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CHARACTERIZATION OF GRAPHS OF CONNECTED DETOUR
NUMBER 2

GASHAW A. MOHAMMEDSALEH1

Abstract. Let G = (V, E) be a connected graph of order P (G) ≥ 2. The con-
nected detour number of G, denoted cdn(G), is introduced and studied by A. P.
Santhakumaran and S. Athisayanathan [7]. In this paper, we characterize connected
graph G of cdn(G) = 2 and of detour diameter D(G) = 5, 6.

1. Introduction

Let G = (V,E) be a connected simple graph of p vertices and q edges. We assume
that p ≥ 2 and it is finite. For u, v ∈ V (G), the length of a maximum u− v path is
called detour distance between u and v, and denoted by D(u, v). A u− v path of
length D(u, v) is called u-v detour . For a vertex v ∈ V , the detour eccentricity
eD(v) is defined by:

eD (v) = max {D (u, v) : u ∈ V } ,
diamD (G) = max {eD (v) : v ∈ V (G)} .

A vertex w ∈ V (G) is said to lie on a u − v detour Q, if w is a vertex of V (Q)
including u and v. A detour set (denoted d.s.) of G is a subset S of V (G) such that
every vertex v of G lies on x− y detour for some x, y ∈ S. The detour number of
G, denoted dn(G), is defined by:

dn (G) = min {|S| : S is a detour set of G}.

A detour basis of G is a detour set of order dn(G). If S is a detour set of G and
the induced subgraph G[S] is connected, then S is called connected detour set
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(denoted c.d.s.) of G. The connected detour number of G, denoted cdn(G), is
defined as:

cdn (G) = min {|S| : S is a connected detour set of G} .
A connected detour basis of G is a connected detour set of G of order cdn(G). For the
definitions of the concepts not given here, we refer to [1,3–7]. There are many research
on connected detour number and edge detour graphs (see [8–10]). Ahmed and Ali
[2], determined detour number for three special classes of graphs G, namely, unicyclic
graphs, bicyclic graphs, and cog-graphs for Cp, Kp and Km,n. In [7], the authors
A. P. Santhakumaran and S. Athisayanathan characterized connected graphs G of
cdn (G) = 2 andD (G) ≤4. In this paper, we characterize graphs G ofD (G) = 5 and 6
for which cdn (G) = 2.

2. Characterizations of Graphs G with D(G) = 5 and cdn(G) = 2

We start with the following proposition for graphs G having cdn(G) = 2.

Proposition 2.1. Let G be a connected graph of order P (G) ≥ 3. If cdn (G) = 2,
then G contains neither end-vertices nor cut-vertices.

Proof. (1) If v is an end-vertex of G and u is the vertex adjacent to v, then v is a
cut-vertex, and G− {u, v} contains at least one vertex, say w. Since u and v are in
every c.d.s. of G; and uv is the only u − v detour, then {u, v} is not a c.d.s. of G
[7]. Thus, cdn(G) ≥ 3, contradicting the hypothesis. Therefore, G does not contain
end-vertices.

(2) Now, assume that G contains a cut-vertex x and {x, y} is a connected detour
basis of G. By the proof of part (1), G contains no end-vertices, so y is not end-vertex.
Let H1 and H2 be components of G− {x}, and let y ∈ V (H1). Since P (G) ≥ 3, then
H2 contains at least one vertex. Clearly, every x− y detour does not contain vertices
from H2, contradicting the definition of d.s. Thus, G does not contain cut-vertices. �

Now we proceed to find graphs G with detour diameter D (G) = 5 for which
cdn (G) = 2.

Theorem 2.1. Let G be a connected graph of P (G) ≥ 6 and with D (G) = 5. Then,
cdn (G) = 2 if and only if G is a cycle graph C6, with or without any number of
chords, or like the graph Gi (i = 1, 2) depicted in Figure 1.

Proof. It is easy to verify that for C6 and for each Gi (i=1,2) D(C6) = D(Gi)=5 and
cdn (C6) = cdn (Gi) = 2, in which a, b is a detour basis of Gi.

To prove the converse, let G be a connected graph of P (G) ≥ 6 and with D (G) = 5,
cdn (G) = 2. Then, by Proposition 2.1, G does not contain end-vertices and cut-
vertices. Since D (G) = 5 and G is connected, then the circumference of G (denoted
by cir(G)) is 3 ≤ cir(G) ≤ 6. Therefore, we shall consider four cases for cir(G).
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Figure 1.

Case (1). Let cir (G) = 3 and P = (v1, v2, . . . , v6) is a v1− v6 detour diameter in G
(see Figure 2).

Figure 2. P for cir (G) = 3.

Then v1 is not adjacent to v4, v5, v6; and v6 is not adjacent to v2 and v3. Moreover, v1
and v6 are not adjacent to any vertex other than V (P ). Since deg vi = 2, (i = 1, . . . , 6),
then v1 must be adjacent to v3, and v6 must be adjacent to v4. By Proposition 2.1,
G contains no cut-vertices, therefore there is either a v2 − v5 path in G, or v2 − v4
path and v3− v5 path. Each of the two possibilities implies the existence of a cycle of
length ≥ 6 in G, contradicting our assumption. Thus, in this case there is no graph
that fulfills the required conditions.

Case (2). Let cir (G) = 4, and P = (v1, v2, . . . , v6) be a v1 − v6 detour diameter of
G (see Figure 3).

Figure 3.

Then v1 is not adjacent to v5 and v6; and v6 is not adjacent to v2. Thus, v1 is adjacent
to v3 or v4, and v6 is adjacent to v3 or v4. Therefore, we consider four subcases.

(a) If v1v3, v6v4 ∈ E (G) , then, as explained in case (1), cir(G) ≥ 6, a contradiction.
(b) If v1v3, v6v3 ∈ E(G), then either there is in G a v2 − v4 path or v2 − v5 path.

Each of the two possibilities produces a graph G having cir(G) ≥ 5; a contradiction.
(c) If v1v4, v6v4 ∈ E(G), then, as in subcase (b), we arrive to a contradiction.
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(d) If v1v4, v6v3 ∈ E(G), then G contains the 6-cycle (v1, v2, v3, v6, v5, v4, v1) and so
cir(G) ≥ 6, a contradiction.

Therefore, in case (2) there is no graph that satisfies the required conditions of the
theorem.

Case (3). Let cir (G) = 5 and P = (v1, v2, . . . , v6) is a v1− v6 detour diameter, then
v1 is not adjacent to v6, and each of v1, v6 is not adjacent to any vertex not in V (P ).
By Proposition 2.1, deg vi ≥ 2 (i = 1, 6). Therefore, we have consider the following
nine subcases.

Figure 4.

(a) If v1v5, v2v6 ∈ E(G), then such graph is like G1 with n = 0 and without the
edges u1u3, u2u4, in Figure 1.

(b) If v1v5, v3v6 ∈ E(G), then such graph is like G1 with n = 0 and without the
edges u2u4.

(c) If v1v5, v4v6 ∈ E(G), then G contains the 6-cycle (v1, v5, v6, v4, v3, v2, v1), contra-
dicting our assumption.

(d) If v1v4, v2v6 ∈ E(G), then G is like G2 with m = n = 0 and without the edge
u1u3 and u2u4.

(e) If v1v4, v3v6 ∈ E(G), then G contains the 6-cycle (v1, v2, v3, v6, v5, v4, v1), contra-
dicting our assumption.

(f) If v1v4, v4v6 ∈ E(G), then by Proposition 2.1, there must be a v3 − v5 path
or v2 − v5 path. If G contains v3 − v5 path, then G contains a cycle of length
≥6, a contradiction. Now, assume that G contains a v2 − v5 path, of length ≥
2 then G contains v2v5 ∈ E(G), then G is like G2 in Figure 1 with m = n = 0.

(g) If v1v3, v2v6 ∈ E(G), then G contains the 6-cycle (v1, v3, v4, v5, v6, v2, v1), con-
tradicting the assumption.

(h) If v1v3, v3v6 ∈ E(G), then as in subcase (f) either G is like G2 with m = n = 0,
or cir(G) ≥ 6.

(i) If v1v3, v4v6 ∈ E(G), then by Proposition 2.1, either G contains v2 − v5 path, or
v2 − v4 path and v3 − v5 path, see Figure 5.

Figure 5.



CHARACTERIZATION OF GRAPHS OF CONNECTED DETOUR NUMBER 2 123

If G contains a v2 − v5 path Q, then G contains a cycle (v1, v3, v4, v6, v5, Q, v2, v1),
of length ≥ 6, a contradiction. If G contains a v2 − v4 path R1 and v3 − v5 path R2,
then G contains a cycle (v1, v3, R2, v5, v6, v4, R1, v2, v1), of length ≥ 6 contradicting
our assumption.

In view of the explanations in the subcases (a)-(i) we deduce that G1 and G2 in
Figure 1 are of the general forms that satisfy the requirements of the theorem in this
case.

Case (4). Let cir (G) = 6, and C be a 6-cycle in G. Because D (G) = 5, then there
is no vertex in G, other than the vertices of C, adjacent to a vertex of C. Therefore,
P (G) = 6 and so G is C6 with, or without some chords. Hence, the proof of the
theorem is completed. �

3. Characterization of Graphs G with D(G) = 6 and cdn(G) = 2

In the following proposition we establish that if G is a block of D (G) = 6, then the
circumference of G is more than four.
Proposition 3.1. Let G be a block of order p ≥ 7 and with D (G) = 6, then cir (G) =
5, 6 or 7.
Proof. Let P = (u1, u2, . . . , u6, u7) be a detour diameter of G, shown in Figure 6.

Figure 6.

Since G is a block, then it does not contain cut-vertices and end-vertices. Because
D (G) = 6, then u1 and u7 each is not adjacent to any vertex other than u2, u3, . . . , u6.
It is clear that cir(G) ≤ 7. If u1 is adjacent to u5, u6 or u7, and/or u7 is adjacent
to u1, u2 or u3, then G contains a cycle of length more than four (see Figure 6). To
compute the proof we shall show that G contains a cycle of length 5, 6 or 7 if u1 is
adjacent to u3 or u4, and u7 is adjacent to u4 or u5. So, we consider the following four
cases.

Case (1). If u1u3, u7u4 ∈ E(G), then we have the following four subcases.
(a) G contains a u2 − u6 path Q1 which is edge-disjoint from P , this implies that

G contains l−cycle (u3, u1, u2, (Q1), u6, u7, u4, u3) of length l ≥ 6.
(b) G contains the edge u2u5 which implies that G contains the 7−cycle (u3, u1, u2,

u5, u6, u7, u4, u3).
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(c) G contains edges u2u4 and u3u5, this implies that G contains the 7−cycle
(u2, u1, u3, u5, u6, u7, u4, u2).

(d) G contains a u2 − u4 path Q2 and a u3 − u6 path Q3, which are edge-disjoint
from P ; this implies that G contains the cycle (u3, u1, u2, (Q2), u4, u5, u6, (Q3), u3) of
length l ≥ 6 (see Figure 7).

Figure 7.

Case (2). If u1u3, u7u5 ∈ E(G), then we have two subcases.
(i) G contains the edge u2u6, which implies that G contains the 7-cycle (u3, u1, u2,

u6, u7, u5, u4, u3).
(ii) G contains a u2 − u5 path R1 and a u3 − u6 path R2 which are edge disjoint

from E(P ), which implies that G contains cycle (u3, u1, u2, (R1) , u5, u7, u6, (R2) , u3)
of length l ≥ 6 (see Figure 8).

Figure 8.

Case (3). If u1u4, u5u7 ∈ E(G), then, as in case (2), G contains a cycle of length 6
or 7.

Case (4). If u1u4, u4u7 ∈ E(G), then we have four subcases for the cycles in G.
(α) G contains a u2 − u5 path F1 other than (u2, u3, u4, u5), this implies that G

contains a cycle (u2, u1, u4, u7, u6, u5, (F1) , u2) of length ≥ 6 (see Figure 9).
(β) G contains a u2−u6 path F2, this produces that G contains a cycle (u2, u3, u4, u5,

(F2) , u2) of length l ≥ 5.



CHARACTERIZATION OF GRAPHS OF CONNECTED DETOUR NUMBER 2 125

Figure 9.

(γ) G contains the edge u3u5 implying that G contains the 7-cycle (u3, u2, u1, u4, u7,
u6, u5, u3).

(δ) G contains a u3−u6 path F3, this produces that G contains a cycle (u3, u2, u1, u4,
u7, u6, (F3), u3) of length l ≥ 6.

Hence, the proof of the proposition is completed. �

Theorem 3.1. Let G be a connected graph of order p ≥ 7 and with detour diameter
D (G) = 6. Then, cdn (G) = 2 if and only if G is a cycle graph C∗7 , with or without
any number of chords, or G belongs to the family F shown in Figure 10.

Figure 10. The family F
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Proof. It is straightforward to verify that D (C∗7) = D (Gi) = 6, and cdn(C∗7) =
cdn (Gi) = 2, in which {a, b} is a connected detour basis of Gi (1 ≤ i ≤ 7).

To prove the converse, let G be a connected graph of order p ≥ 7, D (G) = 6 and
cdn (G) = 2. Then, by the Proposition 2.1, G is a block, and by Proposition 3.1,
cir (G) = 5, 6 or 7. Thus, we shall consider three cases depending on the circumference
of G.

Case (1). Let cir (G) = 5 and C = (v1, v2, v3, v4, v5, v1). Since G is connected and
P (G) ≥ 7, then there is a vertex u1 6= vi (1 ≤ i ≤ 5) adjacent to a vertex, say v1, of
C. Because deg u1 ≥ 2, then either u1 is adjacent to another vertex of C not adjacent
to v1, or it is adjacent to a vertex x 6= vi (1 ≤ i ≤ 5). If u1x ∈ E(G), then x is not
adjacent to any other vertex x /∈ V (C), and, also, it is not adjacent to any vertex of
C, because, otherwise D(G) ≥ 7 or cir(G) ≥ 6. Therefore u1 must be adjacent to
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non-adjacent vertices of C, say v1 and v3 and it is not adjacent to any other vertex
of G, that is deg u1 = 2. It is clear that every vertex y /∈ V (C) is of degree 2 and
adjacent to two non-adjacent vertices of C.

Let w1 ∈ V (G), w1 /∈ V (C) and w1 6= u1, then the following hold.
(a) If w1v1, w1v3 ∈ E(G), then G is like the graph G1, in Figure 10, with n = 2

(taking u2 = w1) and with edge v2v4 or v2v5, and G may contain edge {v1v3, v1v4, v3v5}.
Therefore, G1 is of a general form of this subcase, because P (G) ≥ 7.

(b) If w1v2, w1v5 ∈ E (G), then cir (G) ≥ 7, a contradiction.
(c) If w1v2, w1v4 ∈ E(G), then cir(G) ≥ 6, a contradiction.
(d) If w1v1, w1v4 ∈ E(G), (or w1v3, w1v5 ∈ E(G)), then G is like the graph G2,

in Figure 10, with m = n = 1 and G may contain some of the edges v1v4 or v1v3.
Therefore, G2 is of a general form of this subcase, because P (G) ≥ 7.

Case (2). Let cir (G) = 6, C = (v1, v2, . . . , v6, v1) and let W = V (G) − V (C). If
w ∈ W , then w S is adjacent to at least two vertices of C, for otherwise D(G) ≥ 7.
Since cir (G) = 6, then w is not adjacent to any two adjacent vertices of C. Therefore,
every vertex of W is of degree 3 or 2, and it is not adjacent to any vertex other than
the vertices of C. Thus, we shall consider G in the following three subcases.

(a) Let every vertex of W is of degree 3. If w ∈ W , and w is adjacent to v1 then it
is adjacent to v3 and v5. If in addition to w, there is w′ ∈ W adjacent to v2, v4 and v6,
then G contains the 8-cycle (v1, w, v3, v2, w

′
, v4, v5, v6, v1) (see Figure 11) contradicting

the assumption. Thus, without loss of generality every vertex of W is adjacent to v1,
v3 and v5. Therefore, G is like the graph G3 in Figure 10 with n ≥ 1 and a number
of dotted chords of C.

Figure 11.

(b) Let every vertex of W is of degree 2. Let u be any vertex in W and assume
that u is adjacent to v1. Then u is adjacent to v3, v4 or v5. Therefore, we have two
general possibilities, namely:
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(i) uv1, uv4 ∈ E(G);
(ii) uv1, uv3 (or uv1, uv5) ∈ E(G).
For subcase (i), if u′ is another vertex of W , then, for all connections of u′ with

a pair of non-adjacent vertices of C, the graph G will not satisfy the requirements
D = 6 and cdn = 2. Therefore W consists of exactly one vertex u, and so P (G) = 7.
Hence, G is like the graph G4 shown in Figure 10.

(ii) Let uv1, uv3 ∈ E (G). If each u ∈ W is adjacent to the some non-adjacent
pair of V (C) like v1, v3, then G is like G5 shown in Figure 10. If there is a vertex
u1 ∈ V (G) adjacent to, say v1, v3, and there is at least one vertex w1 ∈ V (G) adjacent
to v1, v5 (or v3, v5), then G is like G6 with n,m ≥ 1. For other connections of the
vertices of W to pairs of non-adjacent vertices of V (C), we have the following.

(a) If uv1, uv3;wv1, wv5;xv3, xv5 ∈ V (G), where x ∈ W , then we have a graph
like H1 shown in Figure 12. Clearly, cdn (H1) = 3, so H1 does not fulfill the
requirements.

(b) If uv1, uv3;wv4, wv6 ∈ V (G), then we have a graph like H2 shown in Figure 12.
Clearly, D (H2) = 7, so H2 does not fulfil the required conditions.

Figure 12.

(c) Now, assume that W consists of vertices of degree 2 and of degree 3. Let w be
a vertex in W of degree 3. Then, without loss of generality, assume that w is adjacent
to v1, v3 and v5. Let u ∈ W of degree 2, then we have the following possibilities.

(1) If u is adjacent to v1 and v3, then G is like the graph G7, with n,m ≥ 1, shown
in Figure 10.

(2) If u is adjacent to v2 and v4, then G contains a 7-cycle (v1, v6, v5, w, v3, v4, u, v2,
v1), a contradiction.

(3) If u is adjacent to v1 and v4, then cdn(G) ≥ 2, a contradiction.
(4) If u is adjacent to v3 and v5, then G is like the graph G7 in Figure 10.
Hence, the graph G in Case (2), for which cir (G) = 6, is in general construction,

is like Gi (i = 3, 4, 5, 6, 7).
Case (3). Let cir (G) = 7 and C = (v1, v2, . . . , v7, v1). If there is a vertex u in G

other than the vertices of C, then u is adjacent to a vertex of C, say v1. This implies
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that G contains a 7-path, namely u, v1, v2, . . . , v7, contradicting the hypothesis of the
theorem. Therefore, P (G) = 7, and so G is the 7-cycle graph C∗7 with some chords
of C.

Hence, the proof of the theorem is completed. �
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