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ON A THEOREM OF LEGENDRE ON DIOPHANTINE
APPROXIMATION

JAROSLAV HANČL1 AND THO PHUOC NGUYEN1

Abstract. Legendre’s theorem states that every irreducible fraction p
q which sat-

isfies the inequality
∣∣α − p

q

∣∣ < 1
2q2 is convergent to α. Later Barbolosi and Jager

improved this theorem. In this paper we refine these results.

1. Introduction

The theory of simple continued fractions plays the most important tools in mathe-
matical analysis, probability theory, physics, approximation theory and other branches
of natural sciences. During the last three centuries many famous mathematicians
came with interesting results in Diophantine approximations and continued fractions.
Among them let us mention for example [5, 7, 15,27,31].

In 1830, Legendre [27, page 23], proved the sufficient condition for a fraction p/q
to be convergent of real number α.

Theorem 1.1 (Legendre). Let p and q be relatively prime integers with q > 0 and
such that ∣∣∣∣α − p

q

∣∣∣∣ <
1

2q2 .

Then, p
q

is a convergent to α.

In Theorem 3.1 we refine this theorem, replacing 2 by 2−(q−1)/q2. The proof is ele-
mentary in character but lengthy, as it involves a detailed case analysis. Theorems 3.2
and 3.3 give other alternative to Theorem 3.1.
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Legendre’s theorem has some history. In 1965, Billingsley [4] made use of Legendre’s
method in the ergodic theory. In 1988, Ito [16] tried to extend Legendre’s constant 1

2
to the other kind of continued fractions. To do this he used a special algorithm how
to find the best constant. Such kind of methods are used for example in the theory
of dynamical systems and ergodic theory. For other results see [17,18] and [28].

There is a nice result of Koksma [23] stated in the following theorem.

Theorem 1.2 (Koksma). If p/q is a rational and α an irrational number and if
q|qα − p| < 2/3, then p/q is either a convergent or a first mediant of α. The constant
2/3 is best possible.

Barbolosi and Jager [2] refined Legendre’s theorem by considering two special cases
from which the constant 2/3 appears. They proved the following theorem.

Theorem 1.3 (Barbolosi and Jager). Let p/q = [b0; b1, . . . , bn], where bn ≥ 2, (p, q) =
1, q > 0 be the simple continued fraction expansion and let α be an irrational number.
If (−1)n sgn(α − p/q) = 1 and q|qα − p| < 2/3, then p/q is a convergent of α.

This is an interesting result because it shows the possibility of improving the
constant 1/2 in Legendre’s theorem. However, in some cases, determining the length
of the continued fraction representing p/q is not easy.

We improve Theorem 1.2 and give some alternative to Theorem 1.3 in Theorem 3.4,
when we replace 2/3 by (3/2 − ((q − 1)(q − 2))/(2q3))−1. The similar method was
used in [3] and [10–12] but for completely different results.

Interesting results can be found in [1, 9, 19, 24–26]. An excellent source of basic
background is given in [13]. The books [6,14,20–22,29,32] and [8] are also very useful.

2. Notation

Throughout the paper, Z+, N0 and R will denote the sets of positive, non-negative
integers and real numbers, respectively. Let α be a real number and suppose n ∈
N0. Let α = [a0; a1, a2, . . . ] be its simple continued fraction expansion. Also, let
pn/qn = [a0; a1, a2, . . . , an] be its n-th convergent. The following recurrence relations
for convergents are known

p−2 =0, p−1 = 1, p0 = a0, p1 = a1a0 + 1,

pn+2 =an+2pn+1 + pn,

q−2 =1, q−1 = 0, q0 = 1, q1 = a1,

qn+2 =an+2qn+1 + qn.

For a simple continued fraction expansion we have that

α = [a0; a1, a2, . . . ] =
[
a0; a1, a2, . . . , an, [an+1; an+2, an+3, . . . ]

]
.

Therefore, we can write
α = [a0; a1, a2, . . . , an, rn+1],
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where rn+1 = [an+1; an+2, an+3, . . . ]. From this we obtain that

(2.1) α = rn+1pn + pn−1

rn+1qn + qn−1
.

In this article, we will write [a0] or [a0 + t], where t ∈ Z to define continued fractions
with only the first integer part.

Taking a difference of two consecutive convergents we obtain that
(2.2) qn+1pn − pn+1qn = (−1)n+1.

For the finite simple continued fraction expansion, if we have α = [a0; a1, a2, . . . , ak]
with k ≥ 1, then we suppose that ak ≥ 2.

The sequence of mediants of real irrational number α is the sequence of irreducible
fractions of the form

bpn + pn−1

bqn + qn−1
,

with n ≥ 0, b = 1, 2, . . . , an+1 − 1, ordered in such a way that the denominators form
an increasing sequence. The mediant with b = 1 or b = an+1 − 1 is called nearest
mediant.

More details on the discussion in this section can be found in [2, page 7] or [30,
page 10].

3. New Results

Our main result is the following theorem which concerns with the Legendre’s theo-
rem.

Theorem 3.1. Let p, q be relatively prime integers with q ≥ 1 and

(3.1)
∣∣∣∣∣α − p

q

∣∣∣∣∣ ≤ 1(
2 − q−1

q2

)
q2

.

Then, p/q is a convergent to α excluding the case when α = [a0; 2] and p/q = [a0 + 1].
For this special case, we have equality in (3.1) and p/q is a nearest mediant of α.

We can improve this theorem in the following way.

Theorem 3.2. Let p, q be relatively prime integers with q ≥ 1 and

(3.2)
∣∣∣∣∣α − p

q

∣∣∣∣∣ ≤ 1(
2 − 1

q

)
q2

.

Then, p/q is a convergent to α excluding the following cases:
(a) α = [a0] and p/q = [a0 − 1];
(b) α = [a0] and p/q = [a0 + 1];
(c) α = [a0; a1, a2, . . . ], a1 ≥ 2, and p/q = [a0 + 1];
(d) α = [a0; 3] and p/q = [a0; 2];
(e) α = [a0; a1, 2] and p/q = [a0; a1 + 1].
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For all special cases (a)-(e), we have that p/q is the nearest mediant of α. For cases
(a), (b), (d) and (e) we have equality in (3.2), case (c) satisfies sharp inequality in
(3.2).

For every large n we have the following result.

Theorem 3.3. Let α be a real number, p, q be relatively prime integers with q ≥ 1, n
be a positive integer and pn−1/qn−1 be a convergent of α and also p/q. Assume that

(3.3)
∣∣∣∣∣α − p

q

∣∣∣∣∣ ≤ 1(
2 − qn−1

q

)
q2

.

Then, p/q is a convergent to α, excluding the following cases:
(a) α = [a0; 2] and p/q = [a0 + 1];
(b) α = [a0; 3] and p/q = [a0; 2];
(c) α = [a0; a1, . . . , an−1, an, 2] and p/q = [a0; a1, . . . , an−1, an + 1].

For all these cases p/q is the nearest mediant of α and we have equality in (3.3).

The next theorem improves the result of Barbolosi and Jager.

Theorem 3.4. Let p, q be relatively prime integers with q ≥ 1. If∣∣∣∣∣α − p

q

∣∣∣∣∣ ≤ 1(
1 − 1

2q

)
q2

,

then p/q is either a convergent or nearest mediant of α, excluding the following cases:
(a) α = [a0] and p/q = [a0 − 2];
(b) α = [a0; a1, a2, . . . ] and p/q = [a0 + 2];
(c) α = [a0; 6] and p/q = [a0; 2];
(d) α = [a0; 5, a2, . . . ] and p/q = [a0; 2];
(e) α = [a0; a1, 4] and p/q = [a0; a1, 2];
(f) α = [a0; 5] and p/q = [a0; 3];
(g) α = [a0; 4, a2, . . . ] and p/q = [a0; 2].

Example 3.1. Let α = ∑+∞
n=1

1
22n−1A2n , where A ∈ Z+. Set

p

q
=

(
22N −1A2N

) N∑
n=1

1
22n−1A2n

22N −1A2N =
N∑

n=1

1
22n−1A2n ,

where N ∈ Z+. From Theorem 3.1 we obtain that p/q is a convergent of α which is
not an immediate consequence of the Legendre’s theorem.

Example 3.2. From Example 3.1 we obtain that∑N
n=1

1
22n−1 is a convergent of∑+∞

n=1
1

22n−1 .
This is not an immediate consequence of the Legendre’s theorem.
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Example 3.3. Let α = ∑+∞
n=1

1
22n A2n , where A ∈ Z+. Set

p

q
=

(
22N

A2N
) N∑

n=1

1
22nA2n

22N A2N =
N∑

n=1

1
22nA2n ,

where N ∈ Z+. From Theorem 3.4 we obtain that p/q is a convergent or nearest
mediant of α which is not an immediate consequence of Barbolosi and Jager’s theorem.

4. Proofs

Proof of Theorem 3.1. Let α = [a0; a1, a2, . . . , an−1, an, . . . ] be a simple continued frac-
tional expansion of the number α. For any irreducible fraction p/q, which is not a
convergent of α and m, n ∈ N0 we can write as

p

q
= [a0; a1, a2, . . . , an−1, bn, bn+1, . . . , bn+m] ,

where bn, bn+1, . . . , bn+m ∈ Z+ and bn+m ≥ 2.
1. Suppose that q = 1. Then, p/q = [b0] = b0/1. Now we prove that∣∣∣∣∣α − p

q

∣∣∣∣∣ >
1(

2 − q−1
q2

)
q2

= 1
2 .

i. Assume that a0 = b0. Then, p/q is a convergent of α.
ii. Let a0 > b0. Then, we obtain that∣∣∣∣∣α − p

q

∣∣∣∣∣ = a0 − b0 + [0; a1, . . . ] ≥ 1 + [0; a1, . . . ] >
1
2 .

iii. Assume that b0 ≥ a0 + 2. Then, we have∣∣∣∣∣α − p

q

∣∣∣∣∣ = b0 − a0 − [0; a1, . . . ] ≥ 2 − [0; a1, . . . ] >
1
2 .

iv. Suppose that b0 = a0 + 1. It yields∣∣∣∣∣α − p

q

∣∣∣∣∣ = b0 − a0 − [0; a1, . . . ] = 1 − [0; a1, . . . ].

(i) If a1 does not exist, then we obtain that∣∣∣∣∣α − p

q

∣∣∣∣∣ = b0 − a0 = 1 >
1
2 .

(ii) If a1 = 1 and a2 exists, then p/q is a convergent of α.
(iii) If a1 ≥ 2, then we have∣∣∣∣∣α − p

q

∣∣∣∣∣ = 1 − 1
a1 + [0; a2, . . . ] ≥ 1

2 .

The equality occurs only in the case when a1 = 2 and a2 does not exist. This is the
exception mentioned in Theorem 3.1.
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2. Now we suppose that q ≥ 2. Then, we have 2 − (q − 1)/q2 > 2 − 1/q for all
q ∈ Z+. Therefore, instead of (3.1) it is enough to prove (3.2). The proof falls into
two main cases. Here is the plan of our proof:

a. n = 0, i. a0 > b0,

ii. b0 > a0,

b. n ≥ 1, i. an > bn, A. d ≥ 1, c ≥ 2,

B. d = 0, c = 1,

ii. bn > an, A. d ≥ 1, c ≥ 2,

B. d = 0, c = 1.

a. Assume that n = 0. Then, we have
p

q
= [b0; b1, b2, . . . , bm] = cb0 + d

c
,

where d
c

= [0; b1, b2, . . . , bm] and c > d > 0. Note that c ̸= 1, otherwise c = q = 1. Set
A = [0; a1, . . . ]. Then, we have

(4.1)
∣∣∣∣∣α − p

q

∣∣∣∣∣ =
∣∣∣∣∣a0 − b0 + A − d

c

∣∣∣∣∣ = 1
c2 c2

∣∣∣∣∣a0 − b0 + A − d

c

∣∣∣∣∣ .
Now we prove that ∣∣∣∣∣α − p

q

∣∣∣∣∣ >
1(

2 − 1
q

)
q2

.

From this, the fact that q = c ≥ 2 and (4.1) we obtain that it is enough to prove that
1
c2 c2

∣∣∣∣∣a0 − b0 + A − d

c

∣∣∣∣∣ >
1(

2 − 1
c

)
c2

,

which is equivalent to

(4.2) c(2c − 1)
∣∣∣∣∣a0 − b0 + A − d

c

∣∣∣∣∣ > 1.

Let us suppose two cases.
i. Assume that a0 > b0. This yields that inequality (4.2) has the form

c(2c − 1)
(

a0 − b0 + A − d

c

)
> 1,

which is obviously true since c ≥ 2 and

c(2c − 1)
(

a0 − b0 + A − d

c

)
≥ c(2c − 1)

(
1 + 0 − d

c

)
= (2c − 1) (c − d) ≥ 3 > 1.

Hence, inequality (4.2) follows.
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ii. Let b0 > a0. Then, inequality (4.2) is equivalent to

c(2c − 1)
(

b0 − a0 − A + d

c

)
> 1,

which is also obviously true since c ≥ 2, d ≥ 1 and

c(2c − 1)
(

b0 − a0 − A + d

c

)
> c(2c − 1)

(
1 − 1 + d

c

)
= (2c − 1)d > 1.

Therefore, inequality (4.2) follows.
b. Suppose that n ≥ 1. Then, we have

α = [a0; a1, a2, . . . , an−1, an, an+1, . . . ] = [a0; a1, . . . , an−1, an + r] ,

where r = [0; an+1, an+2, . . . ] satisfies 0 ≤ r < 1. If r = 0, then an+1 does not exist.
This and equality (2.1) yield

(4.3) α = (an + r)pn−1 + pn−2

(an + r)qn−1 + qn−2

and
p

q
= [a0; a1, a2, . . . , an−1, bn, bn+1, . . . , bn+m].

Set d/c = [0; bn+1 . . . , bn+m], where c > d. If d = 0, then c = 1. Otherwise, p and q
are not coprime. This and equality (2.1) imply

p

q
=

pn−1
(
bn + d

c

)
+ pn−2

qn−1
(
bn + d

c

)
+ qn−2

= pn−1(cbn + d) + cpn−2

qn−1(cbn + d) + cqn−2
.

From this, (2.2) and (4.3) we obtain that∣∣∣∣∣α − p

q

∣∣∣∣∣ =
∣∣∣∣∣(an + r)pn−1 + pn−2

(an + r)qn−1 + qn−2
− pn−1(cbn + d) + cpn−2

qn−1(cbn + d) + cqn−2

∣∣∣∣∣
= |cbn + d − can − cr|

((an + r)qn−1 + qn−2)(qn−1(cbn + d) + cqn−2)

= 1
q2 · q2|cbn + d − can − cr|

((an + r)qn−1 + qn−2)(qn−1(cbn + d) + cqn−2)

= 1
q2 · q|cbn + d − can − cr|

(an + r)qn−1 + qn−2

= 1
q2 · 1

(an+r)qn−1+qn−2
q|cbn+d−can−cr|

= 1
q2 · c

c(an+r)qn−1+cqn−2−(cbn+d)qn−1+(cbn+d)qn−1
q|cbn+d−can−cr|

= 1
q2 · c

qn−1(c(an+r)−cbn−d)+q
q|cbn+d−c(an+r)|
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= 1
q2

c
1

|c(bn−an−r)+d| + qn−1 sgn(an−bn)
q

.(4.4)

i. If an > bn then (4.4) has the form

(4.5)
∣∣∣∣∣α − p

q

∣∣∣∣∣ = 1
q2 · c

1
c(an−bn+r)−d

+ qn−1
q

.

A. Assume that d ≥ 1. Then, c ≥ 2. From this, (4.5) and the fact that q =
qn−1(cbn + d) + cqn−2 we obtain that∣∣∣∣∣α − p

q

∣∣∣∣∣ = 1
q2 · c

1
c(an−bn+r)−d

+ qn−1
q

≥ 1
q2 · 2

1 + qn−1
q

= 1
q2 · 2

1 + qn−1
qn−1(cbn+d)+cqn−2

= 1
q2 · 2

1 + 1
cbn+d+c

qn−2
qn−1

≥ 1
q2 · 3

2 >
1
q2 · 1

2 − 1
q

.

B. Suppose that d = 0. Then, c = 1 and bn+1 does not exist. Therefore, q =
bnqn−1 + qn−2, where bn ≥ 2. From this and (4.5) we obtain that∣∣∣∣∣α − p

q

∣∣∣∣∣ = 1
q2 · c

1
c(an−bn+r)−d

+ qn−1
q

≥ 1
q2 · 1

1 + qn−1
q

.

Hence, ∣∣∣∣∣α − p

q

∣∣∣∣∣ ≥ 1
q2 · 1

1 + qn−1
q

= 1
q2 · 1

1 + qn−1
bnqn−1+qn−2

= 1
q2 · 1

1 + 1
bn+ qn−2

qn−1

≥ 1
q2 · 1

1 + 1
bn

≥ 1
q2 · 2

3 ≥ 1
q2 · 1

2 − 1
q

.

ii. Let bn > an. Then, (4.4) has the form

(4.6)
∣∣∣∣∣α − p

q

∣∣∣∣∣ = 1
q2 · c

1
c(bn−an−r)+d

− qn−1
q

.

A. Assume that d ≥ 1. Then, c ≥ 2. From this, (4.6) and the facts 0 ≤ r < 1,
qn−1 ≥ 1 we obtain that∣∣∣∣∣α − p

q

∣∣∣∣∣ = 1
q2 · c

1
c(bn−an−r)+d

− qn−1
q

>
1
q2 · 2

1
2(1−1)+1 − qn−1

q

= 1
q2 · 2

1 − qn−1
q

≥ 1
q2 · 2

1 − 1
q

>
1
q2 · 1

2 − 1
q

.
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B. Suppose that d = 0. Then, c = 1 and bn+1 does not exist. Therefore, q =
bnqn−1 + qn−2, where bn ≥ 2. Now we prove that

(4.7) bn − an − r ≥ 1
2 .

Let bn = an + 1.
• If an+1 does not exist, then bn − an − r = 1 > 1

2 .
• If an+1 = 1, then p

q
is a convergent of α.

• If an+1 = 2 and an+2 does not exist, then r = 1
2 and we have

bn − an − r = 1 − 1
2 = 1

2 .

• If an+1 = 2 and an+2 ≥ 1, then

bn − an − r = 1 − [0; 2, an+2, . . . ] >
1
2 .

• If an+1 ≥ 3, then we have bn − an − r ≥ 1 − [0; 3] = 2/3 > 1/2.
Let bn ̸= an + 1. Then, bn − an − r ≥ 2 − r > 1/2. Hence, (4.7) follows.
From (4.6), (4.7), the facts that c = 1, d = 0 and qn−1 ≥ 1 we obtain that∣∣∣∣∣α − p

q

∣∣∣∣∣ = 1
q2 · c

1
c(bn−an−r)+d

− qn−1
q

≥ 1
q2 · 1

2 − qn−1
q

≥ 1
q2 · 1

2 − 1
q

.

The proof of Theorem 3.1 is complete. □

Proof of Theorem 3.2. We only follow Case 2. of Theorem 3.1 with following discus-
sions.

(a) In case 2.a.i we proved that∣∣∣∣∣α − p

q

∣∣∣∣∣ >
1(

2 − 1
q

)
q2

,

for all cases when q = c ≥ 2. Suppose that q = c = 1. Then, d = 0 and we have

c(2c − 1)
(

a0 − b0 + A − d

c

)
= a0 − b0 + A ≥ 1.

The equality occurs when b0 = a0 − 1 and a1 does not exist, so A = 0. This is the
first exception.

(b) Suppose that q = c = 1, d = 0 in case 2.a.ii. Then, we have

c(2c − 1)
(

b0 − a0 − A + d

c

)
= b0 − a0 − A.

i. Let b0 ≥ a0 + 2. Then, we obtain that
b0 − a0 − A ≥ 2 − A > 1.

ii. Assume that b0 = a0 + 1. It implies that
b0 − a0 − A = 1 − A.
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• If a1 does not exist, then A = 0 and we have b0 − a0 − A = 1 − A = 1. This is
the second exception.

• Let a1 = 1 and a2 exists. So, α = [a0; 1; a2, . . . ] and p
q

= [a0 + 1] is convergent of
α.

• If a1 ≥ 2, then we obtain that

b0 − a0 − A = 1 − 1
a1 + [0; a2, . . . ] < 1,

which is the third exception.
(c) In case 2.b.i.B we proved that∣∣∣∣∣α − p

q

∣∣∣∣∣ ≥ 1(
2 − 1

q

)
q2

.

The equality occurs only when n = 1, b1 = 2, a1 = 3 and a2 does not exist. Hence,
r = 0. This is the fourth exception.

(d) In case 2.b.ii.B, we also proved that
∣∣∣α − p

q

∣∣∣ ≥ 1
(2− 1

q )q2 . The equality occurs
when n = 1, b1 = a1 + 1, an+1 = 2 and an+2 does not exist. This is the fifth exception.

Proofs of other cases are the same like in the proof of Theorem 3.1.
The proof of Theorem 3.2 is complete. □

Proof of Theorem 3.3. The proof of this theorem follows Case 2. in the proof of The-
orem 3.1 with some following discussions.

(a) For case 2.a if n = 0, then qn−1 = q−1 = 0. So, it is enough to prove that∣∣∣∣∣α − p

q

∣∣∣∣∣ = 1
c2 c2

∣∣∣∣∣a0 − b0 + A − d

c

∣∣∣∣∣ >
1(

2 − qn−1
q

)
q2

= 1
2q2 = 1

2c2 ,

which is equivalent to

(4.8) 2c2
∣∣∣∣∣a0 − b0 + A − d

c

∣∣∣∣∣ > 1.

i. Suppose that a0 > b0. Then, inequality (4.8) has the form

2c2
(

a0 − b0 + A − d

c

)
> 1,

which is obviously true since

2c2
(

a0 − b0 + A − d

c

)
≥ 2c(c − d) ≥ 2.

This is also true for q = c ≥ 1 and d ≥ 0.
ii. Assume that b0 ≥ a0 + 2. Then, inequality (4.8) is equivalent to

2c2
(

b0 − a0 − A + d

c

)
> 1,
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which is obviously true since

2c2
(

b0 − a0 − A + d

c

)
> 2c2

(
2 − 1 + d

c

)
≥ 2 > 1,

for all values of c ≥ 1, d ≥ 0.
iii. Let b0 = a0 + 1. Then, inequality (4.8) is equivalent to

2c2
(

b0 − a0 − A + d

c

)
> 1,

which is obviously true since

2c2
(

b0 − a0 − A + d

c

)
> 2c2

(
1 − 1 + d

c

)
≥ 4 > 1,

for all values of c ≥ 2, d ≥ 1.
Now we suppose that c = 1, d = 0. Then, we obtain

2c2
(

b0 − a0 − A + d

c

)
= 2(1 − A).

• If a1 does not exist, then A = 0 and we have 2(1 − A) = 2 > 1.
• If a1 = 1 and a2 exists, then p

q
is a convergent of α.

• If a1 ≥ 2, then we have 2(1 − A) ≥ 2 (1 − 1/a1) ≥ 1. The equality occurs when
α = [a0; 2] and p/q = [a0 + 1], which is the first exception.

(b) Suppose that n ≥ 1. Then, we follow case 2.b in the proof of Theorem 3.1 with
these exceptions.

i. In case 2.b.i.A we have∣∣∣∣∣α − p

q

∣∣∣∣∣ ≥ 1
q2 · 2

1 + qn−1
q

>
1
q2 · 1

2 − qn−1
q

.

ii. In case 2.b.i.B we have bn ≥ 2, q = bnqn−1 + qn−2 ≥ 2qn−1 and∣∣∣∣∣α − p

q

∣∣∣∣∣ ≥ 1
q2 · 1

1 + qn−1
q

≥ 1
q2 · 1

2 − qn−1
q

.

The equality occurs when α = [a0; 3] and p/q = [a0; 2], this is the second exception.
iii. In case 2.b.ii.A we have∣∣∣∣∣α − p

q

∣∣∣∣∣ ≥ 1
q2 · 2

1 − qn−1
q

>
1
q2 · 1

2 − qn−1
q

.

iv. In case 2.b.ii.B we have ∣∣∣∣∣α − p

q

∣∣∣∣∣ ≥ 1
q2

1
2 − qn−1

q

.

The equality occurs when α = [a0; a1, . . . , an−1, an, 2] and p/q = [a0; a1, . . . ,
an−1, an + 1], this is the third exception.

The proof of Theorem 3.3 is complete. □
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Proof of Theorem 3.4. Let α = [a0; a1, a2, . . . , an−1, an, an+1, . . . ] be a simple contin-
ued fraction expansion of number α. For any irreducible fraction p/q which is neither
convergent nor nearest mediant of α and m, n ∈ N0 we can write as

p

q
= [a0; a1, a2, . . . , an−1, bn, bn+1, . . . , bn+m],

where bn, bn+1, . . . , bn+m ∈ Z+, bn ̸= an and bn+m ≥ 2. If bn+1 does not exist, then
bn /∈ {an + 1, an − 1}.

The proof falls into two main cases. Here is the plan of our proof.
1. n = 0.

a. c ≥ 2, d ≥ 1 and a0 ≥ b0 + 1.
b. c = 1, d = 0 and a0 ≥ b0 + 2.
c. c ≥ 2, d ≥ 1 and b0 ≥ a0 + 1.
d. c = 1, d = 0 and b0 ≥ a0 + 2.

2. n ≥ 1.
a. an > bn.

i. c ≥ 2, d ≥ 1 and an ≥ bn + 1.
ii. an > bn, c = 1 and d = 0.

A. an ≥ bn + 4.
B. an = bn + 3, n ≥ 2.
C. an = bn + 3, n = 1.
D. an = bn + 2, n ≥ 2.
E. an = bn + 2, n = 1.

b. bn > an

i. c ≥ 2, d ≥ 1 and bn ≥ an + 1.
ii. c = 1, d = 0 and bn ≥ an + 2.

1. Suppose that n = 0. Then,

α = [a0; a1, a2, . . . , an−1, an, an+1, . . . ] = [a0 + A]

and
p

q
= [b0; b1, . . . , bm] = b0 + d

c
= cb0 + d

c
,

where A = [0; a1, a2, . . . ] ∈ [0; 1) and d/c = [0; b1, b2, . . . , bm] ∈ [0; 1). Note that b0 ̸=
a0, bm ≥ 2 and if d = 0, c = 1 which mean b1 does not exist, then b0 /∈ {a0 + 1, a0 − 1}.

From this we have∣∣∣∣∣α − p

q

∣∣∣∣∣ =
∣∣∣∣∣a0 − b0 + A − d

c

∣∣∣∣∣ = 1
c2 c2

∣∣∣∣∣a0 − b0 + A − d

c

∣∣∣∣∣ .
Now we prove that ∣∣∣∣∣α − p

q

∣∣∣∣∣ >
1(

1 − 1
2q

)
q2

,
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which is equivalent to

(4.9)
(

c2 − c

2

) ∣∣∣∣∣a0 − b0 + A − d

c

∣∣∣∣∣ > 1.

a. Let c ≥ 2, d ≥ 1 and a0 ≥ b0 + 1. It yields that inequality (4.9) can be written
as (

c2 − c

2

)(
a0 − b0 + A − d

c

)
> 1,

which is obviously true since(
c2 − c

2

)(
a0 − b0 + A − d

c

)
≥
(

c2 − c

2

)(
1 − d

c

)

=
(

c − 1
2

)
(c − d) > 1.

b. Assume that c = 1, d = 0 and a0 ≥ b0 + 2. It yields that inequality (4.9) can be
written as (

c2 − c

2

)(
a0 − b0 + A − d

c

)
> 1,

which is obviously true since(
c2 − c

2

)(
a0 − b0 + A − d

c

)
≥ 1

2(a0 − b0 + A) ≥ 1
2(2 + A) ≥ 1.

The equality occurs when A = 0 and a0 = b0 + 2. It implies that α = [a0] and
p/q = [a0 − 2]. This is the first exception.

c. Suppose that c ≥ 2, d ≥ 1 and b0 ≥ a0 + 1. Then, inequality (4.9) has the form(
c2 − c

2

)(
b0 − a0 − A + d

c

)
> 1,

which is obviously true since(
c2 − c

2

)(
b0 − a0 − A + d

c

)
>
(

c2 − c

2

)(
1 − 1 + d

c

)

=
(

c2 − c

2

)
d

c
=
(

c − 1
2

)
d > 1.

d. Assume that b0 ≥ a0 + 2, c = 1 and d = 0. It implies that inequality (4.9) is
equivalent to

1
2(b0 − a0 − A) > 1,

which is obviously true since the following hold.
• If b0 ≥ a0 + 3, then we obtain that

1
2(b0 − a0 − A) ≥ 1

2(3 − A) > 1.
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• Suppose that b0 = a0 + 2. Hence,
1
2(b0 − a0 − A) = 1

2(2 − A) ≤ 1.

The equality occurs when A = 0 which mean a1 does not exist. On the other side,
when a1 exists the sharp inequality satisfied. These are the cases included in exception
2.

2. Let n ≥ 1. Then,

α = [a0; a1, . . . , an−1, an, an+1, . . . ] = (an + r)pn−1 + pn−2

(an + r)qn−1 + qn−2

and
p

q
= [a0; a1, . . . , an−1, bn, bn+1, . . . , bn+m] = (cbn + d)pn−1 + cpn−2

(cbn + d)qn−1 + cqn−2
,

where r = [0; an+1, . . . ] ∈ [0; 1) and d/c = [0; bn+1, . . . , bn+m] ∈ [0, 1), c > d, bn ̸= an.
If d = 0, then c = 1, otherwise p, q are not coprime and then bn /∈ {an + 1, an − 1}.
From this and (4.4) we obtain that∣∣∣∣∣α − p

q

∣∣∣∣∣ = 1
q2 · c

1
|c(bn−an−r)+d| + qn−1 sgn(an−bn)

q

.

Now we prove that ∣∣∣∣∣α − p

q

∣∣∣∣∣ >
1(

1 − 1
2q

)
q2

,

which is equivalent to

(4.10) c
1

|c(bn−an−r)+d| + qn−1 sgn(an−bn)
q

>
1

1 − 1
2q

.

a. Assume that an > bn. Then, (4.10) has the form

(4.11) c
1

c(an−bn+r)−d
+ qn−1

q

>
1

1 − 1
2q

.

Now we consider the following cases.
(i) Let an ≥ bn + 1, c ≥ 2 and d ≥ 1. Then, q = (cbn + d)qn−1 + cqn−2 ≥ cbn + d ≥ 3.

From this we obtain that
c

1
c(an−bn+r)−d

+ qn−1
q

≥ c
1

c−d
+ qn−1

q

≥ 2
1 + qn−1

q

.

So to prove (4.11), it is enough to prove
2

1 + qn−1
q

>
1

1 − 1
2q

,

which can be written as
1 >

1 + qn−1

q
.
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This is obviously true since
q = (cbn + d)qn−1 + cqn−2 ≥ 3qn−1 + 2qn−2 > 1 + qn−1.

(ii) Suppose that an > bn, c = 1 and d = 0. Hence, bn+1 does not exist and bn ≥ 2.
Then, q = bnqn−1 + qn−2. Therefore, (4.11) has the form

(4.12) 1
1

an−bn+r
+ qn−1

q

>
1

1 − 1
2q

.

(A) Let an ≥ bn + 4. From q = bnqn−1 + qn−2 ≥ bn ≥ 2 we obtain that 1
1− 1

2q

≤ 4
3

and we have
1

1
an−bn+r

+ qn−1
q

≥ 1
1
4 + 1

bn+ qn−2
qn−1

≥ 1
1
4 + 1

2
= 4

3 ≥ 1
1 − 1

2q

.

The equality occurs in the third exception.
(B) Assume that n ≥ 2 and an = bn + 3. Therefore, we have

1
1

an−bn+r
+ qn−1

q

= 1
1

3+r
+ qn−1

q

≥ 1
1
3 + qn−1

q

.

So to prove (4.12), it is enough to prove
1

1
3 + qn−1

q

>
1

1 − 1
2q

,

which is equivalent to
4
3 >

1 + 2qn−1

q
.

This inequality is true obviously since
q = bnqn−1 + qn−2 ≥ 2qn−1 + 1.

(C) Suppose that n = 1 and a1 = b1 + 3. Then, we have q = bnqn−1 + qn−2 = b1.
From this we obtain that

1
1

3+r
+ qn−1

q

= 1
1

3+r
+ 1

b1

.

So, to prove (4.12) it is enough to prove
1

1
3+r

+ 1
b1

>
1

1 − 1
2q

.

• Let b1 ≥ 3. Then, q ≥ 3 and 1
1− 1

2q

≤ 6
5 . Hence,

1
1

3+r
+ 1

b1

≥ 1
1
3 + 1

3
= 3

2 >
6
5 ≥ 1

1 − 1
2q

.

• Suppose that b1 = 2. Then, q = 2 and 1
1− 1

2q

= 4
3 . It yields

1
1

3+r
+ 1

b1

= 1
1

3+r
+ 1

2
.
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⋆ Assume a2 does not exist. Then, r = 0. Hence,
1

1
3+r

+ 1
2

= 1
1
3 + 1

2
= 6

5 <
4
3 = 1

1 − 1
2q

.

In this case we have α = [a0; 5] and p/q = [a0; 2]. This is the fourth exception when
a2 does not exist.

⋆ Suppose that a2 ≥ 1. Then, we have
1

1
3+r

+ 1
2

<
1

1
3+1 + 1

2
= 4

3 = 1
1 − 1

2q

.

This is the fourth exception.
(D) Let n ≥ 2 and an = bn + 2. From this we obtain that

1
1

an−bn+r
+ qn−1

q

≥ 1
1
2 + qn−1

q

.

So to prove (4.12) it is enough to prove that
1

1
2 + qn−1

q

≥ 1
1 − 1

2q

which can be written as
1 ≥ 1 + 2qn−1

q
.

This is obviously true since q = bnqn−1 + qn−2 ≥ 2qn−1 + 1.
The equality occurs in the fifth exception.
(E) Assume that n = 1 and an = bn + 2. Hence, q = bnqn−1 + qn−2 = b1. From this

we obtain that
1

1
an−bn+r

+ qn−1
q

= 1
1

2+r
+ 1

b1

.

• Let b1 ≥ 3. Then, q = b1 ≥ 3 and 1
1− 1

2q

≤ 6
5 . It yields

1
1

2+r
+ 1

b1

≥ 1
1
2 + 1

3
= 6

5 = 1
1 − 1

2q

.

The equality occurs in the sixth exception.
• Suppose that b1 = 2. Then, q = b1 = 2 and 1

1− 1
2q

= 4
3 . Hence,

1
1

2+r
+ 1

b1

= 1
1

2+r
+ 1

2
.

⋆ Assume that a2 does not exist. Then, r = 0 and we obtain that
1

1
2+r

+ 1
2

= 1
1
2 + 1

2
= 1 <

4
3 = 1

1 − 1
2q

.
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This is the seventh exception when a2 does not exist.
⋆ Let a2 ≥ 1. It implies that

1
1

2+r
+ 1

2
<

1
1

2+1 + 1
2

= 6
5 <

4
3 = 1

1 − 1
2q

.

This is the seventh exception.
b. Suppose that bn > an then (4.10) has the form

(4.13) c
1

c(bn−an−r)+d
− qn−1

q

>
1

1 − 1
2q

.

(i) Suppose that c ≥ 2, d ≥ 1 and bn ≥ an + 1. It yields
c

1
c(bn−an−r)+d

− qn−1
q

>
c

1
d

− qn−1
q

≥ 2
1 − 1

q

>
1

1 − 1
2q

,

which is obviously true and inequality (4.13) follows.
(ii) Let c = 1, d = 0 and bn ≥ an + 2. From this we obtain that

1
1

bn−an−r
− qn−1

q

>
1

1
2−1 − qn−1

q

≥ 1
1 − 1

q

>
1

1 − 1
2q

,

which is obviously true and inequality (4.13) follows.
The proof of Theorem 3.4 is complete. □

Proof of Example 3.1. We have∣∣∣∣∣α − p

q

∣∣∣∣∣ =
+∞∑
n=1

1
22n−1A2n −

N∑
n=1

1
22n−1A2n =

+∞∑
n=N+1

1
22n−1A2n .

At the same time
1

2q2 = 1
2
(
22N −1A2N

)2 = 1
2.22N+1−2A2N+1

= 1
22N+1−1A2N+1 <

+∞∑
n=N+1

1
22n−1A2n =

∣∣∣∣∣α − p

q

∣∣∣∣∣ .
Hence, we cannot use Legendre’s theorem. On the other side we have

1
q2
(
2 − 1

q

) = 1(
22N −1A2N

)2 (
2 − 1

22N −1A2N

) = 1(
22N −1A2N

) (
22N A2N − 1

)
= 1

22N+1−1A2N+1 .
+∞∑
n=0

1
2n2N An2N =

+∞∑
n=0

1
2(n+2)2N −1A(n+2)2N

>
+∞∑

n=N+1

1
22n−1A2n =

∣∣∣∣∣α − p

q

∣∣∣∣∣ .
Thus, from Theorem 3.2 we obtain that p/q is a convergent of α. □
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Proof of Example 3.2. Example 3.2 is an immediate consequence of Example 3.1 when
we set A = 1. □

Proof of Example 3.3. We have∣∣∣∣∣α − p

q

∣∣∣∣∣ =
+∞∑
n=1

1
22nA2n −

N∑
n=1

1
22nA2n =

+∞∑
n=N+1

1
22nA2n .

At the same time
1
q2 = 1

22.2N A2.2N <

∣∣∣∣∣α − p

q

∣∣∣∣∣ .
Hence, we cannot use Barbolosi and Jager’s theorem. On the other side we have

1(
1 − 1

2q

)
q2

= 1
22.2N A2.2N

+∞∑
n=0

1(
2.22N A2N

)n

=
+∞∑
n=0

1(
2(n+2)2N +nA(n+2)2N

)n >

∣∣∣∣∣α − p

q

∣∣∣∣∣ .
Therefore, from Theorem 3.4 we obtain that p/q is a convergent or nearest mediant
of α.

□
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