KRAGUJEVAC JOURNAL OF MATHEMATICS VOLUME 47(4) (2023), PAGES 627–636.

COMPACTNESS ESTIMATE FOR THE $\overline{\partial}$ -NEUMANN PROBLEM ON A Q-PSEUDOCONVEX DOMAIN IN A STEIN MANIFOLD

SAYED SABER¹ AND ABDULLAH ALAHMARI²

ABSTRACT. We consider a smoothly bounded q-pseudoconvex domain Ω in an ndimensional Stein manifold X and suppose that the boundary $b\Omega$ of Ω satisfies (q-P) property, which is the natural variant of the classical P property. Then, one prove the compactness estimate for the $\overline{\partial}$ -Neumann operator $N_{r,s}$ in the Sobolev kspace. Applications to the boundary global regularity for the $\overline{\partial}$ -Neumann operator $N_{r,s}$ in the Sobolev k-space are given. Moreover, we prove the boundary global regularity of the $\overline{\partial}$ -operator on Ω .

1. INTRODUCTION AND MAIN RESULTS

The existence and regularity properties of the solutions of the system of Cauchy-Riemann equations $\bar{\partial}f = g$ on strongly pseudo-convex domains have been a central theme in the theory of several complex variables for many years. Classically many different approaches have been used: a) Vanishing of the $\bar{\partial}$ -cohomology group, b) The abstract L^2 -theory of the $\bar{\partial}$ -Neumann problem, and c) The construction of rather explicit integral solution operators for $\bar{\partial}$, in analogy to the Cauchy transform in C^1 . The first approach used by Grauert-Riemenschneider [6]. Saber [15], used this method and studied the solvability of the $\bar{\partial}$ -problem with C^{∞} regularity up to the boundary on a strictly q-convex domain of an n-dimensional Kähler manifold X. The second approach was first used by Kohn [11] in studying the boundary regularity of the $\bar{\partial}$ -equation when Ω is pseudoconvex with C^{∞} boundary. For solvability with regularity up to the boundary in a pseudoconvexity domain without corners, one refer to Kohn

Key words and phrases. Stein manifold, q-pseudoconvex domain, compactness estimate, $\overline{\partial}$ -operator, $\overline{\partial}$ -Neumann operator.

²⁰¹⁰ Mathematics Subject Classification. Primary: 32F10. Secondary: 32W05. DOI

Received: April 27, 2020.

Accepted: October 12, 2020.

S. SABER AND A. ALAHMARI

[12]. Zampieri [18] introduced a new type of notion of q-pseudoconvexity in \mathbb{C}^n . Under this condition he proved local boundary regularity for any degree $\geq q$. Other results in this direction belong to Heungju [10], Baracco-Zampieri [1] and Saber [16]. Thus the method of L^2 a priori estimates for the weighted $\overline{\partial}$ -Neumann operator has yielded many important results on the local and global boundary regularity of the $\overline{\partial}$ -problem. The integral formula approach was pioneered by Henkin [8] and Grauert-Lieb [7] for strictly pseudoconvex domains. They obtained uniform and Hölder estimates for the solution of $\overline{\partial}$ on such domains. For the related results for $\overline{\partial}$ on the pseudoconcave domains in \mathbb{P}^n , see Henkin-Iordan [9].

In this paper, he compactness estimate proved in Khanh and Zampieri [17] is extended *E*-valued forms. Such compactness estimates immediately lead to very important qualitative properties of the $\overline{\partial}$ -operator, such as smoothless of solutions and closed range. The main theorem generalizes Khanh and Zampieri [17] result to forms with values in a vector bundle. The proof starting with the known estimate on scalar differential forms and then obtains a similar estimate locally on bundlevalued forms using a local frame. Then, by using a partition of unity, we globalize this estimate at the cost of the constants. Consequently, we study the boundary regularity of the $\overline{\partial}$ -equation, $\overline{\partial}u = f$, for forms in a vector bundle on bounded qpseudoconvex domain Ω in a Stein manifold X of dimension n. Moreover, some standard consequences of compactness are deduced.

2.
$$(q - P)$$
 property

Let Ω be a bounded domain of \mathbb{C}^n with C^1 -boundary $b\Omega$ and ρ its a C^1 -defining function. An (r, s)-form on Ω is given by

$$f = \sum_{\substack{|I|=r\\|J|=s}}' f_{I,J} dz^I \wedge d\bar{z}^J,$$

where $I = (i_1, \ldots, i_r)$ and $J = (j_1, \ldots, j_s)$ are multiindices and $dz^I = dz_1 \wedge \cdots \wedge dz_r$, $d\bar{z}^J = d\bar{z}_1 \wedge \cdots \wedge d\bar{z}_s$. Here, the coefficients $f_{I,J}$ are functions (belonging to various function classes) on Ω . Then for two (r, s)-forms

$$f = \sum_{I,J}' f_{I,J} dz^I \wedge d\bar{z}^J,$$
$$g = \sum_{I,J}' g_{I,J} dz^I \wedge d\bar{z}^J.$$

One defines the inner product and the norm as

$$(f,g) = \sum_{I,J}' f_{I,J} \overline{g_{I,J}};$$
$$|f| = (f,f).$$

The notation Σ' means the summation over strictly increasing multiindices. This definition is independent of the choice of the orthonormal basis. Denote by $C_{rs}^{\infty}(\overline{\Omega})$

the space of complex-valued differential forms of class C^{∞} and of type (r, s) on Ω that are smooth up to the boundary and $\mathcal{D}_{r,s}(U)$ denotes the elements in $C^{\infty}_{r,s}(\overline{\Omega})$ that are compactly supported in $U \cap \overline{\Omega}$. $L^2_{r,s}(\Omega)$ consists of the (r, s)-forms u satisfies

$$||u||^{2} = \sum_{\substack{|I|=r\\|J|=s}} {}'|u_{I,J}|^{2} dV < \infty.$$

Let

$$\overline{\partial}: L^2_{r,s}(\Omega) \to L^2_{r,s+1}(\Omega)$$

be the maximal closed extension and

$$\overline{\partial}^* : L^2_{r,s}(\Omega) \to L^2_{r,s-1}(\Omega)$$

its Hilbert space adjoint. The Laplace-Beltrami operator $\Box_{r,s}$ is defined as

$$\Box_{r,s} = \overline{\partial}\overline{\partial}^* + \overline{\partial}^*\overline{\partial} : \operatorname{dom} \, \Box_{r,s} \to L^2_{r,s}(\Omega).$$

Let

$$\mathcal{H}^{r,s} = \{\varphi \in \operatorname{dom} \overline{\partial} \cap \operatorname{dom} \overline{\partial}^{\star} : \overline{\partial} \varphi = 0 \text{ and } \operatorname{dom} \overline{\partial}^{\star} \varphi = 0 \}$$

One defines the $\overline{\partial}$ -Neumann operator

$$N: L^2_{r,s}(\Omega) \to L^2_{r,s}(\Omega)$$

as the inverse of the restriction of $\Box_{r,s}$ to $(\mathcal{H}^{r,s})^{\perp}$. For nonnegative integer k, one defines the Sobolev k-space

$$W_{r,s}^k(\Omega) = \{ f \in L_{r,s}^2(\Omega) : \|f\|_k < +\infty \},\$$

where the Sobolev norm of order k is defined as

$$\|f\|_{W^k}^2 = \int_{\Omega} \sum_{|\alpha| \le k} |D^{\alpha} f|^2 dV,$$
$$D^{\alpha} = \left(\frac{\partial}{\partial x_1}\right)^{\alpha_1} \cdots \left(\frac{\partial}{\partial x_{2n}}\right)^{\alpha_{2n}}, \quad \text{for } \alpha = (\alpha_1, \dots, \alpha_{2n}), \ |\alpha| = \sum \alpha_j,$$

and x_1, \ldots, x_{2n} are real coordinates for Ω . Detailed information on Sobolev spaces may be found for example in [4], [5]. Let p be a point in the boundary of Ω . Then one can choose a neighborhood U of p and a local coordinate system $(x_1, \ldots, x_{2n-1}, \rho) \in \mathbb{R}^{2n-1} \times \mathbb{R}$, satisfies the last coordinate is a local defining function of the boundary. Call $(U, (x, \rho))$ a special boundary chart. Denote the dual variable of x by ξ , and define

$$\langle x,\xi\rangle = \sum_{j=1}^{2n-1} x_j\xi_j$$

The tangential Fourier transform for $f \in \mathcal{D}(\overline{\Omega} \cap U)$ is given in this special boundary chart by

$$\tilde{f}(\xi,\rho) = \int_{\mathbb{R}^{2n-1}} e^{-2\pi i \langle x,\xi \rangle} f(x,\rho) dx,$$

S. SABER AND A. ALAHMARI

where $dx = dx_1 \cdots dx_{2n-1}$. For each $k \ge 0$, the standard tangential Bessel potential operator Λ^k of order k (see e.g., Chen-Shaw [4], Section 5.2) is defined as

$$(\Lambda^{k} f)(x,\rho) = \int_{\mathbb{R}^{2n-1}} e^{-2\pi i \langle x,\xi \rangle} (1+|\xi|^{2})^{\frac{k}{2}} \tilde{f}(\xi,\rho) d\xi.$$

The tangential L^2 -Sobolev norm of f of order k is defined as

$$|||f|||_{W^k_{r,s}(\Omega)}^2 = ||\Lambda^k f||^2 = \int_{-\infty}^0 \int_{\mathbb{R}^{2n-1}} (1+|\xi|^2)^k |\tilde{f}(\xi,\rho)|^2 d\xi \, d\rho.$$

Clearly, for k > 0, this norm is weaker than the full L^2 -Sobolev norm of order k, since it just measures derivatives in the tangential directions.

Let $T^{\mathbb{C}}b\Omega$ be the complex tangent bundle to the boundary, $L_{b\Omega} = (\rho_{ij})|_{T^{\mathbb{C}}b\Omega}$ the Levi form of $b\Omega$ and $\lambda_1 \leq \lambda_2 \leq \cdots \leq \lambda_{n-1}$ are the ordered eigenvalues of $L_{b\Omega}$. For every positive number M and if $\varphi^M \in C^{\infty}(\overline{\Omega} \cap V)$, one denote by

$$\lambda_1^{\varphi^M} \le \lambda_2^{\varphi^M} \le \dots \le \lambda_{n-1}^{\varphi^M}$$

the ordered eigenvalues of the Levi form (φ_{ij}^M) . Choose an orthonormal basis of (1, 0)forms $\omega_1, \omega_2, \ldots, \omega_n = \partial \rho$ and the dual basis of (1, 0)-vector fields L_1, L_2, \ldots, L_n ; note
that $T^{1,0}\partial\Omega = \text{Span}\{L_1, L_2, \ldots, L_{n-1}\}$. We denote by ρ_j and ρ_{jj} the coefficients of $\partial \rho$ and $\partial \overline{\partial} \rho$ in this basis. Following Khanh and Zampieri [17] in Section 2, we have
the following definitions.

Definition 2.1. $b\Omega$ is called *q*-pseudoconvex in a neighborhood *V* of z_0 if there exist a bundle $\Xi \subset T^{1,0}b\Omega$ of rank $q_0 < q$ with smooth coefficients in *V*, say the bundle of the first q_0 vector fields L_1, \ldots, L_{q_0} of our basis of $T^{1,0}b\Omega$, satisfies

(2.1)
$$\sum_{j=1}^{q} \lambda_j - \sum_{j=1}^{q_0} \rho_{jj} \ge 0 \quad \text{on } b\Omega \cap V.$$

Since $\sum_{j=1}^{q_0} \rho_{jj}$ is the trace of the restricted form $(\rho_{jj})|_{\Xi}$, then Definition 2.1 depends only on the choice of the bundle Ξ , not of its basis. Condition (2.1) is equivalent to

(2.2)
$$\sum_{\substack{|I|=r\\|K|=s-1}}' \sum_{i,j=1}^{n-1} \rho_{ij} u_{IiK} \overline{u}_{IjK} - \sum_{j=1}^{q_0} \rho_{jj} |u|^2 \ge 0,$$

for any (r, s) form u with $s \ge q$. It is in this form that (2.1) will be applied. In some case, it is better to consider instead of (2.2), the variant

(2.3)
$$\sum_{\substack{|I|=r\\|K|=s-1}}' \sum_{i,j=1}^{n-1} \rho_{ij} u_{IiK} \overline{u}_{IjK} - \sum_{\substack{|I|=r\\|K|=s-1}}' \sum_{j=1}^{q_0} \rho_{jj} |u_{IjK}|^2 \ge 0.$$

630

It is obvious that if $L_{b\Omega}|_{\Xi}$ is assumed to be diagonal, instead of less than or equalo to 0, then the left side of (2.3) equals

$$\sum_{\substack{|I|=r\\|K|=s-1}}'\sum_{i,j=q_0+1}^{n-1}\rho_{ij}u_{IiK}\overline{u}_{IjK}.$$

Thus, if \neg is the Levi-orthogonal complement of Ξ , then (2.3) is equivalent to $L_{b\Omega}|_{\neg} \ge 0$. The condition in the definition below generalizes to domains which are not necessarily pseudoconvex, the celebrated P property by Catlin [3].

Definition 2.2. $b\Omega$ is said to have the (q - P) property in V if for every positive number M there exists a function $\varphi^M \in C^{\infty}(\overline{\Omega} \cap V)$ with

(i) $|\varphi^{M}| \leq 1$ on Ω ; (ii) $\sum_{j=1}^{q} \lambda_{j}^{\varphi^{M}} - \sum_{j=1}^{q_{0}} \varphi_{jj}^{M} \geq c \sum_{j=1}^{q_{0}} |\varphi_{j}^{M}|^{2}$ on $\overline{\Omega} \cap V$; (iii) $\sum_{j=1}^{q} \lambda_{j}^{\varphi^{M}} - \sum_{j=1}^{q_{0}} \varphi_{jj}^{M} \geq M$ on $b\Omega \cap V$,

where the constant c > 0 does not depend on M. (The point here is that (ii) holds in the whole $\overline{\Omega}$, (iii) only on $b\Omega$.)

There are obvious variants of (ii) and (iii) adapted to (2.3). Condition (iii) is a modification of (ii) in Definition 2 of [14]. The bigger flexibility of our condition consists in allowing subtraction of φ_{jj}^M for $j = 1, \ldots, q_0$. We say that a compact subset $F \subset b\Omega \cap V$ satisfies (q - P) if and only if (iii) holds for any $z \in F$.

Theorem 2.1 ([13]). Let X be a complex manifold of complex dimension n with a Hermitian metric g and Ω be a bounded domain of X. Let $\Omega \subseteq X$ be an submanifold with smooth boundary. Suppose the compactness estimate (3.1) holds on Ω . Suppose further that the $\overline{\partial}$ -closed (r, s)-form α is in $W^k(\Omega)$ and $\alpha \perp \mathcal{H}^{r,s}$, there exists a constant C_k so that the canonical solution u of $\overline{\partial}u = \alpha$, with $u \perp \ker \overline{\partial}$ satisfies

$$||u||_{W^k} \le C_k(||\alpha||_{W^k} + ||u||)$$

Since $C^{\infty}(\overline{\Omega}) = \bigcap_{k=0}^{\infty} W^k(\Omega)$, it follows that if $\alpha \in C^{\infty}_{r,s}(\overline{\Omega})$, then $u \in C^{\infty}_{r,s-1}(\overline{\Omega})$.

3. Solvability of $\overline{\partial}$ in \mathbb{C}^n

Following Khanh and Zampieri [17], one obtains the following theorem.

Theorem 3.1. Let Ω be a smoothly bounded q-pseudoconvex domain in \mathbb{C}^n , and suppose that $b\Omega$ satisfies property (q - P) in a neighborhood V of z_0 . Then for every $\epsilon > 0$ there exists a function $C_{\varepsilon} \in \mathcal{D}(\Omega)$ satisfying

(3.1)
$$||u||^2 \le \varepsilon Q(u, u) + C_{\varepsilon} ||u||^2_{W^{-1}_{r,s}(\Omega)},$$

for $u \in \mathcal{D}_{r,s}(\overline{\Omega} \cap V) \cap \operatorname{dom} \overline{\partial}^*$ and for any $s \ge q$. Here

$$Q(u, u) = \|\overline{\partial}u\|^2 + \|\overline{\partial}^*u\|^2 + \|u\|^2,$$

and $||u||_{W^{-1}_{rs}(\Omega)}$ is the Sobolev norm of order -1.

The same statement holds if q-pseudoconvexity is understood in the sense of the variant (2.3) and if (q - P) property has the corresponding variants.

Definition 3.1. We will refer to (3.1) as a compactness estimate.

Theorem 3.2. Let Ω be the same as in Theorem 3.1. Then, for $f \in C^{\infty}_{r,s}(\overline{\Omega})$, $q \leq s \leq n-2$, satisfying $\overline{\partial} f = 0$, there exists $u \in C^{\infty}_{r,s-1}(\overline{\Omega})$, satisfies $\overline{\partial} u = f$.

Proof. The proof follows from the estimate (3.1) and Theorem 2.1.

Property (q - P) is related to the $\overline{\partial}$ -Neumann problem by the following theorem.

Remark 3.1. It is easy to observe that (3.1) implies for $u \in \text{dom}\square_{r,s}$:

$$\left\|u\right\|^{2} \leq \varepsilon \left\|\Box_{r,s}u\right\|^{2} + C_{\varepsilon} \left\|u\right\|^{2}_{W^{-1}_{r,s}(\Omega)}$$

We now discuss the global regularity for $N_{r,s}$. From the estimate (3.1) one can derive a priori estimates for $N_{r,s}$ in the Sobolev k-space.

Theorem 3.3. Let Ω be the same as in Theorem 3.1. A compactness estimate implies boundedness of the $\overline{\partial}$ -Neumann operator $N_{r,s}$ in $W_{r,s}^k(\Omega)$ for any k > 0.

Proof. By a standard fact of elliptic regularization, one sees that the global regularity for the $\overline{\partial}$ -Neumann operator $N_{r,s}$ holds if

(3.2)
$$||u||_{W^k_{r,s}(\Omega)} \lesssim ||\Box_{r,s}u||_{W^k_{r,s}(\Omega)},$$

for any $u \in C^{\infty}_{r,s}(\overline{\Omega}) \cap \operatorname{dom} \Box_{r,s}$. Hence,

(3.3)
$$\|u\|_{W^{k}_{r,s}(\Omega)}^{2} \lesssim \|\Box_{r,s}u\|_{W^{k-2}_{r,s}(\Omega)} + \|\Lambda^{k-1}Du\|^{2},$$

where Λ is the tangential differential operator of order k. By Theorem 3.1, the estimate (3.1) implies that

(3.4)
$$\left\| D\Lambda^{-1} u \right\|^2 \lesssim Q(u, u) + C \left\| u \right\|_{W^{-1}_{r,s}(\Omega)}^2.$$

In fact, it follows by the non-characteristic with respect to the boundary of \bar{L}_n ; the operator D can be understood as D_r or Λ .

Now we estimate the last term of (3.3), we have

$$\begin{split} \|\Lambda^{k-1}Du\|^{2} &\lesssim \|D\Lambda^{-1}\Lambda^{k}u\|^{2} + C\|u\|_{W^{k-1}_{r,s}(\Omega)}^{2} \\ &\lesssim Q(\Lambda^{k}u,\Lambda^{k}u) + C\|u\|_{W^{k-1}_{r,s}(\Omega)}^{2} \\ &\lesssim <\Lambda^{k}\Box_{r,s}u,\Lambda^{k}u > +\|[\overline{\partial},\Lambda^{k}]u\|^{2} + \|[\overline{\partial}^{*},\Lambda^{k}]u\|^{2} \\ &+ \|[\overline{\partial}^{*},[\overline{\partial},\Lambda^{k}]u\|^{2} + \|[\overline{\partial},[\overline{\partial}^{*},\Lambda^{k}]u\|^{2} + C\|u\|_{W^{k-1}_{r,s}(\Omega)}^{2} \\ &\lesssim \|\Lambda^{k}\Box_{r,s}u\|^{2} + \|\Lambda^{k-1}Du\|^{2} + \|\Lambda^{k-2}D^{2}u\|^{2} + C\|u\|_{W^{k-1}_{r,s}(\Omega)}^{2} \\ &\lesssim \|\Box_{r,s}u\|_{W^{k}_{r,s}(\Omega)}^{2} + \|\Lambda^{k-1}Du\|^{2} + C\|u\|_{W^{k-1}_{r,s}(\Omega)}^{2}, \end{split}$$

632

where the second inequality follows by (3.4). Then the term $\|\Lambda^{k-1}Du\|^2$ can be absorbed by the left-hand side term. By induction method, we obtain the estimate (3.2).

Proposition 3.1. Let Ω be the same as in Theorem 3.1. Then the following are equivalent.

(i) The validity of global compactness estimates.

(ii) The embedding of the space dom $\overline{\partial} \cap \text{dom } \overline{\partial}^*$, provided with the graph norm

$$||u|| + ||\overline{\partial}u|| + ||\overline{\partial}^*u||,$$

into $L^2_{r,s}(\Omega)$ is compact.

(iii) The $\overline{\partial}$ -Neumann operators

 $N_{r,s}: L^2_{r,s}(\Omega, E) \to L^2_{r,s}(\Omega, E),$

for $q \leq s \leq n-1$ are compact from $L^2_{r,s}(\Omega)$ to itself.

(iv) The canonical solution operators to ∂ given by

$$\partial^{*} N_{r,s} : L^{2}_{r,s}(\Omega) \to L^{2}_{r,s-1}(\Omega),$$
$$N_{r,s+1}\overline{\partial}^{*} : L^{2}_{r,s+1}(\Omega) \to L^{2}_{r,s}(\Omega),$$

- 9 (~)

- 9

are compact.

Proof. The equivalence of (ii) and (i) is a result of Lemma 1.1 in [13]. The general L^2 -theory and the fact that $L^2_{r,s}(\Omega)$ embeds compactly into $W^{-1}_{r,s}(\Omega)$ shows that (iii) is equivalent to (ii) and (i). Finally, the equivalence of (iii) and (iv) follows from the formula

$$N_{r,s} = (\overline{\partial}^* N_{r,s})^* \overline{\partial}^* N_{r,s} + \overline{\partial}^* N_{r,s+1} (\overline{\partial}^* N_{r,s+1})^*,$$

(see [4], page 55). We refer the reader to [14] for similar calculations.

4. Solvability of $\overline{\partial}$ in Stein manifold

Let X be complex manifold of complex dimension n with a Hermitian metric g and Ω be a bounded domain of X. Let $\pi : E \to X$ be a vector bundle, of rank p, over X with Hermitian metric h. Let $\{U_j\}, j \in J$, be an open covering of X by charts with coordinates mappings $z_j : U_j \to \mathbb{C}^n$ satisfies $E|_{U_j}$ is trivial, namely $\pi^{-1}(U_j) = U_j \times \mathbb{C}$, and $(z_j^1, z_j^2, \ldots, z_j^n)$ be local coordinates on U_j . Let $\{\zeta_j\}_{j\in J}$ be a partition of unity subordinate to the holomorphic atlas (U_j, z_j) , of X. We denote by $T_z X$ the tangent bundle of X at $z \in X$. An E-valued differential (r, s)-form u on X is given locally by a column vector $u = (u^1, u^2, \ldots, u^p)$, where $u^a, 1 \leq a \leq p$, are \mathbb{C} -valued differential forms of type (r, s) on X. The spaces $C_{r,s}^{\infty}(X, E), \mathcal{D}_{r,s}(X, E), \mathcal{D}_{r,s}(\overline{\Omega}, E), \mathcal{D}_{r,s}(\Omega, E)$ be the Hilbert space of E-valued differential forms u on Ω , of type (r, s), satisfies

$$\|u\|_{\Omega} = \sum_{j} \sum_{a=1}^{p} \|u_j^a\|_{U_j \cap \Omega} < \infty,$$

where $||u_j^a||_{U_j\cap\Omega}$ is defined in (2.1). Let $\overline{\partial} : L^2_{r,s}(\Omega, E) \to L^2_{r,s+1}(\Omega, E)$ be the maximal closed extension of the original $\overline{\partial}$ and $\overline{\partial}^* : L^2_{r,s}(\Omega, E) \to L^2_{r,s-1}(\Omega, E)$ its Hilbert space adjoint. For $k \in \mathbb{R}$, we define a $W^k(X, E)$ -norm by the following:

(4.1)
$$||u||_{k(X)}^2 := \sum_j ||\zeta_j u_j||_{k(W_j)}^2,$$

where $W_j = z_j(U_j)$ and $\sum_j \|\zeta_j u_j\|_{k(W_j)}^2$ is defined as in the Euclidean case.

Theorem 4.1. Let Ω be a smoothly bounded q-pseudoconvex domain in an of ndimensional Stein manifold $X, n \geq 3$, and suppose that $b\Omega$ satisfies property (q - P)in a neighborhood V of z_o . Let E be a vector bundle, of rank p, on X. Then, for $f \in C^{\infty}_{r,s}(\overline{\Omega}, E), q \leq s \leq n-2$, satisfying $\overline{\partial} f = 0$ in the distribution sense in X, there exists $u \in C^{\infty}_{r,s-1}(\overline{\Omega}, E)$, satisfies $\overline{\partial} u = f$ in the distribution sense in X.

Proof. Let $\{U_j\}_{j=1}^N$ be a finite covering of $b\Omega$ by a local patching. Let e_1, e_2, \ldots, e_p be an orthonormal basis on $E_z = \pi^{-1}(z)$, for every $z \in U_j$, $j \in J$. Thus, every *E*-valued differential (r, s)-form u on X can be written locally, on U_j , as

$$u(z) = \sum_{a=1}^{p} u^a(z) e_a(z),$$

where u^a are the components of the restriction of u on U_j . Since $b\Omega$ is compact, there exists a finite number of elements of the covering $\{U_j\}$, say, U_j , j = 1, 2, ..., m satisfies $\bigcup_{\nu=1}^m U_{j_{\nu}}$ cover $b\Omega$. Let $\{\zeta_j\}_{j=0}^m$ be a partition of the unity satisfies $\zeta_0 \in \mathcal{D}_{r,s}(\Omega)$, $\zeta_j \in \mathcal{D}_{r,s}(U_j), j = 1, 2, ..., m$, and

$$\sum_{j=0}^{m} \zeta_j^2 = 1 \quad \text{on } \overline{\Omega},$$

where $\{U_j\}_{j=1,\ldots,m}$ is a covering of $b\Omega$. Let U be a small neighborhood of a given boundary point $\xi_0 \in b\Omega$ satisfies $U \Subset V \Subset U_{j_{\nu}}$, for a certain $j_{\nu} \in I$. If $u \in \mathcal{D}_{r,s}(\Omega, E)$, $0 \leq r \leq n, q \leq s \leq n-2$, on applying the compactness estimate of Khanh and Zampieri [17] to each u^a and adding for $a = 1, \ldots, p$, one gets compactness estimate for $u|_{\Omega \cap U}$

$$\begin{aligned} \|\zeta_0 u\|^2 &\lesssim \epsilon Q(\zeta_0 u, \zeta_0 u) + C_{\epsilon} \|\zeta_0 u\|^2_{W^{-1}_{r,s}(\Omega)} \\ &\lesssim \epsilon Q(u, u) + C_{\epsilon} \|u\|_{W^{-1}_{r,s}(\Omega)}. \end{aligned}$$

Similarly, for $j = 1, \ldots, m$, we obtain compactness estimate for $u|_{\Omega \cap U_i}$

$$\begin{aligned} \|\zeta_j u\|^2 &\lesssim \epsilon Q(\zeta_j u, \zeta_j u) + C_{\epsilon} \|\zeta_j u\|^2_{W^{-1}_{r,s}(\Omega)} \\ &\lesssim \epsilon Q(u, u) + C_{\epsilon} \|u\|^2_{W^{-1}_{r,s}(\Omega)}. \end{aligned}$$

Summing up over j, we obtain

(4.2)
$$\|u\|^2 \le \varepsilon Q(u,u) + C_{\varepsilon} \|u\|^2_{W^{-1}_{r,s}(\Omega)}$$

Thus the proof follows by using Theorem 2.1 and the compactness estimate (4.2). \Box

Theorem 4.2. Denote by Ω , E and X as in Theorem 4.1. A compactness estimate (4.2) implies boundedness of the $\overline{\partial}$ -Neumann operator $N_{r,s}$ in $W_{r,s}^k(\Omega, E)$ for any k > 0.

Proof. By a standard fact of elliptic regularization, one sees that the boundary global regularity for the $\overline{\partial}$ -Neumann operator $N_{r,s}$ holds if

 $\|u\|_{W^k} \lesssim \|\Box_{r,s} u\|_{W^k},$

for any $u \in C^{\infty}_{r,s}(\overline{\Omega}, E) \cap \operatorname{dom} \Box_{r,s}$ and for any positive integer k. As in the proof of Theorem 4.1, let U be a small neighborhood of a given boundary point $\xi_0 \in b\Omega$ satisfies $U \Subset V \Subset U_{j_{\nu}}$, for a certain $j_{\nu} \in I$. If $u \in \mathcal{D}_{r,s}(\Omega, E)$, $0 \leq r \leq n, q \leq s \leq n-2$, on applying the estimate (3.2) to each u^a and adding for $a = 1, \ldots, p$, one gets compactness estimate for $u|_{\Omega \cap U}$

$$\|\zeta_0 u\|_{W^k} \lesssim \|\Box_{r,s} \zeta_0 u\||_{W^k}.$$

Similarly, for $j = 1, \ldots, m$, one gets compactness estimate for $u|_{\Omega \cap U_i}$

 $\|\zeta_j u\||_{W^k} \lesssim \|\Box_{r,s}\zeta_j u\||_{W^k} \lesssim \|\Box_{r,s} u\||_{W^k}.$

Summing up over j, we obtain

$$||u|||_{W^k} \lesssim ||\Box_{r,s}u|||_{W^k}$$

Thus the proof follows.

As in Proposition 3.1, one can prove the following proposition.

Proposition 4.1. Denote by Ω , E and X as in Theorem 4.1. Then the following are equivalent.

- (i) The compactness estimates are valid.
- (ii) The embedding of dom $\overline{\partial} \cap \operatorname{dom} \overline{\partial}^*$, with the graph norm

$$\|u\| + \|\overline{\partial}u\| + \|\overline{\partial}^*u\|$$

into $L^2_{r,s}(\Omega, E)$ is compact.

(iii) The $\overline{\partial}$ -Neumann operator

$$N_{r,s}: L^2_{r,s}(\Omega, E) \longrightarrow L^2_{r,s}(\Omega, E),$$

for $q \leq s \leq n-1$ is compact from $L^2_{r,s}(\Omega, E)$ to itself. (iv) The canonical solution operators to $\overline{\partial}$ are given by

$$\overline{\partial}^* N_{r,s} : L^2_{r,s}(\Omega, E) \longrightarrow L^2_{r,s-1}(\Omega, E),$$
$$N_{r,s+1}\overline{\partial}^* : L^2_{r,s+1}(\Omega, E) \longrightarrow L^2_{r,s}(\Omega, E),$$

are compact.

S. SABER AND A. ALAHMARI

References

- L. Baracco and G. Zampieri, Regularity at the boundary for ∂ on Q-pseudoconvex domains, J. Anal. Math. 95 (2005), 45–61. https://doi.org/10.1007/BF02791496
- [2] L. Baracco and G. Zampieri, Boundary regularity for ∂ on q-pseudoconvex wedges of C^N, J. Math. Anal. Appl. **313**(1) (2006), 262–272. https://doi.org/10.1016/j.jmaa.2005.03.091
- [3] D. Catlin, Global regularity of the ∂-Neumann problem, Proc. Sympos. Pure Math. 41 (1984), 39–49.
- [4] S. C. Chen and M. C. Shaw, Partial Differential Equations in Several Complex Variables, American Mathematical Society, Providence, 2001.
- [5] G. B. Folland and J. J. Kohn, The Neumann Problem for the Cauchy-Riemann Complex, Princeton Univ. Press, Princeton, New Jersey, 1972.
- [6] H. Grauert and O. Riemenschneider, Kählersche mannigfaltigkeiten mit hyper-q-konvexem rand, Problems in Analysis: A Symposium in Honor of Salomon Bochner, Univ. Press Princeton, New Jersey, 1970, 61–79.
- [7] H. Grauert and I. Lieb, Das ramirezsche integral und die losung der gleichung $\overline{\partial} f = \alpha$ im bereich der beschrankten formen, in: Proceeding of Conference Complex Analysis, Rice University Studies **56** (1970), 29–50.
- [8] G. M. Henkin, Integral representation of functions in strictly pseudoconvex domains and applications to the ∂-problem, Mathematics of the USSR-Sbornik 7 (1969), 579-616. https://doi.org/10.1070/SM1970v011n02ABEH002069
- [9] G. M. Henkin and A. Iordan, Regularity of ∂ on pseudococave compacts and applications, Asian J. Math. 4 (2000) 855–884.
- [10] A. Heungju, Global boundary regularity for the ∂-equation on q-pseudoconvex domains, Mathematische Nachrichten 16 (2005), 5–9. https://doi.org/10.1002/mana.200410486
- [11] J. J. Kohn, Global regularity for ∂ on weakly pseudo-convex manifolds, Trans. Amer. Math. Soc. 181 (1973), 273–292.
- [12] J. J. Kohn, Methods of partial differential equations in complex analysis, Proc. Sympos. Pure Math. 30 (1977), 215–237.
- [13] J. J. Kohn and L. Nirenberg, Non-coercive boundary value problems, Comm. Pure Appl. Math. 18 (1965), 443-492. https://doi.org/10.1002/cpa.3160180305
- [14] J. D. McNeal, A sufficient condition for compactness of the ∂-Neumann operator, J. Funct. Anal. 195 (2002), 190-205. https://doi.org/10.1006/jfan.2002.3958
- [15] S. Saber, Global boundary regularity for the ∂-problem on strictly q-convex and q-concave domains, Complex Anal. Oper. Theory 6 (2012), 1157-1165. https://doi.org/10.1007/ s11785-010-0114-1
- [16] S. Saber, The ∂ problem on q-pseudoconvex domains with applications, Math. Slovaca 63 (3) (2013), 521–530. https://doi.org/10.2478/s12175-013-0115-4
- [17] T. Vu Khanh and G. Zampieri, Compactness estimate for the ∂-Neumann problem on a Qpseudoconvex domain, Complex Var. Elliptic Equ. 57 (12) (2012), 1325–1337. https://doi.org/ 10.1080/17476933.2010.551196
- [18] G. Zampieri, q-pseudoconvexity and regularity at the boundary for solutions of the ∂-problem, Compos. Math. 121 (2000), 155–162. https://doi.org/10.1023/A:1001811318865

¹DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE, FACULTY OF SCIENCE, BENI-SUEF UNIVERSITY, EGYPT *Email address*: sayedkay@yahoo.com

²DEPARTMENT OF MATHEMATICAL SCIENCES, FACULTY OF APPLIED SCIENCES, UMM AL-QURA UNIVERSITY, SAUDI ARABIA *Email address*: aaahmari@uqu.edu.sa