L-FUZZY HOLLOW MODULES AND *L*-FUZZY MULTIPLICATION MODULES

SHRIRAM K. NIMBHORKAR¹ AND JYOTI A. KHUBCHANDANI²

ABSTRACT. In this paper, we give some characterizations of L-fuzzy hollow modules and of L-fuzzy multiplication modules.

1. INTRODUCTION

The concept of a fuzzy set, which is a generalization of a crisp set, was introduced by Zadeh [13]. Rosenfeld [12] used this concept to develop the theory of fuzzy subgroups. Naegoita and Ralescu [9] applied this concept to modules and defined a fuzzy submodule of a module.

Barnad [3] introduced the concept of a multiplication module. An R-module M is called a *multiplication module* if every submodule of M is of the form IM, for some ideal I of R. Also, Elbast and Smith [4] have studied multiplication modules.

Lee and Park [6] studied fuzzy prime submodules of a fuzzy multiplication module. Recently, Atani [2] introduced and investigated L-fuzzy multiplication modules over a commutative ring with nonzero identity. He has proved a relation between a multiplication module and an L-fuzzy multiplication module.

In this paper we introduce a notion of a hollow fuzzy module and prove some results. Our notion is different from that of Rahman [11]. We prove some results on L-fuzzy multiplication modules. We also show that an L-hollow fuzzy module is an L-fuzzy multiplication module.

 $Key\ words\ and\ phrases.\ L-Fuzzy\ hollow\ module,\ L-fuzzy\ multiplication\ module,\ L-fuzzy\ Noetherian\ module.$

²⁰¹⁰ Mathematics Subject Classification. Primary: 08A72. Secondary: 03E72. DOI

Received: September 17, 2020.

Accepted: May 07, 2021.

2. Preliminaries

Throughout in this paper R denotes a commutative ring with identity, M a unitary *R*-module with zero element θ . We recall some definitions and results from Moderson and Malik [8] which will be used in this paper.

Definition 2.1. ([8, Definition 1.1.1]). A fuzzy subset of an *R*-module *M* is a mapping $\mu: M \to [0,1]$. We denote the set of all fuzzy subsets of M by $[0,1]^M$.

If μ is a mapping from M to L, where L is a complete Heyting algebra, then μ is called an L-subset of M. We denote the set of all L-subsets of R by L^R and the set of all L-subsets of M by L^M .

Definition 2.2. ([8, Definition 1.1.3]). If $N \subseteq M$ and $\alpha \in [0, 1]^M$, then α_N is defined as

$$\alpha_N(x) = \begin{cases} \alpha, & \text{if } x \in N, \\ 0, & \text{otherwise.} \end{cases}$$

If $N = \{x\}$, then α_x is often called a fuzzy point and is denoted by χ_{α} . If $\alpha = 1$, then 1_N is known as the characteristic function of N and is denoted by χ_N .

If $\mu, \sigma \in [0, 1]^M$, then for $x, y, z \in M$, we define (i) $\mu \subset \sigma$ if and only if $\mu(x) < \sigma(x)$; (ii) $(\mu \cup \sigma)(x) = \max\{\mu(x), \sigma(x)\} = \mu(x) \lor \sigma(x);$ (iii) $(\mu \cap \sigma)(x) = \min\{\mu(x), \sigma(x)\} = \mu(x) \land \sigma(x);$ (iv) $(\mu + \sigma)(x) = \lor \{\mu(y) \land \sigma(z) \mid y, z \in M, y + z = x\}.$

Definition 2.3. ([8, Definition 4.1.6]). Let $\zeta \in L^R$ and $\mu \in L^M$. Define $\zeta \cdot \mu$ as $(\zeta \cdot \mu)(x) = \forall \{\zeta(r) \land \mu(y) \mid r \in R, y \in M, ry = x\}, \text{ for all } x \in M.$

Definition 2.4. ([8, Definition 3.1.7]). Suppose that $\mu \in L^R$ satisfies the following conditions:

(i)
$$\mu(x-y) \ge \mu(x) \land \mu(y);$$

(ii) $\mu(xy) \ge \mu(x) \lor \mu(y)$ for all $x, y \in R$.

Then μ is called an *L*-ideal of *R*.

We denote the set of all L-ideals of R by LI(R).

Definition 2.5. ([8, Definition 4.1.8]). Let M be a module over a ring R and L be a complete Heyting algebra. An L subset μ in M is called an L-submodule of M, if for every $x, y \in M$ and $r \in R$ the following conditions are satisfied:

(i)
$$\mu(\theta) = 1;$$

(ii)
$$\mu(x-y) \ge \mu(x) \land \mu(y);$$

(iii) $\mu(rx) \ge \mu(x).$

Definition 2.6. ([8, Definition 4.5.1]). For $\mu, \nu \in L^M$ and $\zeta \in L^R$, define the residual quotients $\mu : \nu \in L^R$ and $\mu : \zeta \in L^M$ as follows:

$$\mu: \nu = \cup \{\eta \mid \eta \in L^R, \ \eta \cdot \nu \subseteq \mu\},\\ \mu: \zeta = \cup \{\xi \mid \xi \in L^M, \ \zeta \cdot \xi \subseteq \mu\}.$$

Theorem 2.1. ([8, Theorem 4.5.3]). Let $\mu, \nu \in L^M$ and $\zeta \in L^R$. Then

(1) $(\mu : \nu)\nu \subseteq \mu;$

(2) $\zeta \cdot \nu \subseteq \mu$ if and only if $\zeta \subseteq (\mu : \nu)$ if and only if $\nu \subseteq \mu : \zeta$.

Definition 2.7 ([8]). Let $c \in L \setminus \{1\}$. Then

(i) c is called a prime element of L if $a \wedge b \leq c$, implies that $a \leq c$ or $b \leq c$ for all a, $b \in L$;

(ii) c is called a maximal element if there does not exist $a \in L \setminus \{1\}$ such that c < a < 1.

Remark 2.1 ([8]). If $\mu, \nu \in LI(R)$, then $(\mu \circ \nu)(x) = \lor \{\mu(y) \land \nu(z) \mid y, z \in R, yz = x\}$. We write $\mu_* = \{x \in R \mid \mu(x) = \mu(0)\}.$

Definition 2.8. ([8, Definition 3.5.1]). Let $\xi \in LI(R)$. Then ξ is called a prime *L*-ideal of *R* if ξ is non-constant and $\mu \circ \nu \subseteq \xi$, $\mu, \nu \in LI(R)$ implies either $\mu \subseteq \xi$ or $\nu \subseteq \xi$.

Definition 2.9. ([8, Definition 3.6.1]). Let $\xi \in LI(R)$ and let ρ_{ξ} be the family of all prime *L*-ideals μ of *R* such that $\xi \subseteq \mu$. The *L*-radical of ξ , denoted by $\sqrt{\xi}$, is defined by

$$\sqrt{\xi} = \begin{cases} \cap \{\mu \mid \mu \in \rho_{\xi}\}, & \text{if } \rho_{\xi} \neq \phi, \\ 1_R, & \text{if } \rho_{\xi} = \phi. \end{cases}$$

Definition 2.10. ([8, Definition 3.7.1]). Let $\xi \in LI(R)$. Then ξ is called a primary *L*-ideal of *R* if ξ is nonconstant and for any $\mu, \nu \in LI(R)$, $\mu \circ \nu \subseteq \xi$ implies $\mu \subseteq \xi$ or $\nu \subseteq \sqrt{\xi}$.

Theorem 2.2. ([8, Theorem 3.5.3]). If ξ is a prime L-ideal of R, then ξ_* is a prime ideal of R.

Theorem 2.3. ([8, Theorem 3.5.5]). Let $\xi \in L^R$. Then ξ is a prime L-ideal of R if and only if $\xi(0) = 1$, ξ_* is a prime ideal of R, $\xi(R) = \{1, c\}$, where c is a prime element in L.

Definition 2.11 ([5]). A ring R is called regular if, for each element $x \in R$, there exists $y \in R$ such that xyx = x.

Definition 2.12. A dense chain in a lattice L is a non-empty sublattice C such that, for all ordered pairs x < y with $x, y \in C$, there exists some $z \in C$ such that x < y < z.

Theorem 2.4 ([8]). Let R be a ring with identity, L be a dense chain and ξ be a primary L-ideal of R. Then $\sqrt{\xi}$ is a prime L-ideal of R.

Theorem 2.5. ([7, Theorem 3.10]). Let R be a ring with 1 and A be a nonconstant fuzzy left (right) ideal of R. Then there exists a fuzzy maximal left (right) ideal B of R such that $A \subseteq B$.

Definition 2.13. ([5, Definition 4.3.2]). A fuzzy ideal μ of a ring R is called fuzzy semiprime if, for any fuzzy ideal ζ of R, the condition $\zeta^n \subseteq \mu$ implies that $\zeta \subseteq \mu$, where $n \in \mathbb{Z}_+$.

Theorem 2.6. ([5, Theorem 4.4.3]). A commutative ring with unity is regular if and only if each of its fuzzy ideal is fuzzy semiprime.

Definition 2.14 ([2]). Let M be a module over a commutative ring R. M is called an L-fuzzy multiplication module provided for each L-fuzzy submodule μ of M, there exists $\zeta \in LI(R)$ with $\zeta(0_R) = 1$ such that $\mu = \zeta \chi_M$.

One can easily show that if $\mu = \zeta \chi_M$ for some $\zeta \in LI(R)$ with $\zeta(0_R) = 1$, then $\mu = (\mu : \chi_M)\chi_M$.

Theorem 2.7. ([2, Theorem 10]). Let M be an R-module. Then M is a multiplication module if and only if M is an L-fuzzy multiplication module.

Theorem 2.8. ([1, Theorem 2]). Let P be a primary ideal of R and M a faithful multiplication R-module. Let $a \in R$, $x \in M$ satisfy $ax \in PM$. Then $a \in \sqrt{P}$ or $x \in PM$.

Definition 2.15. ([10, Definition 4.1]). Let M be a module over a ring R and $\mu \in L(M)$. Then μ is said to be a small L-submodule of M, if for any $\nu \in L(M)$ satisfying $\nu \neq \chi_M$ implies $\mu + \nu \neq \chi_M$.

Definition 2.16. ([11, Definition 2.10]). A fuzzy submodule $\mu \neq \chi_{\theta}$ of a module M is said to be fuzzy indecomposable if there do not exist fuzzy submodules σ , γ of M with $\sigma \neq \chi_{\theta}, \gamma \neq \chi_{\theta}$ and $\sigma \neq \mu, \gamma \neq \mu$ such that $\mu = \sigma \oplus \gamma$.

Theorem 2.9. ([10, Theorem 5.2]). Let $\mu \in L^M$. Then μ is a maximal L-submodule of M if and only if μ can be expressed as $\mu = \chi_{\mu_*} \cup \alpha_M$, where μ_* is a maximal submodule of M and α is a maximal element of $L - \{1\}$.

Definition 2.17. ([11, Definition 3.1]). A fuzzy submodule ν with $\nu_* \neq \{\theta\}$ of M is said to be a fuzzy hollow submodule if for every fuzzy submodule μ of ν with $\mu_* \neq \nu_*$, μ is a fuzzy small submodule of ν . We say that an R-module $M \neq \{\theta\}$ is fuzzy hollow module if for every $\sigma \in F(M)$ with $\sigma_* \neq M$ implies $\sigma \ll_f M$.

Theorem 2.10. ([11, Theorem 3.6]). Every fuzzy hollow submodule is indecomposable.

Theorem 2.11. ([2, Theorem 14]). Let M be a non-zero L-fuzzy multiplication R-module. Then every L-fuzzy submodule $\mu \neq \chi_M$ of M is contained in a generalized maximal L-fuzzy submodule of M.

Proposition 2.1. ([2, Proposition 18]). Suppose that M is a faithful L-fuzzy multiplication R-module. Let ζ be an L-fuzzy prime ideal of R. If η is an L-fuzzy ideal of R such that $\eta \chi_M \subseteq \zeta \chi_M$ and $\zeta \chi_M \neq \chi_M$, then $\eta \subseteq \zeta$. In particular, $(\zeta \chi_M : \chi_M) = \zeta$.

Notations:

fspec(R): the set of all prime L-submodules of R;

 $Max_L(M)$: the set of all maximal L-submodules of M;

JLR(M): the intersection of all maximal L-submodules of M is known as Jacobson L-radical of M.

Definition 2.18 ([2]). An *R*-module M is called an *L*-fuzzy Noetherian module, if every ascending chain of *L*-fuzzy submodules is stationary.

Definition 2.19. A module M is called L-local if M has exactly one maximal L-submodule.

Definition 2.20. A module M is called L-serial if any two L-submodules of M are comparable with respect to inclusion.

3. L-Fuzzy Hollow Modules and L-Fuzzy Multiplication Modules

In this section we introduce a slightly different notion of L-fuzzy hollow modules. Also, we obtain some properties of the same and L-fuzzy multiplication module.

Definition 3.1. Let M be a module over a commutative ring R. M is called an L-fuzzy hollow module if either $Max_L(M) = \chi_{\theta}$ or for each maximal L-fuzzy submodule μ of M and for each L-fuzzy submodule σ of M, the equality $\mu + \sigma = \chi_M$ implies that $\sigma = \chi_M$.

Theorem 3.1. Let M be a non-zero module. Then the following statements are equivalent.

- (1) M is an L-fuzzy hollow module and $Max_L(M) \neq \chi_{\theta}$.
- (2) M is a cyclic and an L-local module.
- (3) M is a finitely generated L-local module.

Proof. (1) \Rightarrow (2) Let μ be a maximal *L*-submodule of *M* and for $m \in M$, $\chi_{\{m\}}$ be an *L*-submodule of *M* such that $\chi_{\{m\}} \nsubseteq \mu$. Since, $\mu + \chi_{\{m\}} = \chi_M$, and as *M* is a *L*-fuzzy hollow module we have $\chi_M = \chi_{\{m\}}$. Hence, *M* has only one maximal *L*-submodule.

Also, as $\chi_M = \langle \chi_{\{m\}} \rangle = \chi_{Rm}$ implies that, M = Rm. Hence, M is cyclic.

 $(2) \Rightarrow (3)$ It is obivous.

(3) \Rightarrow (1) Let μ be a maximal *L*-submodule of *M* and σ be an *L*-fuzzy submodule of *M*. If $\mu + \sigma = \chi_M$ and $\sigma \neq \chi_M$, then by Zorn's lemma there exists a maximal *L*-submodule δ of *M* containing σ . Since, *M* is an *L*-local module, $\delta = \mu$ and so $\chi_M = \mu + \sigma = \mu$, a contradiction. Thus, $\sigma = \chi_M$.

Theorem 3.2. Let M be an R-module and μ be an L-fuzzy submodule of M. Then the following statements are equivalent.

- (1) μ is a serial submodule.
- (2) μ is an L-fuzzy hollow submodule.
- (3) μ is fuzzy indecomposable.

Proof. (1) \Rightarrow (2) Suppose that $Max_L(\mu) \neq \chi_{\theta}$ and $\mu_1, \mu_2 \in L(M)$ be such that $\mu_1 + \mu_2 = \mu$, where μ_1 is a maximal *L*-submodule of μ and μ_2 is an *L*-submodule of μ . Since, μ_1, μ_2 are *L*-submodules of μ and μ is a serial submodule either $\mu_1 \subseteq \mu_2$ or $\mu_2 \subseteq \mu_1$.

If $\mu_1 \subseteq \mu_2$, then $\mu = \mu_1 + \mu_2 = \mu_2$. If $\mu_2 \subseteq \mu_1$, then $\mu = \mu_1 + \mu_2 = \mu_1$, which is not possible as μ_1 is a maximal *L*-submodule of μ . Thus, μ is an *L*-fuzzy hollow submodule of *M*.

 $(2) \Rightarrow (3)$ Follows from Theorem 2.10.

(3) \Rightarrow (1) Let μ_1, μ_2 be *L*-fuzzy submodules of μ with $\mu_1 \neq \chi_{\theta}, \mu_2 \neq \chi_{\theta}, \mu_1 \neq \mu, \mu_2 \neq \mu$ and $\mu_1 \notin \mu_2$. As μ is fuzzy indecomposable, μ_1, μ_2 does not satisfy $\mu_1 + \mu_2 = \mu$ and $\mu_1 \cap \mu_2 = \chi_{\theta}$. Then, $\mu_2 \subseteq \mu_1$, thus μ is a serial submodule.

Lemma 3.1. Let M be an L-fuzzy multiplication module and μ be an L-fuzzy submodule of M. Then the following are equivalent.

(1) $\mu \subseteq JLR(M)$.

(2) μ is an L-small submodule in M.

Proof. (1) \Rightarrow (2) Let σ be an *L*-fuzzy submodule of *M* such that $\chi_M = \mu + \sigma$. If $\sigma \neq \chi_M$, then by Theorem 2.11, there exists a maximal *L*-submodule δ of *M* such that $\sigma \subseteq \delta$. But, $\mu \subseteq JLR(M) \subseteq \delta$ implies that $\mu + \sigma \subseteq \delta \neq \chi_M$. Thus, $\sigma = \chi_M$ implies that μ is an *L*-small submodule in *M*.

 $(2) \Rightarrow (1)$ Assume that μ is an *L*-small submodule of *M*. Suppose that $\mu \notin JLR(M)$. Then there exists a maximal *L*-submodule β of *M* such that $\mu \notin \beta$. Thus, $\mu + \beta = \chi_M$. But $\beta \neq \chi_M$, a contradiction. Hence, $\mu \subseteq \beta$.

Theorem 3.3. If M is an L-fuzzy hollow module, then M is an L-fuzzy multiplication module.

Proof. As M is an L-fuzzy hollow module, by Theorem 3.1, M is cyclic. But, we know that every cyclic module is a multiplication module. Thus, by Theorem 2.7, M is an L-fuzzy multiplication module.

We give an example of an L-fuzzy multiplication module by using Theorem 3.3.

Example 3.1. Let $L = \{0, 0.25, 0.5, 0.75, 1\}$. Then L is a complete Heyting algebra together with the operations minimum (meet), maximum (join) and \leq (partial ordering), then 0.75 is a maximal element of $L - \{1\}$.

Consider, $M = \mathbb{Z}_{27} = \{0, 1, 2, \dots, 26\}$ under addition modulo 27, then M is a module over the ring \mathbb{Z} . Let $A = \{0, 3, 6, \dots, 24\}$.

Define, $\mu \in [0, 1]^{\tilde{M}}$ as follows:

$$\mu(x) = \begin{cases} 1, & \text{if } x \in A, \\ 0.75, & \text{otherwise.} \end{cases}$$

Then $\mu_* = \{0, 3, 6, \dots, 24\} = A$, which is a maximal submodule of \mathbb{Z}_{27} . Also, $\mu = \chi_{\mu_*} \cup 0.75_M$, where 0.75 is a maximal element of $L - \{1\}$. So, by Theorem 2.9, μ is a maximal *L*-submodule of \mathbb{Z}_{27} . Infact, μ is the only maximal *L*-submodule of \mathbb{Z}_{27} .

Let $B = \{0, 9, 18\}$ and define $\nu \in [0, 1]^M$ as follows,

$$\nu(x) = \begin{cases} 1, & \text{if } x \in B, \\ \alpha, & \text{otherwise,} \end{cases}$$

where $\alpha < 0.75$. Then clearly μ, ν are the only fuzzy submodules of M. Also, here $\nu \neq \chi_M$ implies that $\mu + \nu \neq \chi_M$. This shows that M is an *L*-fuzzy hollow module and by Theorem 3.3, M is an *L*-fuzzy multiplication module.

Corollary 3.1. For $\xi_1, \xi_2 \in L^R$ with $\xi_1 \subseteq \xi_2$, then $\xi_1 \cdot \chi_M \subseteq \xi_2 \cdot \chi_M$ and thus $(\xi_1\chi_M : \chi_M) \subseteq (\xi_2\chi_M : \chi_M).$

Proof. We have

(

$$\begin{aligned} \xi_1 \cdot \chi_M)(x) &= \bigvee \{\xi_1(r) \land \chi_M(y) \mid r \in R, y \in M \land ry = x\} \\ &= \bigvee \{\xi_1(r) \mid r \in R, x \in rM\} \\ &\leq \bigvee \{\xi_2(r) \mid r \in R, x \in rM\} \\ &\leq \bigvee \{\xi_2(r) \land \chi_M(y) \mid r \in R, y \in M \land ry = x\} \\ &= (\xi_2 \cdot \chi_M)(x). \end{aligned}$$

Hence, $\xi_1 \cdot \chi_M \subseteq \xi_2 \cdot \chi_M$, for all $x \in M$.

Again we have

$$(\xi_1 \chi_M : \chi_M) = \bigvee \{ \eta \mid \eta \in L^R, \eta \cdot \chi_M \subseteq \xi_1 \cdot \chi_M \}$$

$$\leq \bigvee \{ \eta \mid \eta \in L^R, \eta \cdot \chi_M \subseteq \xi_2 \cdot \chi_M \}$$

$$\leq (\xi_2 \chi_M : \chi_M).$$

Hence, $(\xi_1 \chi_M : \chi_M) \subseteq (\xi_2 \chi_M : \chi_M).$

Theorem 3.4. Let M be an L-fuzzy multilpication module. Then μ is a maximal L-fuzzy submodule of M if and only if there exists a maximal ideal ξ of LI(R) such that $\mu = \xi \chi_M \neq \chi_M$.

Proof. By Theorem 2.11, if ξ is a maximal *L*-fuzzy ideal of *R* and $\chi_M \neq \xi \chi_M$, then $\xi \chi_M$ is a maximal *L*-submodule of *M*.

Conversely, assume that μ is a maximal *L*-submodule of *M*. Then there exists an *L*-ideal ν of LI(R) such that $\mu = \nu \chi_M$. Suppose that ν is not a maximal *L*-ideal of *R*. Then $\nu \subseteq \beta$ for some $\beta \in LI(R)$ and so $\nu \chi_M \subseteq \beta \chi_M$ implies that $\mu \subseteq \beta \chi_M$. This implies μ is not a maximal *L*-submodule of *M*, a contradiction. Thus, ν is a maximal *L*-fuzzy ideal of *R*.

Theorem 3.5. Let M be a faithful L-fuzzy Noetherian R-module. Then R satisfies the ascending chain condition on L-prime ideals.

Proof. Let $\xi_1 \subseteq \xi_2 \subseteq \xi_3 \subseteq \cdots$ be an ascending chain of *L*-prime ideals of *R*. Then by Corollary 3.1, $\xi_1 \chi_M \subseteq \xi_2 \chi_M \subseteq \xi_3 \chi_M \subseteq \cdots$. But as *M* is an *L*-fuzzy Noetherian *R*-module, there exists some $n \in \mathbb{N}$ such that $\xi_n \chi_M = \xi_{n+1} \chi_M = \cdots$. Hence, by Proposition 2.1, $\xi_1 \subseteq \xi_2 \subseteq \xi_3 \subseteq \cdots \subseteq \xi_n$.

Theorem 3.6. Let R be regular ring with unity which satisfies ascending chain condition on fuzzy semiprime ideals and M be an L-fuzzy multiplication module. Then M is an L-fuzzy Noetherian module.

Proof. Let $\mu_1 \subseteq \mu_2 \subseteq \mu_3 \subseteq \cdots$ be an ascending chain of *L*-fuzzy submodules of *M*. Then by Corollary 3.1, $(\mu_1 : \chi_M) \subseteq (\mu_2 : \chi_M) \subseteq (\mu_3 : \chi_M) \subseteq \cdots$ is an ascending chain of ideals of *R*. By Theorem 2.6, $(\mu_1 : \chi_M) \subseteq (\mu_2 : \chi_M) \subseteq (\mu_3 : \chi_M) \subseteq \cdots$ is an ascending chain of fuzzy semiprime ideals of *R*. By assumption there exists positive integer *t* such that $(\mu_t : \chi_M) = (\mu_{t+s} : \chi_M)$, for every positive integer *s*. Hence, $\mu_t = (\mu_t : \chi_M)\chi_M = (\mu_{t+s} : \chi_M)\chi_M = \mu_{t+s}$ gives $\mu_t = \mu_{t+s}$ for every *s* and so the chain is stationary. Hence, *M* is an *L*-fuzzy Noetherian module.

Theorem 3.7. Let M be an faithful L-fuzzy multiplication module. Then for every L-fuzzy submodule μ of M, if $\mu\chi_M \subseteq \xi\chi_M$, where $\xi \in fspec(R)$, then $\mu \subseteq \xi$.

Proof. Given, $\mu\chi_M \subseteq \xi\chi_M$. As, $\mu \subseteq (\mu\chi_M : \chi_M) \subseteq (\xi\chi_M : \chi_M) = \xi$ by Proposition 2.1. Hence, $\mu \subseteq \xi$.

Theorem 3.8. Let R be a ring and M be an L-fuzzy multiplication R-module. Then $\xi \chi_M \neq \chi_M$ for any proper fuzzy ideal ξ of R.

Proof. As ξ is a proper fuzzy ideal of R, by Theorem 2.5, there exists a maximal fuzzy ideal η of R such that $\xi \subseteq \eta$. Let μ be a proper L-fuzzy submodule of M. As M is an L-fuzzy multiplication module, by Theorem 2.11, μ is contained in a generalized maximal L-fuzzy submodule of M say ν . Then, ν is a maximal L-fuzzy submodule of M say μ . Then, μ is a maximal L-fuzzy submodule of M say μ . Then, μ is contained in a $\xi \chi_M \subseteq \eta \chi_M \neq \chi_M$ and so $\xi \chi_M \neq \chi_M$.

Theorem 3.9. Let L be a dense chain and M be a faithful L-fuzzy multiplication R-module. Let μ be a primary L-fuzzy ideal of R, $a, b \in L$ and $r_a x_b \in \mu \chi_M$ for some $r \in R$ and $x \in M$. Then $r_a \in \mu$ or $x_b \in \mu \chi_M$.

Proof. As μ is a primary *L*-fuzzy ideal of *R* and *L* is a dense chain, then by Theorem 2.4 $\sqrt{\mu}$ is prime *L*-fuzzy ideal of *R*. Now, by Theorem 2.3, for each $r \in R$, there exist a prime ideal *P* of *R* and a prime element $c \in L$ such that

$$\sqrt{\mu(r)} = \begin{cases} 1, & \text{if } r \in P, \\ c, & \text{otherwise.} \end{cases}$$

(I) As $r_a x_b \in \mu \chi_M$, it follows that $\mu \chi_M(rx) \ge a \wedge b$. But, (II)

$$\mu\chi_M(rx) = \lor \{\mu(s) \land \chi_M(y) \mid s \in R, y \in M, rx = sy\}$$
$$= \lor \{\mu(s) \mid s \in R, rx \in sM\}.$$

Let $A = \{s \in P \mid rx \in sM\}.$

Case(I). If $A = \emptyset$, then there does not exist $s \in P$ such that $rx \in sM$. Hence, from (I) $\mu \chi_M(rx) = c \ge a \land b$. As c is a prime element of L, either $c \ge a$ or $c \ge b$.

- (i) Suppose that $c \ge a$. As $\mu(r) \in \{1, c\}$, we have $\sqrt{\mu(r)} \ge a$ and so $r_a \in \sqrt{\mu}$.
- (ii) If $c \ge b$, then similarly from (II) $\mu\chi_M(x) = \vee \{\mu(s') : s' \in R, x \in s'M\}$. So, $\mu\chi_M(x) \in \{1, c\}$. Therefore, $\mu\chi_M(x) \ge b$ and so $x_b \in \mu\chi_M$.

Case (II). If $A \neq \emptyset$, then there exists $s' \in P$ such that $rx \in s'M$. Therefore, using (I) we have $\mu\chi_M(rx) = \vee \{\mu(s) \mid s \in R, rx \in sM\} = 1$ and $rx \in s'M \subseteq PM$. Now, by using Theorem 2.7 and Theorem 2.8, we get either $r \in P$ or $x \in PM$.

- (i) If $r \in P$, then $\sqrt{\mu(r)} = 1 \ge a$ implies that $ra \in \sqrt{\mu}$.
- (ii) If $x \in PM$, then $x = r_1x_1 + \cdots + r_nx_n$ for some $r_i \in P$ and $x_i \in M$ such that $i = 1, 2, \ldots, n$. Hence, $\mu\chi_M(x) = \mu\chi_M(\Sigma r_i x_i) \ge \mu\chi_M(r_1 x_1) \land \cdots \land \mu\chi_M(r_n x_n) = 1 \ge b$ and so, $x_b \in \mu\chi_M$.

Corollary 3.2. Assume that M is a faithful L-fuzzy multiplication R-module and μ is a primary L-fuzzy ideal of R such that $\chi_M \neq \mu \chi_M$. Then $\mu \chi_M$ is a primary L-fuzzy submodule of M.

Proof. Let μ be a primary *L*-fuzzy ideal of *R* and *M* be a faithful *L*-fuzzy multiplication *R*-module. If $r_a x_b \in \mu \chi_M$, for $r \in R$ and $x \in M$, then by Theorem 3.9, $r_a \in \sqrt{\mu} \subseteq \sqrt{(\mu \chi_M : \chi_M)}$ or $x_b \in \mu \chi_M$. Thus, $\mu \chi_M$ is a primary *L*-fuzzy submodules of *M*. \Box

4. Conclusion

In this article, we have defined an L-fuzzy hollow submodule in a different way and some of its properties are investigated. Also, some theorems on L-fuzzy multiplication modules are proved. Thus, this concept of an L-fuzzy multiplication module can be extended to an L-fuzzy fully invariant multiplication modules.

Acknowledgements. The authors are thankful to the referee for helpful suggestions, which improved the paper.

References

- S. E. Atani, F. Çallialp and Ü. Tekri, A short note on the primary submodules of multiplication modules, Int. J. Algebra 1(8) (2007), 381–384. http://dx.doi.org/10.12988/ija.2007.07042
- [2] S. E. Atani and F. E. K. Sarai, On L-fuzzy multiplication modules, Discuss. Math. Gen. Algebra Appl. 37 (2017), 209-221. https://doi.org/10.7151/dmgaa.1268

- [3] A. Barnad, Multiplication modules, J. Algebra 71 (1981), 174–178. https://doi.org/10.1016/ 0021-8693(81)90112-5
- [4] Z. Elbast and P. F. Smith, *Multiplication modules*, Comm. Algebra 16 (1988), 755–779. https://doi.org/10.1080/00927878808823601
- [5] R. Kumar, Fuzzy Algebra, Publication Division, University of Delhi, Delhi, 1993.
- [6] D. S. Lee and C. H. Park, On fuzzy prime submodules of fuzzy multiplication modules, East Asian Math. J. 27(1) (2011), 75–82. https://doi.org/10.7858/eamj.2011.27.1.075
- [7] D. S. Malik and J. N. Morderson, *Fuzzy maximal, radical, and primary ideals of a ring*, Inform. Sci. 53 (1991), 237-250. https://doi.org/10.1016/0020-0255(91)90038-V
- [8] J. N. Moderson and D. S. Malik, *Fuzzy Commutative Algebra*, World Scientific, River Edge, NJ, USA, 1998.
- [9] C. V. Nagoita and D. A. Ralesca, Applications of Fuzzy Sets in System Analysis, Birkhauser, Basel, Switzerland, 1975.
- [10] S. Rahman and H. K. Saikia, Fuzzy small submodule and Jacobson L-radical, Int. J. Math. Math. Sci. Act. 2011 (2011) Article ID 980320, 12 pages. https://doi.org/10.1155/2011/980320
- [11] S. Rahman, Fuzzy hollow submodules, Ann. Fuzzy Math. Inform. 12(5) (2016), 601–608.
- [12] A. Rosenfeld, Fuzzy groups, J. Math. Anal. Appl. 35 (1971), 512–517. https://doi.org/10. 1016/0022-247X(71)90199-5
- [13] L. A. Zadeh, Fuzzy sets, Information and Control 8 (1965), 338-353. https://doi.org/10. 1016/S0019-9958(65)90241-X

¹DEPARTMENT OF MATHEMATICS, DR. BABASAHEB AMBEDKAR MARATHWADA UNIVERSITY, AURANGABAD 431004, INDIA *Email address*: sknimbhorkar@gmail.com

²DEPARTMENT OF ENGINEERING, SCIENCES AND HUMANITIES, VISHWAKARMA INSTITUTE OF TECHNOLOGY, PUNE, 411406, INDIA *Email address*: khubchandani_jyoti@yahoo.com