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ON A THEOREM OF LEGENDRE ON DIOPHANTINE
APPROXIMATION

JAROSLAV HANCL! AND THO PHUOC NGUYEN!

ABSTRACT. Legendre’s theorem states that every irreducible fraction % which sat-
isfies the inequality ‘a — %‘ < # is convergent to a. Later Barbolosi and Jager
improved this theorem. In this paper we refine these results.

1. INTRODUCTION

The theory of simple continued fractions plays the most important tools in mathe-
matical analysis, probability theory, physics, approximation theory and other branches
of natural sciences. During the last three centuries many famous mathematicians
came with interesting results in Diophantine approximations and continued fractions.
Among them let us mention for example [5,7,15,27,31].

In 1830, Legendre [27, page 23], proved the sufficient condition for a fraction p/q
to be convergent of real number «.

Theorem 1.1 (Legendre). Let p and q be relatively prime integers with ¢ > 0 and
such that

Then, g is a convergent to .

In Theorem 3.1 we refine this theorem, replacing 2 by 2— (¢—1)/¢?. The proof is ele-
mentary in character but lengthy, as it involves a detailed case analysis. Theorems 3.2
and 3.3 give other alternative to Theorem 3.1.
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Legendre’s theorem has some history. In 1965, Billingsley [4] made use of Legendre’s
method in the ergodic theory. In 1988, Ito [16] tried to extend Legendre’s constant 3
to the other kind of continued fractions. To do this he used a special algorithm how
to find the best constant. Such kind of methods are used for example in the theory
of dynamical systems and ergodic theory. For other results see [17,18] and [28].

There is a nice result of Koksma [23] stated in the following theorem.

Theorem 1.2 (Koksma). If p/q is a rational and « an irrational number and if
qlqae —p| < 2/3, then p/q is either a convergent or a first mediant of a. The constant
2/3 is best possible.

Barbolosi and Jager [2] refined Legendre’s theorem by considering two special cases
from which the constant 2/3 appears. They proved the following theorem.

Theorem 1.3 (Barbolosi and Jager). Let p/q = [bo; b1, ..., b,], where b, > 2, (p,q) =
1, ¢ > 0 be the simple continued fraction expansion and let o be an irrational number.
If (=1)"sgn(a — p/q) = 1 and qlqoe — p| < 2/3, then p/q is a convergent of c.

This is an interesting result because it shows the possibility of improving the
constant 1/2 in Legendre’s theorem. However, in some cases, determining the length
of the continued fraction representing p/q is not easy.

We improve Theorem 1.2 and give some alternative to Theorem 1.3 in Theorem 3.4,
when we replace 2/3 by (3/2 — ((¢ — 1)(q¢ — 2))/(2¢*))~'. The similar method was
used in [3] and [10-12] but for completely different results.

Interesting results can be found in [1,9,19,24-26]. An excellent source of basic
background is given in [13]. The books [6,14,20-22,29,32] and [8] are also very useful.

2. NOTATION

Throughout the paper, Z", Ny and R will denote the sets of positive, non-negative
integers and real numbers, respectively. Let a be a real number and suppose n €
No. Let a = [ag;aq,as,...] be its simple continued fraction expansion. Also, let
Pn/@n = lag; a1, ag, . . ., ay] be its n-th convergent. The following recurrence relations
for convergents are known

b2 :Oa pPp-1= 17 Po = ap, P1 = a100 + 17
DPn+2 =0n+2Pn+1 + Pn,

¢2=1, ¢1=0, =1, ¢=ua,

In+2 =An4+2Gn+1 + Gn-

For a simple continued fraction expansion we have that
a = [ag; a1, ag,...] = [ao; a1,G2, - - Gn, [Ong1; oy, Gngs, - H

Therefore, we can write
a = [ap;ay, ag, ..., Qn, Toi1),



ON A THEOREM OF LEGENDRE ON DIOPHANTINE APPROXIMATION 383

where 7,11 = [@p11; Ant2, Ants, - - - |. From this we obtain that

T'n41Pn + Pn-1

Tn1Qn + @1’

In this article, we will write [ag] or [ag + ], where t € Z to define continued fractions

with only the first integer part.
Taking a difference of two consecutive convergents we obtain that

(2.1) a=

(2.2) n1Pn — Pnidn = (=1)".

For the finite simple continued fraction expansion, if we have a = [ag; aq, as, ..., ax]
with k£ > 1, then we suppose that a; > 2.
The sequence of mediants of real irrational number « is the sequence of irreducible
fractions of the form
bpn + Pn—1
an + qn—1 ,
withn >0,b=1,2,...,a,+1 — 1, ordered in such a way that the denominators form
an increasing sequence. The mediant with b = 1 or b = a,,.1 — 1 is called nearest
mediant.
More details on the discussion in this section can be found in [2, page 7] or [30,
page 10].

3. NEw RESULTS

Our main result is the following theorem which concerns with the Legendre’s theo-
rem.

Theorem 3.1. Let p,q be relatively prime integers with ¢ > 1 and
< 1
ML

Then, p/q is a convergent to o excluding the case when o = [ag; 2] and p/q = [ag + 1].
For this special case, we have equality in (3.1) and p/q is a nearest mediant of .

p
a_i

(3.1) ;

We can improve this theorem in the following way.
Theorem 3.2. Let p,q be relatively prime integers with ¢ > 1 and
1
Oé - E S 712.
(2-1)a

q
Then, p/q is a convergent to v excluding the following cases:

(3.2)

(a) a = [ag] and p/q = [ag — 1];

(b) o= ao) and p/q = [ao + 1];

(c) a = [ag;ay,ag,...], a; > 2, and p/q = [ag + 1];
(d) o = [ao; 3] and p/q = lao; 2];

(e) o= [ao;a1,2] and p/q = [ao; a1 + 1].
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For all special cases (a)-(e), we have that p/q is the nearest mediant of a. For cases
(a), (b), (d) and (e) we have equality in (3.2), case (c) satisfies sharp inequality in
(3.2).

For every large n we have the following result.

Theorem 3.3. Let o be a real number, p,q be relatively prime integers with ¢ > 1, n
be a positive integer and p,_1/q.—1 be a convergent of o and also p/q. Assume that

1
(2=
Then, p/q is a convergent to «, excluding the following cases:
(a) a = ao;2] and p/q = [ao + 1];
(b) o = [ao; 3] and p/q = lao; 2;
(¢) a=lag;a,...,an_1,as,2] and p/q = [ag;ay, ..., an_1,a, + 1].

For all these cases p/q is the nearest mediant of o and we have equality in (3.3).

Pl <

(3.3) ;

o —

The next theorem improves the result of Barbolosi and Jager.

Theorem 3.4. Let p,q be relatively prime integers with ¢ > 1. If

PR S
S ()

then p/q is either a convergent or nearest mediant of o, excluding the following cases:

(a) a = lag] and p/q = [ap — 2|;

(b ap; a1, as, ...| and p/q = [ag + 2;
( ao; 6] and p/q = [ag; 2];

ao; b, as, ... and p/q = |ag; 2);
ap; a1, 4] and p/q = [ag; a1, 2];

= [ao; 5] and p/q = [ao; 3];

a0,4 as,...| and p/q = [ap;2].

p
a_i

q

C

) @
)
(d)
(e)
(f)
(&)
Ezample 3.1. Let a = Y,/ gyn—tw, where A € Z*. Set

N
1
2N _1 42N
P (2 A ) nz::l 92n—1 A2" N 1
5 - 92N 1 2N = L 92T A2

where N € Z*. From Theorem 3.1 we obtain that p/q is a convergent of a which is
not an immediate consequence of the Legendre’s theorem.

FExample 3.2. From Example 3.1 we obtain that Zn 1 22n r is a convergent of 3729 2273 T

This is not an immediate consequence of the Legendre’s theorem.
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Ewample 3.3. Let a = 327 g om, where A € Z*. Set

N o\ e 1
p (22 A? ) 712::1 92" A2" N 1
q 22V 42N - 2_:1 22" A2"

where N € Z*. From Theorem 3.4 we obtain that p/q is a convergent or nearest
mediant of & which is not an immediate consequence of Barbolosi and Jager’s theorem.

4. PROOFS

Proof of Theorem 3.1. Let a = [ap; a1, ag,...,an_1,ap, .. .| be a simple continued frac-
tional expansion of the number a. For any irreducible fraction p/q, which is not a
convergent of o and m,n € Ny we can write as

p
5 = [ao; a,ag,...,0n_1, bn, bn+1; Ce 7bn+m] s
where b, b1, ..., bnpm € Z7 and by > 2.
1. Suppose that ¢ = 1. Then, p/q = [by] = by/1. Now we prove that
P 1 1
a—=> = .
I

i. Assume that ag = by. Then, p/q is a convergent of «.
ii. Let ag > byg. Then, we obtain that

1
a_P :ao_b0+[0;a1,...]21+[0;a1,...]>§.
q
iii. Assume that by > ag + 2. Then, we have
1
a-P =by—ag—[0;a1,...] >2—[0;a;,...] > =.
q 2
iv. Suppose that by = ao + 1. It yields
Oz—g :bo_ao_[0;@1’“.]:1—[0;0,1,...]-

(i) If aq does not exist, then we obtain that

1
@—p|:b0—a0:1>2.

(ii) If a3 = 1 and ay exists, then p/q is a convergent of «.
(iii) If a; > 2, then we have

1 1
a—=|=1-— > —,
q CL1+[0;CL2,...] 2
The equality occurs only in the case when a; = 2 and as does not exist. This is the
exception mentioned in Theorem 3.1.

p
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2. Now we suppose that ¢ > 2. Then, we have 2 — (¢ —1)/¢*> > 2 — 1/q for all
q € Z*. Therefore, instead of (3.1) it is enough to prove (3.2). The proof falls into
two main cases. Here is the plan of our proof:

a. n =0, i. ag > bo,

ii. by > agp,
b. n>1, i. a, > by, Ad>1,¢c>2,
B.d=0,c=1,
ii. b, > a,, Ad>1,¢c>2,
B.d=0,c=1.

a. Assume that n = 0. Then, we have
_ chy+d

22[50;517b27‘-~abm] )
q

c
where % = [0;b1,bg,...,by) and ¢ > d > 0. Note that ¢ # 1, otherwise ¢ = ¢ = 1. Set
A =10;aq,...]. Then, we have

d

L,
(4.1) o— = ao_b0+A_C‘:CQC

p|:

d
ag — bo + A— ‘ .
c
Now we prove that
P 1
oa— = >
_ 1) 2
11" (2-7)a
From this, the fact that ¢ = ¢ > 2 and (4.1) we obtain that it is enough to prove that

>

1 d 1
—202 apg—bg+A——|>F—7—,
c c (2 — %) c?
which is equivalent to
d
(4.2) c(2c—1)lag—by+A——| > 1.
c

Let us suppose two cases.
i. Assume that ap > by. This yields that inequality (4.2) has the form

c(2¢—1) (ao—bo—l—A—d> > 1,
c

which is obviously true since ¢ > 2 and

c(2e=1) (ao—boﬂl—i) > c(2c — 1) <1+o—i>
=(2c—1)(c—d)>3>1

Hence, inequality (4.2) follows.
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ii. Let by > ag. Then, inequality (4.2) is equivalent to

c(2¢—1) (bg—ao—A—Fi) > 1,
which is also obviously true since ¢ > 2, d > 1 and
c(2¢—1) (bo—ao—A-i-i) > ¢(2c—1) (1— 1—|—CCZ> =(2c—1)d > 1.
Therefore, inequality (4.2) follows.
b. Suppose that n > 1. Then, we have

a = [apg;a1,as, ..., a4y 1,0y, Qpi1,- -] = [ao; a1, ..., an 1,0, + 7],

where r = [0; apy1, Gpyo, - . .| satisfies 0 < r < 1. If r = 0, then a,,; does not exist.
This and equality (2.1) yield

(an + T)pn—l + DPn—2

4.3 o=
( ) (an + T)Qn—l + gn—2

and

p
& = [ao;al,&z, oy U1, 0n, Oy ,bn+m]«

Set d/c = [0;bp41 -, byrm], where ¢ > d. If d = 0, then ¢ = 1. Otherwise, p and ¢
are not coprime. This and equality (2.1) imply

p_ Pna (bn + %) P2 pu_i(chy +d) + cpu_s

q B Qn—1 (bn -+ g) -+ qn—2 B QHfl(Cbn + d) + Cdn—2 ‘
From this, (2.2) and (4.3) we obtain that

p

o — ‘ — (Cln + T)pn—l +pn—2 o pn—l(Cbn + d) + CPDn—2

(@n + 7)1+ Gz Guo1(chy +d) + cgn s
|cb, + d — ca,, — cr|

((an + 7)1+ qn—2)(qn-1(cby + d) + cGn—2)

1 ¢?|cb, + d — ca,, — cr]

q2 ((an + T)QTL—I + Qn—2>(Qn—1<Cbn =+ d) + CQn—Q)

1 qleb, +d — ca, — cr|

¢ (an+ 7)1+ gu

1 1

2 (an+7)gn—1+qn—

T qebnirdecan—erl

1 c

q72 ’ C(an'i'T)anl‘i‘CanQ—(Cbn+d)qn71+(cbn+d)qn,1

q|cbn+d—can—cr|

q

1 c
qu " gn_1(c(antr)—cbn—d)+q
g|cbn+d—c(an+r)|
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1 c
dn—1 Sgn(an_bn)
T m=an—yra + q
i. If a,, > b, then (4.4) has the form
P 1 c
(4.5) |a— = —- ) —.
q q2 c(an—bn+r)—d + 1 q :

A. Assume that d > 1. Then, ¢ > 2. From this, (4.5) and the fact that ¢ =
Gn-1(cb, + d) + ¢g,_2 we obtain that

P 1 c 1 2
I e R— PR R B ey

9 O Fabern—d T ¢ T 1T 7o
1 2
_ 72 ) dn—1

q 1 —I— Qn—l(Cbn+d)+an—2

1 2 13 1 1
P 14— T 27 2—5

dn—2
cbn +d+cqn7_1

B. Suppose that d = 0. Then, ¢ = 1 and b,,1; does not exist. Therefore, ¢ =
bnGn—1 + qn_2, where b, > 2. From this and (4.5) we obtain that

p| 1 c < 1 1
== T P e e
A ¢ ot te ¢ LERE
Hence,
S 1 1 1 1
O— =2 =TT T 5 -
q q2 1 + : q : q2 1 + annzl‘i’IQn—Q
1 1 S 1 1 S 1 2 S 1 1
@ Ity @ 1y T 3T ¢ 2
dn—1
ii. Let b, > a,. Then, (4.4) has the form
D 1 c
(46) Q= — = 72 ’ 1 gn—1 "
q q c(bp—an—r)+d - q

A. Assume that d > 1. Then, ¢ > 2. From this, (4.6) and the facts 0 < r < 1,
Gn—1 > 1 we obtain that

p‘ 1 c
a—= =5 i e
q q2 c(bn—an—r)+d — 4 q -
>1 2
9 1 n—
¢ 20-1)+1 qql
_1 2 >1 2 >1 1
- 2 1 = 2 1 _17 2 o 1°
¢ 1-=" ¢ 1=y ¢ 2—
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B. Suppose that d = 0. Then, ¢ = 1 and b, does not exist. Therefore, ¢ =
bnqn-1 + Gn_o, where b, > 2. Now we prove that

1
(4.7) by —a, —1 > 3"

Let b, = a,, + 1.
e If a,,.1 does not exist, then b, —a, —r=1> %
o If a,,1 =1, then § is a convergent of a.

o If a,.1 =2 and a, 2 does not exist, then r = % and we have

1 1
bn_a'n_’r:]-_*:*-
2 2
o Ifa,  =2and a,s > 1, then
1
bn—an—rzl—[0;2,an+2,...]>§.

e If a,;; > 3, then we have b, —a,, —r >1—-1[0;3] =2/3 > 1/2.
Let b, # a, + 1. Then, b, — a, —r > 2 —r > 1/2. Hence, (4.7) follows.
From (4.6), (4.7), the facts that ¢ =1, d = 0 and ¢,—; > 1 we obtain that

p‘ 1 c o1 o1 1
o ——| = —_ Z = — .
q q2 c(bn—ail—r)—i-d _ in;l (]2 2 _ qnq—l q2 2 _ %
The proof of Theorem 3.1 is complete. 0

Proof of Theorem 3.2. We only follow Case 2. of Theorem 3.1 with following discus-

sions.
(a) In case 2.a.i we proved that

1
T

for all cases when ¢ = ¢ > 2. Suppose that ¢ = c = 1. Then, d = 0 and we have

p
a_i

q

>

d
c(2¢—1) (ao—bo—i—A—) =qyp—by+A>1.
c
The equality occurs when by = a9 — 1 and a; does not exist, so A = 0. This is the

first exception.
(b) Suppose that ¢ = ¢ =1, d = 0 in case 2.a.ii. Then, we have

d
c(2c—1) (bo—ao—A—i-) =bg—ag — A.
c
i. Let by > ag + 2. Then, we obtain that
bO—GO—AZQ—A>1.
ii. Assume that by = ag + 1. It implies that
bg—ao—Azl—A.
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e If a; does not exist, then A = 0 and we have by —ag — A=1— A = 1. This is
the second exception.

o Let a; =1 and ay exists. So, a = [ao; 1;a,...] and 2 = [ap + 1] is convergent of
o

e If a; > 2, then we obtain that
1
bp—ag—A=1-— <1,
0 0 a1+[0;a2,...]

which is the third exception.
(c) In case 2.b.i.B we proved that

p
O{_i

q

S 1
- _ 1) 2
(2-3)a
The equality occurs only when n = 1, by = 2, a; = 3 and ay does not exist. Hence,
r = 0. This is the fourth exception.
(d) In case 2.b.ii.B, we also proved that ‘04 - g‘ >

(2_1l>q2. The equality occurs
when n =1,by =a; + 1,a,+1 = 2 and a, 5 does not exist. thiS is the fifth exception.
Proofs of other cases are the same like in the proof of Theorem 3.1.

The proof of Theorem 3.2 is complete. U

Proof of Theorem 3.3. The proof of this theorem follows Case 2. in the proof of The-
orem 3.1 with some following discussions.
(a) For case 2.a if n = 0, then ¢, 1 = ¢_; = 0. So, it is enough to prove that

p‘ 1, d 1 1 1
Oé—*:*QC ao—b0+A—*>f:72:72,
‘ q c c (Q_QTl) @2 2q 2c
which is equivalent to

d
(4.8) 2¢% lag — by + A — —| > 1.

c

i. Suppose that ag > by. Then, inequality (4.8) has the form

d
202<a0—bg+A—C> > 1,

which is obviously true since
d
2c? <a0—b0—|—A—> > 2c(c—d) > 2.
c

This is also true for g =c¢ > 1 and d > 0.
ii. Assume that by > ag + 2. Then, inequality (4.8) is equivalent to

202 (bo—ag—A+d> > 1,
C
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which is obviously true since
2 d 2 d
2c bo—ao—A‘i‘* >2c°|12—14+—-|>22>1,
c c

for all values of ¢ > 1, d > 0.
iii. Let by = ag + 1. Then, inequality (4.8) is equivalent to

d
202 <bO—CI,Q—A—|—> > 1,
c
which is obviously true since
2 d 2 d
2¢ bo—ao—A—F* > 2¢ 1 -1+ - 24>1,
c c

for all values of ¢ > 2, d > 1.
Now we suppose that ¢ =1, d = 0. Then, we obtain

202 <b0—a0—A+d> :2(1—14)
c

e If a; does not exist, then A =0 and we have 2(1 — A) =2 > 1.

e If a; = 1 and ay exists, then § is a convergent of a.

e If a; > 2, then we have 2(1 — A) > 2(1 — 1/ay) > 1. The equality occurs when
a = [ap; 2] and p/q = [ap + 1], which is the first exception.

(b) Suppose that n > 1. Then, we follow case 2.b in the proof of Theorem 3.1 with
these exceptions.

i. In case 2.b.i.A we have

b 1 2 1 1
a—=|> = — > —
T S
ii. In case 2.b.i.B we have b,, > 2, ¢ = b,¢n_1 + ¢n—2 > 2¢,,—1 and
ol 1 1 1 1
i R L T R ey e
q| = ¢ 1+%2 T g -

The equality occurs when o = [ag; 3] and p/q = [ap; 2], this is the second exception.
iii. In case 2.b.ii. A we have

pl_ 1 2 1 1

a [ — _— e — _— e —

q — q2 1 — an—l q2 2 an—l

iv. In case 2.b.ii.B we have
1 1
= g Z 722 _ Gn-1"
q| g p

The equality occurs when o = [ag;a,...,0,-1,0,,2] and p/q = [ag;a1,...,

Apn—1,ay + 1], this is the third exception.
The proof of Theorem 3.3 is complete. 0J
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Proof of Theorem 3.4. Let a = [ag; a1, a2, . ..,0n_1,0pn, Any1, .. .| be a simple contin-
ued fraction expansion of number «.. For any irreducible fraction p/q which is neither
convergent nor nearest mediant of & and m,n € Ny we can write as

p
& = [ao;al,@z, s A1, 0n, O 7bn+m]7

where b,,bu41,. .., bpem € Z1, b, # a, and b, y,, > 2. If b, 1 does not exist, then
b, ¢ {a, +1,a, — 1}.

The proof falls into two main cases. Here is the plan of our proof.

1. n=0.
a.c>2,d>1and ag > by + 1.
b.c=1,d=0 and ag > by + 2.
c.c>2,d>1and by >ag+ 1.
d.¢c=1,d=0and by > ag + 2.

2. n>1.

a. a, > b,.

i,c>2,d>1anda, >0, + 1.
ii. a, > b,, c=1and d=0.

. @y > b, + 4.

Sy =0b,+3,n>2.

.a, =b,+3, n=1.

L, =b, +2,n>2.

LA, =b,+2,n=1.

b. b, > a,
i,c>2,d>1andb, >a,+ 1.
ii.c=1,d=0and b, > a, + 2.

1. Suppose that n = 0. Then,

HOQm =

o = [61036117612,...,an71,an,an+1,_,,] = [aO+A]
and
d _chy+d
:[bﬂ;bl,-..,bm]:bo_i_fzco ,
c c

S S

where A = [0;ay,as,...] € [0;1) and d/c = [0; b1, bs, ..., by] € [0;1). Note that by #
ag, by, > 2 and if d = 0, ¢ = 1 which mean b; does not exist, then by ¢ {ag+1,aq—1}.
From this we have

d d
a—p|: ap—bp+A—— :—202 ap—bg+A——|.
q c c c
Now we prove that
P 1
a——|>
1 Y
1- (1-5)e
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which is equivalent to

(4.9) (62 - ;)

a. Let ¢ >2,d>1and ayp > by + 1. It yields that inequality (4.9) can be written

as
(02—6) (ao—bo—l—A—d) > 1,
2 &

which is obviously true since

(#=5) (o1 2)2 (-5 (1-2)

b. Assume that ¢ = 1, d = 0 and ag > by + 2. It yields that inequality (4.9) can be

written as
d
(02—C> (ao—bo—i-A—) > 1,
2 c

which is obviously true since

d
ao—bo—i-A—E > 1.

c d 1 1
(02—2> <a0—b0+A—c> > (a0 —bo+A) 2 52+ A) 2 1
The equality occurs when A = 0 and ay = by + 2. It implies that o = [ao] and
p/q = [ag — 2]. This is the first exception.
c. Suppose that ¢ > 2, d > 1 and by > ag + 1. Then, inequality (4.9) has the form

(02—c> (bO—CLO—A+d> >].,
2 &

which is obviously true since

(2= 5) (m-m-a+?) > (e-5) (1-1+)
(-t (e

d. Assume that by > ag + 2, c =1 and d = 0. It implies that inequality (4.9) is

equivalent to
1

2
which is obviously true since the following hold.
e If by > ag + 3, then we obtain that

(bo—ao—A)>1,

1

1
i(bo—ao—A)Z (3—A)>1

N |
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e Suppose that by = ag + 2. Hence,

1 1

—(bg—apg—A)==(2—-—A)<1.

2( 0 — do ) 2( ) <
The equality occurs when A = 0 which mean a; does not exist. On the other side,
when a; exists the sharp inequality satisfied. These are the cases included in exception
2

2. Let n > 1. Then,

] _ (an + T)pn—l + Pn—2

Q= |Ag; A1y Ap—1,Apn,Apny1,...| =

[ 0 ! H (an + T)Qn—l + dn—2

and (e, +d)
p COp, + Pn—1 + CPn—2
e . n—7b7b 7...,bn - )
q [a07a17 ,a 1, Yn, Yn+41 +m] (Cbn + d)qn_l + an_g

where r = [0; apy1,...] € [0;1) and d/c = [0;bpy1, .-, buam] € [0,1), ¢ > d, b, # a,.
If d =0, then ¢ = 1, otherwise p, ¢ are not coprime and then b, ¢ {a, + 1,a, — 1}.
From this and (4.4) we obtain that

P 1 c
a— 2= —. .
2 1 gn—15gn(an—bn)
N T anra T ,
Now we prove that
1
N R
0" (1-5)a
which is equivalent to
c 1
(4.10) N > .
dn—1 Sgn(an_bn) 1 _ i
i

le(bpn—an—7)+d q 2q
a. Assume that a, > b,. Then, (4.10) has the form
c 1

(4.11) T n qn; > T

c(an—bn+r)—d

Now we consider the following cases.
(i) Let a,, > b, +1,¢ >2and d > 1. Then, ¢ = (¢b, + d)qn_1 + ¢qn_2 > cb, +d > 3.
From this we obtain that
c S 2

C

>

1 dn—1 — 1 dn—1 — gn—1 "
c(an—bn+r)—d + q c—d + q 1+ q

So to prove (4.11), it is enough to prove
2 S 1
dn—1 10>
1+ . 1

which can be written as
1+ Gn—1

q

1>
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This is obviously true since
q= (Cbn + d)QHfl + Cn—2 Z 3%171 + ZanQ > 1+ qn—1-

(ii) Suppose that a,, > b,, ¢ =1 and d = 0. Hence, b, does not exist and b,, > 2.
Then, ¢ = b,¢—1 + ¢n—2. Therefore, (4.11) has the form

1 1
(4.12) qn
an_bn"l"" + 1 o Z
(A) Let a, > b, +4. From ¢ = b,q,_ 1—|—qn 2 > b, > 2 we obtain that —+ < %
2
and we have !
1 S 1 4 S 1
n— —_— 1 1 9 = 1 -
an—bn+r+q : + + Z+§ 3 1_?q

dn—1
The equality occurs in the third exception.
(B) Assume that n > 2 and a,, = b, + 3. Therefore, we have

1 1 1

= >
n— n— _1 n— :
+q 3+T+q 1 +q 1

An— bn +r

So to prove (4.12), it is enough to prove

1 - 1
T G )
st 1y
which is equivalent to
4 1+ 2(]71—1
3 q

This inequality is true obviously since
q= annfl + qn—2 > 2Qn71 + 1.

(C) Suppose that n = 1 and a; = b; + 3. Then, we have ¢ = b,gn—1 + ¢n—2 = by.
From this we obtain that

1 1
F+eE T EAE
So, to prove (4.12) it is enough to prove
1 1
stn -4
e Let by > 3. Then, ¢ > 3 and 12 < g. Hence,
1 ; 13 6 1
=P REE A
e Suppose that by = 2. Then, ¢ =2 and 21 %. It yields
1 1
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% Assume as does not exist. Then, r = 0. Hence,
1 1 6 4 1

=+3 +4+3 5 3 1—o
]

w

+r 2q
In this case we have a = [ag; 5

ao does not exist.
% Suppose that as > 1. Then, we have

1 1 4 1

This is the fourth exception.
(D) Let n > 2 and a,, = b, + 2. From this we obtain that
1 1
>

1 n-1 — 1 | gn-1"
an—bn+r+ q 2+ q

So to prove (4.12) it is enough to prove that

1 S 1
%_’_ an—l =1_ i
which can be written as
1 Z 1+ Qanl .
q

This is obviously true since ¢ = b,¢,_1 + ¢n_2 > 2¢,_1 + 1.
The equality occurs in the fifth exception.
(E) Assume that n =1 and a,, = b, + 2. Hence, ¢ = b,q—1 + @2 = by

we obtain that
1 1

1 qn—1 ~— 1 1 -
An—bn+r + q 2+r + b1

o Let by > 3. Then, g =b; >3 and — < g. It yields

-+ —
2q

1 S 1 _6 1
1 T =1 ,1 % 1-
st 2ty 5 Loy

The equality occurs in the sixth exception.
e Suppose that by = 2. Then, ¢ = by = 2 and =+ = 3. Hence,

2q

1 1

1 1 1 | 1°
2+7‘+b1 2+7‘+2

% Assume that ay does not exist. Then, r = 0 and we obtain that

1 B 1 _1<4 1
1 1 — 1 1 — 9 7 1°

. From this
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This is the seventh exception when a, does not exist.
% Let ap, > 1. It implies that

1L 1 6_4_ 1
1 1 1 1~ 5 S9 7_1°
st zats 9 3 l-g
This is the seventh exception.
b. Suppose that b, > a, then (4.10) has the form
c 1
(4.13) - — > — .
c(bp,—an—r)+d q 2q
(i) Suppose that ¢ > 2, d > 1 and b, > a, + 1. It yields
c c 2 1
e gy S Y B
c(bp—an—r)+d q d q q 2q

which is obviously true and inequality (4.13) follows.
(ii) Let ¢ =1, d = 0 and b,, > a,, + 2. From this we obtain that

1 1 1 1

1 _ 4n-—1 > 4n—1 2 1 _

1 1
bp—an—T7 q 2—1 q q 2q

which is obviously true and inequality (4.13) follows.
The proof of Theorem 3.4 is complete.

Proof of Example 3.1. We have

pl =1 N 1 Too 1
At the same time
1 1

2% g (20 1a2v)’ T 2.2V 2V

a—=|.
q

p ‘

Hence, we cannot use Legendre’s theorem. On the other side we have

1 1 1
¢ (2 _ é) N (22N—1A2N)2 (2 _ 22N711A2N) N (22N—1A2N) (22NA2N _ 1)
1 = 1 = 1
T 92NFI_1 goNTl Zo on2N An2N — Zo 9(n+2)2N—1 A(n+2)2V
400 1 D
> = |a— .

Thus, from Theorem 3.2 we obtain that p/q is a convergent of .

397
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Proof of Example 3.2. Example 3.2 is an immediate consequence of Example 3.1 when

we

set A=1. O

Proof of Example 3.3. We have

At

@ ——| = aon Aon aom Aon aon Aon
n=1 22 A2 n=1 22 A2 n=N+1 22 A2
the same time
r 1 P
? T 922N g2.2N < O‘_g :

Hence, we cannot use Barbolosi and Jager’s theorem. On the other side we have

1 = X
(1-%) 27405 (2.22¥ 42"
+o00 1 )
i "go (2mr22¥ A (422" T Q| '

Therefore, from Theorem 3.4 we obtain that p/q is a convergent or nearest mediant
of a.

O
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