap U_j}$

$$
\|\zeta_j u\|_{W^{k}} \lesssim \|\Box_{r,s} \zeta_j u\|_{W^{k}} \lesssim \|\Box_{r,s} u\|_{W^{k}}.
$$

Summing up over j, we obtain

$$
\|u\|_{W^{k}} \lesssim \|\Box_{r,s} u\|_{W^{k}}.
$$

Thus the proof follows. \hfill \Box

As in Proposition 3.1, one can prove the following proposition.

Proposition 4.1. Denote by Ω, E and X as in Theorem 4.1. Then the following are equivalent.

(i) The compactness estimates are valid.

(ii) The embedding of $\text{dom } \overline{\mathcal{J}} \cap \text{dom } \overline{\mathcal{J}^*}$, with the graph norm

$$
\|u\| + \|\overline{\mathcal{J}} u\| + \|\overline{\mathcal{J}^*} u\|
$$

into $L^2_{r,s}(\Omega, E)$ is compact.

(iii) The $\overline{\mathcal{J}}$-Neumann operator

$$
N_{r,s} : L^2_{r,s}(\Omega, E) \longrightarrow L^2_{r,s}(\Omega, E),
$$

for $q \leq s \leq n - 1$ is compact from $L^2_{r,s}(\Omega, E)$ to itself.

(iv) The canonical solution operators to $\overline{\mathcal{J}}$ are given by

$$
\overline{\mathcal{J}^*} N_{r,s} : L^2_{r,s}(\Omega, E) \longrightarrow L^2_{r,s-1}(\Omega, E),
$$

$$
N_{r,s+1} \overline{\mathcal{J}^*} : L^2_{r,s+1}(\Omega, E) \longrightarrow L^2_{r,s}(\Omega, E),
$$

are compact.
References

1Department of Mathematics and Computer Science, Faculty of Science, Beni-Suef University, Egypt

Email address: sayedkay@yahoo.com

2Department of Mathematical Sciences, Faculty of Applied Sciences, Umm Al-Qura University, Saudi Arabia

Email address: aaahmari@uqu.edu.sa