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GENERAL CLASSES OF SHRINKAGE ESTIMATORS FOR THE
MULTIVARIATE NORMAL MEAN WITH UNKNOWN VARIANCE:

MINIMAXITY AND LIMIT OF RISKS RATIOS

ABDELKADER BENKHALED1 AND ABDENOUR HAMDAOUI2

Abstract. In this paper, we consider two forms of shrinkage estimators of the
mean θ of a multivariate normal distribution X ∼ Np

(
θ, σ2Ip

)
in Rp where σ2 is

unknown and estimated by the statistic S2 (S2 ∼ σ2χ2
n). Estimators that shrink

the components of the usual estimator X to zero and estimators of Lindley-type,
that shrink the components of the usual estimator to the random variable X. Our
aim is to improve under appropriate condition the results related to risks ratios of
shrinkage estimators, when n and p tend to infinity and to ameliorate the results of
minimaxity obtained previously of estimators cited above, when the dimension p is
finite. Some numerical results are also provided.

1. Introduction

Shrinkage estimates are alternative estimates that use information from all studies
to provide potentially better estimates for each study. While these estimates is
biased, they have a considerably smaller variance, and thus tend to be better in
terms of total mean squared error. For example, Xie et al. [21] introduced a class
of semiparametric/parametric shrinkage estimators and established their asymptotic
optimality properties, Hansen [9] compared the mean-squared error of ordinary least
squares (OLS), James-Stein, and least absolute shrinkage and selection operator
(Lasso) shrinkage estimators and shows that neither James-Stein nor Lasso uniformly
dominates the other, Selahattin et al. [15] provided several alternative methods for
derivation of the restricted ridge regression estimator (RRRE).
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Mean vector parameter estimation is an important problem in the context of shrink-
age estimation and has been widely applied in many scientific and engineering prob-
lems. This fact is certainly reflected by the abundant literature on the subject, let us
cite for instance. Stein [16] showed the inadmissibility of the usual estimator X of the
mean θ of a multivariate normal distribution X ∼ Np (θ, σ2Ip) when the dimension
of the space of the observations p > 3. James and Stein [10], introduced the class of
shrinkage estimators δa = (1− aS2/ ‖X‖2)X, that improving the usual estimator X
under the quadratic loss function. Many developments in this field has realized by
Lindley [12], Baranchik [1], Stein [17] and Selahattin and Issam [13]. Tsukuma and
Kubokawa [20] addresses the problem of estimating the mean vector of a singular mul-
tivariate normal distribution with an unknown singular covariance matrix. Selahattin
and Issam [14], introduced and derived the optimal extended balanced loss function
(EBLF) estimators and pridictors and discuss their performances.

When the dimension p is infinite, Casella and Hwang [4], studied the case where
σ2 is known (σ2 = 1) and showed that if the limit of the ratio ‖θ‖2 /p is a constant
c > 0, then the risks ratios of the James-Stein estimator δJS and the positive-part
of the James-Stein estimator δJS+, to the maximum likelihood estimator X, tend
to a constant value c/(1 + c). Benmansour and Hamdaoui [2], have taken the same
model given by Casella and Hwang [4], where the parameter σ2 is unknown and they
established the same results. Hamdaoui and Benmansour [6], considered the model
X ∼ Np (θ, σ2Ip) where σ2 is unknown and estimated by S2 (S2 ∼ σ2χ2

n). They studied
the following class of shrinkage estimators δφ = δJS+l(S2φ(S2, ‖X‖2)/‖X‖2)X, where
l is a real parameter. The authors showed that, when the sample size n and the
dimension of space parameters p tend to infinity, the estimators δφ have a lower
bound Bm = c/(1 + c) and if the shrinkage function φ satisfies some conditions, the
risks ratio R(δφ, θ)/R(X, θ) attains this lower bound Bm, in particulary the risks
ratios R(δJS, θ)/R(X, θ) and R(δJS+, θ)/R(X, θ). In Hamdaoui et al. [8], the authors
studied the limit of risks ratios of two forms of shrinkage estimators. The first one has
been introduced by Benmansour and Mourid [3], δψ = δJS+l(S2ψ(S2, ‖X‖2)/‖X‖2)X,
where l is a real parameter and ψ (·, u) is a function with support [0, b] and satisfies
some conditions different from the one given in Hamdaoui and Benmensour [6]. The
second is the polynomial form of shrinkage estimator introduced by Li and Kio [11].
Hamdaoui and Mezouar [7], studied the general class of shrinkage estimators δφ =(
1− S2φ

(
S2, ‖X‖2

)
/ ‖X‖2

)
X. They showed the same results given in Hamdaoui

and Benmansour [6], with different conditions on the shrinkage function φ.
In this work, we consider the model X ∼ Np (θ, σ2Ip) and independently of the

observations X, we observe S2 ∼ σ2χ2
n an estimator of σ2. It’s well known that

the quadratic risk of the usual estimator X is pσ2. Consequently, any estimator of
θ which has a quadratic risk less than pσ2 dominate X, then it is minimax. We
consider two different forms of shrinkage estimators of θ: estimators of the form
δψ = (1 − ψ(S2, ‖X‖2)S2/ ‖X‖2)X, and estimators of Lindley-type given by δϕ =
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(1 − ϕ(S2, T 2)S2/T 2)(X − X) + X, that shrink the components of the maximum
likelihood estimator X to the random variable X. Our aim in this work is based on
two points. First, when n and p tend to infinity, we give results of the limit of risks
ratios of estimators defined above to the maximum likelihood estimator X, different
from the one obtained in our published papers. The second point is to generalize and
to improve the results of minimaxity obtained by Strawderman [18], Sun [19] and
Hamdaoui and Benmansour [6].

The paper is outlined as follows: In Section 2, we consider the form of shrinkage
estimators defined in (2.2) and we study the minimaxity and the limit of risks ratio to
these estimators to the usual estimator X. In Section 3, we consider the second form
of shrinkage estimators defined in (3.1) of Lindley-type. In this case, we follow the
same steps as we treated the first form (2.2). In Section 4, we graphically illustrate
some results given in this paper. In the end, we give an Appendix which contains
technical lemmas used in the proofs of our results.

2. Shrinkage to Zero

Let X ∼ Np (θ, σ2Ip) where σ2 is unknown and estimated by S2 (S2 ∼ σ2χ2
n). The

aim is to estimate θ by an estimator δ relatively at the quadratic loss function
L (δ, θ) = ‖δ − θ‖2

p ,

with ‖·‖p is the usual norm in Rp. We associate its risk function
R (δ, θ) = Eθ (L (δ, θ)) .

We denote the general form of a shrinkage estimator as follows

(2.1) δφj
(
X,S2

)
=
(
1− φ

(
S2, ‖X‖2

))
Xj, j = 1, . . . , p.

We recall that ‖X‖
2

σ2 ∼ χ2
p (λ), where χ2

p (λ) denotes the non-central chi-square distribu-
tion with p degrees of freedom and non-centrality parameter λ = ‖θ‖2

2σ2 . We also recall
the following Lemma given by Fourdrinier et al. [5], that we will use often in the next.

Lemma 2.1. Let X ∼ Np (θ, σ2Ip) with θ ∈ Rp. Then
(a) for p ≥ 3 we have E

(
1
‖X‖2

)
= 1

σ2E
(

1
p−2+2K

)
;

(b) for p ≥ 5 we have E
(

1
‖X‖4

)
= 1
σ4 E

(
1

(p−2+2K)(p−4+2K)

)
,

where K ∼ P
(
‖θ‖2

2σ2

)
being the Poisson’s distribution of parameter ‖θ‖

2

2σ2 .

For the next, we need the following results obtained by Hamdaoui and Benman-
sour [6].

Proposition 2.1 (Hamdaoui and Benmansour [6]). The risk of the estimator given
in (2.1) is

R
(
δφ(X,S2), θ

)
= σ2E

{
φ2
K χ2

p+2K − 2φK
(
χ2
p+2K − 2K

)
+ p

}
,
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where φK = φ
(
σ2χ2

n, σ
2χ2

p+2K

)
and K ∼ P

(
‖θ‖2

2σ2

)
being the Poisson’s distribution of

parameter ‖θ‖
2

2σ2 and χ2
n is the central chi-square distribution with n degrees of freedom.

Furthermore, R
(
δφ (X,S2) , θ

)
≥ Bp (θ) with

Bp (θ) = σ2
{
p− 2− E

{
(p− 2)2

p− 2 + 2K

}}
.

We set by bp (θ) = Bp(θ)
R(X,θ) , it is clear that if lim

p→+∞
‖θ‖2

pσ2 = c (> 0), then

lim
p→∞

bp (θ) = c

1 + c
.

In the particular case where φ(S2, ‖X‖2) = d S2

‖X‖2 we have

δd
(
X,S2

)
=
(

1− d S2

‖X‖2

)
X,

hence

R
(
δd(X,S2), θ

)
= σ2

{
p+ n

[
d2(n+ 2)− 2d(p− 2)

]
E

(
1

p− 2 + 2K

)}
.

For d = p−2
n+2 we obtain the James-Stein estimator which minimizes the risk of δd (X,S2)

whose quadratic risk is

R
(
δJS(X,S2), θ

)
= σ2

{
p− n

n+ 2(p− 2)2E

(
1

p− 2 + 2K

)}
.

Proposition 2.2 (Hamdaoui and Benmansour [6]). If lim
p→+∞

‖θ‖2

pσ2 = c, then

lim
n,p→∞

R
(
δφ(X,S2), θ

)
R(X, θ) ≥ c

1 + c

and

lim
n,p→∞

R
(
δJS(X,S2), θ

)
R(X, θ) = c

1 + c
.

We note that from the Proposition 2.2, the risks ratio of any shrinkage estimator
δφ (X,S2) of the form (2.1) dominating the James-Stein estimator δJS (X,S2) , to the
maximum likelihood estimator attains the limiting lower bound Bm = c

1+c (< 1),
when n and p tend simultaneously to infinity.

Now we rewrite the estimator in (2.1) by letting φ
(
S2, ‖X‖2

)
= ψ

(
S2, ‖X‖2

)
S2

‖X‖2 ,

as given by

(2.2) δψj
(
X,S2

)
=
(

1− ψ
(
S2, ‖X‖2

) S2

‖X‖2

)
Xj, j = 1, . . . , p.
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Using the Proposition 2.1, the risk function of estimator δψ (X,S2) given in (2.2), is

R
(
δψ(X,S2), θ

)
= σ2E

ψ2
K

σ2
(σ2χ2

n)2(
σ2χ2

p+2K

) − 2ψK
(σ2χ2

n)(
σ2χ2

p+2K

) (χ2
p+2K − 2K

)
+ p


= pσ2 + σ2E

{
χ2
n ψK

[
ψK χ2

n

χ2
p+2K

− 2
(

1− 2K
χ2
p+2K

)]}
,

where ψK = ψ
(
σ2χ2

n , σ
2χ2

p+2K

)
.

We write ∆ψ = R
(
δψ (X,S2) , θ

)
−R (X, θ) . As R (X, θ) = pσ2, then

(2.3) ∆ψ = σ2E

{
χ2
n ψK

[
χ2
n ψK
χ2
p+2K

− 2
(

1− 2K
χ2
p+2K

)]}
.

2.1. Limit of risks ratios. In this part, we are interested in studying of the limit
of risks ratios of estimators defined in (2.2), to the usual estimator X. So, we give
results different from the one given in our published papers.

Theorem 2.1. Assume that δψ (X,S2) is given in (2.2), such that p ≥ 3 and ψ
satisfies:

(H)
∣∣∣∣p− 2
n+ 2 − ψ

(
S2, ‖X‖2

)∣∣∣∣ ≤ g (S2) a.s., where E
{
g2
(
σ2χ2

n+4

)}
= O

(
1
n2

)
, when

n is in the neighborhood of +∞.
If lim

p→+∞
‖θ‖2

pσ2 = c, then

lim
n,p→+∞

R
(
δψ (X,S2) , θ

)
R (X, θ) = c

1 + c
.

Proof. We note α = p−2
n+2 and ψ

(
S2, ‖X‖2

)
= ψ. As

R
(
δψ(X,S2), θ

)
= E


p∑
i=1

[(
1− ψ S2

‖X‖2

)
Xi − θi

]2


and

R
(
δJS(X,S2), θ

)
= E


p∑
i=1

[(
1− α S2

‖X‖2

)
Xi − θi

]2
 ,

then

∆JS =R
(
δψ(X,S2), θ

)
−R

(
δJS(X,S2), θ

)
=E

{ p∑
i=1

{([(
1− ψ S2

‖X‖2

)
Xi − θi

]
−
[(

1− α S2

‖X‖2

)
Xi − θi

])

×
([(

1− ψ S2

‖X‖2

)
Xi − θi

]
+
[(

1− α S2

‖X‖2

)
Xi − θi

])}}
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=2E
{ p∑
i=1

([
(α− ψ) S2

‖X‖2Xi

] [(
1− (α + ψ)

2
S2

‖X‖2

)
Xi − θi

])}

=2E
{ p∑
i=1

[
(α− ψ)

(
1− (α + ψ)

2
S2

‖X‖2

)
S2

‖X‖2X
2
i

]

−
p∑
i=1

[
(α− ψ) S2

‖X‖2Xi θi

]}

=2E
{ p∑
i=1

[
(α− ψ)

(
1 + (−α + α− ψ − α)

2
S2

‖X‖2

)
S2

‖X‖2X
2
i

]

−
p∑
i=1

[
(α− ψ) S2

‖X‖2Xi θi

]}

=2E
{[

(α− ψ) S2

‖X‖2

p∑
i=1

X2
i

]
+ 1

2

[
(α− ψ)2 S4

‖X‖4

p∑
i=1

X2
i

]

−α
[
(α− ψ) S4

‖X‖4

p∑
i=1

X2
i

]
−

p∑
i=1

[
(α− ψ) S2

‖X‖2Xi θi

]}

=2E
{

(α− ψ)S2 + 1
2 (α− ψ)2 S4

‖X‖2 − α (α− ψ) S4

‖X‖2

−
p∑
i=1

[
(α− ψ) S2

‖X‖2Xi θi

]}
.

Using the conditional expectation and the formula (2.7) given in Benmansour and
Mourid [3], we have

E

[
(α− ψ) S2

‖X‖2 〈X, θ〉
]

= E

{ p∑
i=1

[
(α− ψ) S2

‖X‖2Xi θi

]}

= λE

[(
α− ψ

(
σ2χ2

n, σ
2χ2

p+2 (λ)
)) χ2

n

χ2
p+2 (λ)

]
,

where λ = ‖θ‖2

σ2 . Then

∆JS ≤2E
{[

(|α− ψ|)S2
]

+ 1
2 (α− ψ)2 S4

‖X‖2 + α (|α− ψ|) S4

‖X‖2

+λE
[(∣∣∣α− ψ (σ2χ2

n, σ
2χ2

p+2 (λ)
)∣∣∣) χ2

n

χ2
p+2 (λ)

]}
.

From the hypothesis (H) and the independence of two variables S2 and ‖X‖2 , we
have

∆JS ≤2E
[
S2g

(
S2
)]

+ E
[
S4g2

(
S2
)]
E

(
1
‖X‖2

)
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+ 2αE
[
S4g

(
S2
)]
E

(
1
‖X‖2

)
+ 2λE

[
S2g

(
S2
)]
E

(
1

χ2
p+2 (λ)

)

=2E
[
S4 g (S2)

S2

]
+ E

[
S4g2

(
S2
)]
E

(
1
‖X‖2

)

+ 2αE
[
S4g

(
S2
)]
E

(
1
‖X‖2

)
+ 2λE

[
S4 g (S2)

S2

]
E

(
1

χ2
p+2 (λ)

)
.

Using the Lemma 5.1 of the Appendix and the fact that E
(

1
χ2

p(λ)

)
≤ 1

p−2 , we obtain

∆JS

≤2n (n+ 2)σ2E

g
(
σ2χ2

n+4

)
χ2
n+4

+ n (n+ 2)σ2E
[
g2
(
σ2χ2

n+4

)]
E

(
1

χ2
p (λ)

)

+ 2n (n+ 2)σ2

αE [g (σ2χ2
n+4

)]
E

(
1

χ2
p (λ)

)
+ λE

g
(
σ2χ2

n+4

)
χ2
n+4

E ( 1
χ2
p+2 (λ)

)
≤2n (n+ 2)σ2E

g
(
σ2χ2

n+4

)
χ2
n+4

+ n (n+ 2)
p− 2 σ2E

[
g2
(
σ2χ2

n+4

)]

+ 2nσ2E
[
g
(
σ2χ2

n+4

)]
+ 2λn (n+ 2)

p
σ2E

g
(
σ2χ2

n+4

)
χ2
n+4

 .
Thus,

∆JS

pσ2 ≤
2n (n+ 2)

p
E

g
(
σ2χ2

n+4

)
χ2
n+4

+ n (n+ 2)
p (p− 2)E

[
g2
(
σ2χ2

n+4

)]

+ 2n
p
E
[
g
(
σ2χ2

n+4

)]
+ 2λ

p

n (n+ 2)
p

E

g
(
σ2χ2

n+4

)
χ2
n+4

 .
From condition E

[
g2
(
σ2χ2

n+4

)]
= O

(
1
n2

)
and using the Schwarz inequality, when n

is in the neighborhood of +∞, we obtain

E

g
(
σ2χ2

n+4

)
χ2
n+4

 ≤ E1/2
[
g2
(
σ2χ2

n+4

)]
× E1/2

[
1

(χ2
n+4)2

]

≤
√
M

1
n
×
√

1
n (n+ 2) ≤

√
M

1
n2

and

E
[
g
(
σ2χ2

n+4

)]
≤ E1/2

[
g2
(
σ2χ2

n+4

)]
≤
√
M

1
n
,
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where M is a real strictly positive. Then, when n is in the neighborhood of +∞, we
have

∆JS

pσ2 ≤
2 (n+ 2)

np

√
M + n+ 2

np (p− 2)M + 2
p

√
M + 2λ

pσ2 ·
(n+ 2)
np

M.

As lim
p→+∞

λ
p

= lim
p→+∞

‖θ‖2

pσ2 = c, then

lim
n,p→+∞

∆JS

pσ2 ≤ 0.

Using the Proposition 2.2, we have

lim
n,p→+∞

R
(
δψ (X,S2) , θ

)
R (X, θ) = c

1 + c
. �

Example 2.1. Let ψ1 = p−2
n+2 −

S2

(1+S2)2 , therefore

δψ1
(
X,S2

)
=
(

1−
(
p− 2
n+ 2 −

S2

(1 + S2)2

)
S2

‖X‖2

)
X.

It is sufficient to take g (S2) = S2

(1+S2)2 , then from the Lemma 5.1 of the Appendix, we
have

E
[
g2
(
σ2χ2

n+4

)]
= E


(
σ2χ2

n+4

)2

(1 + σ2χ2
n+4)4


= (n+ 4) (n+ 6)σ4E

[
1

(1 + σ2χ2
n+8)4

]

≤ (n+ 4) (n+ 6)
σ4 E

[
1

(χ2
n+8)4

]

= 1
σ4 ·

(n+ 4) (n+ 6)
n (n+ 2) (n+ 4) (n+ 6)

+∞∼ 1
σ4 ·

1
n2 .

Thus,
E
[
g2
(
σ2χ2

n+4

)]
= O

( 1
n2

)
.

2.2. Minimaxity. In this part we study the minimaxity of estimators defined in
(2.2). We give another results that improve the one given in Strawderman [18], Sun
[19] and Hamdaoui and Benmansour [6].

Theorem 2.2. Assume that δψ (X,S2) is given in (2.2), such that p ≥ 3 and ψ
satisfies:

(a) ψ
(
S2, ‖X‖2

)
is monotone non-decreasing in ‖X‖2;

(b) 0 ≤ ψ
(
S2, ‖X‖2

)
≤ 2(p−2)

n+2 .
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A sufficient condition so that the estimator δψ (X,S2) is minimax is, for any k,
k = 0, 1, 2, . . . ,

E
{
ψ
(
σ2χ2

n+4 , σ
2χ2

p+2k

)}
≤ E

{
ψ
(
σ2χ2

n+2 , σ
2χ2

p+2k

)}
.

Proof. From the formula (2.3) and the condition (b), we have

∆ψ ≤ σ2E

χ
2
n ψK


2 (p− 2)
n+ 2 χ2

n

χ2
p+2K

− 2
(

1− 2K
χ2
p+2K

)
 .

We will prove that the expectation on the right hand side being non-positive for any
K = k, k = 0, 1, 2, . . . .

By using the conditional expectation, we obtain

∆ψ ≤ σ2E

E
ψk χ

2
n


2 (p− 2)
n+ 2 χ2

n

χ2
p+2k

− 2
(

1− 2k
χ2
p+2k

)
∣∣∣∣∣∣∣∣∣ χ

2
n




≤ σ2E

χ
2
n E

(
ψk | χ2

n

)
E




2 (p− 2)
n+ 2 χ2

n

χ2
p+2k

− 2
(

1− 2k
χ2
p+2k

)
∣∣∣∣∣∣∣∣∣ χ

2
n


 ,

the last inequality according to the condition (a) and the fact that the covariance of
two functions one increasing and the other decreasing is non-positive.

Using the Lemma 2.1, we obtain

E




2 (p− 2)
n+ 2 χ2

n

χ2
p+2k

− 2
(

1− 2k
χ2
p+2k

)
∣∣∣∣∣∣∣∣∣ χ

2
n



=E




2 (p− 2)
n+ 2 χ2

n

p− 2 + 2k − 2 + 4k
p− 2 + 2k


∣∣∣∣∣∣∣∣∣ χ

2
n

 =
2 (p− 2)

(
χ2
n

n+ 2 − 1
)

p− 2 + 2k .

Then

∆ψ ≤σ2E

χ
2
n

2 (p− 2)
(

χ2
n

n+ 2 − 1
)

p− 2 + 2k E
(
ψk | χ2

n

)


=2 (p− 2)σ2

p− 2 + 2k E
{
χ2
n

(
χ2
n

n+ 2 − 1
)
ψk

}
.(2.4)
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From the Lemma 5.1 of the Appendix, we have

E

{
χ2
n

(
χ2
n

n+ 2 − 1
)
ψk

}
= nE

{
ψ
(
σ2χ2

n+4 , σ
2χ2

p+2k

)
− ψ

(
σ2χ2

n+2 , σ
2χ2

p+2k

)}
.

Using the sufficient condition
E
[
ψ
(
σ2χ2

n+4 , σ
2χ2

p+2k

)]
≤ E

[
ψ
(
σ2χ2

n+2 , σ
2χ2

p+2k

)]
,

we obtain
E

{
χ2
n

(
χ2
n

n+ 2 − 1
)
ψk

}
≤ 0.

Thus,
∆ψ ≤ 0. �

Example 2.2. Let ψ2 = 2(p−2)
n+2 ln (1 + S2) exp (−S2), therefore

δψ2
(
X,S2

)
=
(

1− 2 (p− 2)
n+ 2

S2 ln (1 + S2) exp (−S2)
‖X‖2

)
X.

Remark 2.1. (i) Using the Lemma 5.2 of the Appendix, it is clear that if ψ
(
S2, ‖X‖2

)
is monotone non-increasing in S2, then the sufficient condition:

E
{
ψ
(
σ2χ2

n+4 , σ
2χ2

p+2k

)}
≤ E

{
ψ
(
σ2χ2

n+2 , σ
2χ2

p+2k

)}
is satisfied. Thus, the theorem 2.2 gives an improvement of the results of minimaxity
given in the first Theorem of Strawderman [18], Theorem 4.1 of Sun [19] and Theorem
4.1 of Hamdaoui and Benmansour [6].

(ii) Note that the James-Stein estimator satisfies the conditions of Theorem 2.2,
thus Theorem 2.2 gives another proof of the minimaxity of the James-Stein estimator.

3. Estimator of Lindley-Type

Let the model be X/θ, σ2 ∼ Np (θ, σ2Ip) , where the parameters θ and σ2 are
unknown and σ2 is estimated by S2 (S2 ∼ σ2χ2

n). The aim is to estimate the mean
θ = (θ1, θ2, . . . , θp)t by shrinkage estimators of the form

(3.1) δφj
(
X,S2, T 2

)
=
(
1− φ

(
S2, T 2

)) (
Xj −X

)
+X, j = 1, 2, . . . , p,

where
X = 1

p

p∑
i=1

Xi and T 2 =
p∑
i=1

(
Xi −X

)2
,

with the two random variables S2 and T 2 are independent. In the next, we follow the
same steps that we treated in Section 2, then we give a similar results to those given
in Section 2 with some changes in the proofs.

Lemma 3.1. For any functions f and g of the two variables S2 and T 2, such that
all expectations of (a) and (b) exist, we have

(a) E {f (S2, T 2)} = E
{
f
(
σ2χ2

n, σ
2χ2

p−1+2K

)}
;
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(b) E
{
g (S2, T 2)

p∑
i=1

(
θi − θ

) (
Xi −X

)}
= 2σ2E

{
Kg

(
σ2χ2

n, σ
2χ2

p−1+2K

)}
,

where K ∼ P
( p∑
i=1

(
θi − θ

)2
/2σ2

)
being the Poisson’s distribution of parameter

p∑
i=1

(
θi − θ

)2
/2σ2 and θ = 1

p

p∑
i=1

θi.

Proof. Analogous to the proof of the Lemma 2.1 given by Sun [19]. �

The following proposition, gives the explicit formula of the risk of the estimator
δφ (X,S2, T 2) given in (3.1). For the proof see Appendix.
Proposition 3.1. Let δφ (X,S2, T 2) is given in (3.1), then for any p ≥ 4 we have

(i) R
(
δφ(X,S2, T 2), θ

)
= σ2

{
φ2
Kχ

2
p−1+2K − 2φK

(
χ2
p−1+2K − 2K

)
+ p

}
;

(ii) R
(
δφ(X,S2, T 2), θ

)
≥ Bp (θ) , where

φK = φ
(
σ2χ2

n, σ
2χ2

p−1+2K

)
and Bp (θ) = σ2E

p−
(
χ2
p−1+2K − 2K

)2

χ2
p−1+2K

 ;

(iii) if c = lim
p→+∞

p∑
i=1

(
θi − θ

)2
/pσ2 exists, then

lim
p→+∞

Bp (θ)
R (X, θ) = lim

p→+∞

Bp (θ)
pσ2 = lim

p→+∞
bp (θ) = c

1 + c
.

Now, we consider the special case when φ (S2, T 2) = dS
2

T 2 , where d is a constant,
then the estimator given in (3.1) is written as

(3.2) δdj
(
X,S2, T 2

)
=
(

1− dS
2

T 2

)(
Xj −X

)
+X, j = 1, 2, . . . , p.

From the Proposition 3.1, we have

R
(
δd(X,S2, T 2), θ

)
= σ2

{
p−

[
2dn (p− 3)− d2n (n+ 2)

]
E

(
1

p− 3 + 2K

)}
.

We note that when d = 0, the estimator δ0 (X,S2, T 2) given in (3.2) becomes the
maximum likelihood estimator X, its risk equal pσ2. In this case, the James-Stein
estimator is obtained by minimizing the risk R

(
δd(X,S2, T 2), θ

)
, the James-Stein

estimator is given by

(3.3) δJSj
(
X,S2, T 2

)
=
(

1− p− 3
n+ 2

S2

T 2

)(
Xj −X

)
+X, j = 1, 2, . . . , p.

Its risk is

(3.4) R
(
δJS(X,S2, T 2), θ

)
= σ2

{
p− n

n+ 2 (p− 3)2 E

(
1

p− 3 + 2K

)}
,

where K ∼ P
( p∑
i=1

(
θi − θ

)2
/2σ2

)
.
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Proposition 3.2. (a) If p ≥ 4, the James-Stein estimator δJS (X,S2, T 2) given in
(3.3) is minimax.

(b) If lim
p→+∞

p∑
i=1

(
θi − θ

)2
/pσ2 = c(> 0), then

lim
n,p→+∞

R
(
δJS (X,S2, T 2) , θ

)
R (X, θ) = c

1 + c
.

Proof. (a) It is obviously from the formula (3.4).
(b) For p ≥ 6 and from the Lemma 3.1 given by Sun [19], we have

1

p− 3 +

p∑
i=1

(θi−θ)2

σ2

≤ E

(
1

p− 3 + 2K

)
≤ 1

p− 5 +

p∑
i=1

(θi−θ)2

σ2

,

then
R
(
δJS (X,S2, T 2) , θ

)
R (X, θ) ≥ 1− n

n+ 2 ·
(p− 3)2

p2 · 1

p−5
p

+

p∑
i=1

(θi−θ)2

pσ2

and
R
(
δJS (X,S2, T 2) , θ

)
R (X, θ) ≤ 1− n

n+ 2 ·
(p− 3)2

p2 · 1

p−3
p

+

p∑
i=1

(θi−θ)2

pσ2

.

Thus,

c

1 + c
= 1− 1

1 + c
≤ lim

n,p→+∞

R
(
δJS (X,S2, T 2) , θ

)
R (X, θ) ≤ 1− 1

1 + c
= c

1 + c
. �

Remark 3.1. From Propositions 3.1 and 3.2, we note that the risks ratio of any shrink-
age estimator δφ (X,S2, T 2) of the form (3.1) dominating the James-Stein estimator
δJS (X,S2, T 2) , to the maximum likelihood estimator attains the limiting lower bound
Bm = c

1+c , when n and p tend simultaneously to infinity.

Next, we consider the general form of shrinkage estimators of Lindley-type, defined
by

(3.5) δϕj
(
X,S2, T 2

)
=
(

1− ϕ
(
S2, T 2

) S2

T 2

)(
Xj −X

)
+X, j = 1, 2, . . . , p.

We write ∆ϕ = R (δϕ (X,S2, T 2) , θ)−R (X, θ) . Then

∆ϕ = σ2E

{
χ2
n ϕK

[
χ2
nϕK

χ2
p−1+2K

− 2
(

1− 2K
χ2
p−1+2K

)]}
,

where ϕK = ϕ
(
σ2χ2

n, σ
2χ2

p−1+2K

)
.
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3.1. Limit of risks ratios.

Proposition 3.3. Assume that δϕ (X,S2, T 2) is given in (3.5), such that p ≥ 3 and
ϕ satisfies

(H)
∣∣∣ p−3
n+2 − ϕ (S2, T 2)

∣∣∣ ≤ g (S2) a.s., where E
{
g2
(
σ2χ2

n+4

)}
= O

(
1
n2

)
.

If lim
p→+∞

p∑
i=1

(
θi − θ

)2
/pσ2 = c, then

lim
n,p→+∞

R (δϕ (X,S2, T 2) , θ)
R (X, θ) = c

1 + c
.

Proof. We follow the same steps of the proof of Theorem 2.1, endeed we write α = p−3
n+2

and ϕ (S2, T 2) = ϕ. As

R
(
δϕ(X,S2, T 2), θ

)
= E


p∑
i=1

[(
1− ϕS

2

T 2

)(
Xi −X

)
− θi

]2


and

R
(
δJS(X,S2, T 2), θ

)
= E


p∑
i=1

[(
1− αS

2

T 2

)(
Xi −X

)
− θi

]2
 ,

we have
∆JS =R

(
δϕ(X,S2, T 2), θ

)
−R

(
δJS(X,S2, T 2), θ

)
=2E

{ p∑
i=1

[
(α− ϕ) S

2

T 2

(
Xi −X

)] [(
1− (α + ϕ)

2
S2

T 2

)(
Xi −X

)
− θi

]}

=2E
{ p∑
i=1

[
(α− ϕ)

(
1− (α + ϕ)

2
S2

T 2

)
S2

T 2

(
Xi −X

)2
]

−
p∑
i=1

[
(α− ϕ) S

2

T 2

(
Xi −X

)
θi

]}

=2E
{[

(α− ϕ) S
2

T 2

p∑
i=1

(
Xi −X

)2
]

+ 1
2

[
(α− ϕ)2 S

4

T 4

p∑
i=1

(
Xi −X

)2
]

−α
[
(α− ϕ) S

4

T 4

p∑
i=1

(
Xi −X

)2
]
−

p∑
i=1

[
(α− ϕ) S

2

T 2

(
Xi −X

) (
θi −X

)]}

=2E
{[

(α− ϕ)S2
]

+ 1
2

[
(α− ϕ)2 S

4

T 2

]
− α

[
(α− ϕ) S

4

T 2

]

−
p∑
i=1

[
(α− ϕ) S

2

T 2

(
Xi −X

) (
θi −X

)]}
.

As
p∑
i=1

(
Xi −X

)
= 0, then

E

{
(α− ϕ)S

2

T 2

p∑
i=1

(Xi −X)(θi −X)
}
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=E
{

(α− ϕ)S
2

T 2

p∑
i=1

(Xi −X)(θi − θ) + (θ −X)(α− ϕ)S
2

T 2

p∑
i=1

(Xi −X)
}

=E
{

(α− ϕ)S
2

T 2

p∑
i=1

(Xi −X)(θi − θ)
}

=2σ2E

{
K
(
α− ϕ(σ2χ2

n, σ
2χ2

p−1+2K)
) χ2

n

χ2
p−1+2K

}
.

Hence,

∆JS ≤2E
{

(|α− ϕ|)S2 + 1
2 (α− ϕ)2 S

4

T 2 + α (|α− ϕ|) S
4

T 2

+2σ2K
(∣∣∣α− ϕ (σ2χ2

n, σ
2χ2

p−1+2K

)∣∣∣) χ2
n

χ2
p−1+2K

}
.

From hypothesis (H) and the independence to two variables S2 and T 2, we have

∆JS ≤2
{
E
[
S2g

(
S2
)]

+ 1
2E

[
S4g2

(
S2
)]

E
( 1
T 2

)
+αE

[
S4g

(
S2
)]

E
( 1
T 2

)}
+ 2σ2E

[
S2g

(
S2
) K

χ2
p−1+2K

]

=2E
[
S4 g (S2)

S2

]
+ E

[
S4g2

(
S2
)]
E
( 1
T 2

)

+ 2αE
[
S4g

(
S2
)]
E
( 1
T 2

)
+ 2σ2E

[
S4 g (S2)

S2 · K

χ2
p−1+2K

]
.

Using the conditional expectation, we have

E

[
S4 g (S2)

S2
K

χ2
p−1+2K

]
= E

{
E

([
S4 g (S2)

S2 · K

χ2
p−1+2K

]∣∣∣∣∣S2
)}

= 1
2E

{
E

([
S4 g (S2)

S2 · 2K
p− 3 + 2K

]∣∣∣∣∣S2
)}

≤ 1
2E

[
S4 g (S2)

S2

]
.

From the Lemma 5.1 of the Appendix, the independence of two variables χ2
n+4 and

χ2
p−1+2K and the fact that E

(
1

χ2
p−1+2K

)
= E

(
1

p−3+2K

)
≤ 1

p−3 , we obtain

∆JS ≤2n (n+ 2)σ2

E
g

(
σ2χ2

n+4

)
χ2
n+4

+ 1
2E

[
g2
(
σ2χ2

n+4

)]
E

(
1

χ2
p−1+2K

)
+ 2n (n+ 2)σ2

αE [g (σ2χ2
n+4

)]
+ E

g
(
σ2χ2

n+4

)
χ2
n+4

 E

(
1

χ2
p−1+2K

)
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≤2n (n+ 2)σ2E

g
(
σ2χ2

n+4

)
χ2
n+4

+ n (n+ 2)
p− 3 σ2E

[
g2
(
σ2χ2

n+4

)]

+ 2nσ2E
[
g
(
σ2χ2

n+4

)]
+ 2σ2n (n+ 2)

p− 3 E

g
(
σ2χ2

n+4

)
χ2
n+4

 .
Thus,

∆JS

pσ2 ≤
2n (n+ 2)

p
E

g
(
σ2χ2

n+4

)
χ2
n+4

+ n (n+ 2)
p (p− 3)E

[
g2
(
σ2χ2

n+4

)]

+ 2n
p
E
[
g
(
σ2χ2

n+4

)]
+ 2λ
pσ2

n (n+ 2)
p− 3 E

g
(
σ2χ2

n+4

)
χ2
n+4

 ,
where λ =

p∑
i=1

(
θi − θ

)2
/σ2.

From the condition E
[
g2
(
σ2χ2

n+4

)]
= O

(
1
n2

)
, when n is in the neighborhood of

+∞, we have
∆JS

pσ2 ≤
2 (n+ 2)

np

√
M + n+ 2

np (p− 3)M + 2
p

√
M + 2λ

pσ2 ·
(n+ 2)
np

M,

where M is real strictly positive.
As lim

p→+∞

λ

p
= lim

p→+∞

p∑
i=1

(
θi − θ

)2
/pσ2 = c, hence

lim
n,p→+∞

∆JS

pσ2 ≤ 0.

Thus, from Propositions 3.1 and 3.2, we have

lim
n,p→+∞

R (δϕ (X,S2, T 2) , θ)
R (X, θ) = c

1 + c
. �

3.2. Minimaxity.

Proposition 3.4. Assume that δϕ (X,S2, T 2) is given in (3.5), such that p ≥ 4. If
(a) ϕ (S2, T 2) is monotone non-decreasing in T 2;

(b) 0 ≤ ϕ (S2, T 2) ≤ 2 (p− 3)
n+ 2 .

A sufficient condition so that the estimator δϕ (X,S2, T 2) is minimax is, for any k,
k = 0, 1, 2, . . . , and for each fixed T 2

E
{
ϕ
(
σ2χ2

n+4 , σ
2χ2

p−1+2k

)}
≤ E

{
ϕ
(
σ2χ2

n+2 , σ
2χ2

p−1+2k

)}
.

Proof. The proof is similar to proof of Theorem 2.2. Endeed, from condition (b), we
obtain

∆ϕ =σ2E

{
χ2
n ϕK

[
χ2
n ϕK

χ2
p−1+2K

− 2
(

1− 2K
χ2
p−1+2K

)]}
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≤σ2E

χ2
n ϕK

 2(p−3)
n+2 χ2

n

χ2
p−1+2K

− 2
(

1− 2K
χ2
p−1+2K

) .
We will prove that the expectation on the right hand side being non-positive for any
K = k, k = 0, 1, 2, . . .

By using the conditional expectation, we have

∆ϕ ≤ σ2E

E
χ2

n ϕk

 2(p−3)
n+2 χ2

n

χ2
p−1+2k

− 2
(

1− 2k
χ2
p−1+2k

)]∣∣∣∣∣∣ χ2
n




≤ σ2E

χ2
n E

(
ϕk| χ2

n

)
E

 2(p−3)
n+2 χ2

n

χ2
p−1+2k

− 2
(

1− 2k
χ2
p−1+2k

))∣∣∣∣∣∣ χ2
n

 ,
the last inequality according to the condition (a) and the fact that the covariance of
two functions one increasing and the other decreasing is non-positive.

As

E

 2(p−3)
n+2 χ2

n

χ2
p−1+2k

− 2
(

1− 2k
χ2
p−1+2k

) | χ2
n

 = E

2 (p− 3)
(
χ2

n

n+2 − 1
)

p− 3 + 2k

∣∣∣∣∣∣ χ2
n


=

2 (p− 3)
(
χ2

n

n+2 − 1
)

p− 3 + 2k ,

then

∆ϕ ≤ σ2E

χ
2
n

2 (p− 3)
(

χ2
n

n+ 2 − 1
)

p− 3 + 2k E
(
ϕk | χ2

n

)


= 2 (p− 3)σ2

p− 3 + 2k E

{
χ2
n

(
χ2
n

n+ 2 − 1
)
ϕk

}
.

Using the sufficient condition

E
{
ϕ
(
σ2χ2

n+4 , σ
2χ2

p−1+2k

)}
≤ E

{
ϕ
(
σ2χ2

n+2 σ
2χ2

p−1+2k

)}
,

we have

E

{
χ2
n

(
χ2
n

n+ 2 − 1
)
ϕk

}
≤ 0,

hence ∆ϕ ≤ 0. �

Remark 3.2. Note that the James-Stein estimator given in (3.3) satisfies the conditions
of the Proposition 3.4, thus the James-Stein estimator is minimax.
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4. simulation

We illustrate the graph of the upper bound given by the formula (2.4) for the risk
difference ∆ψ of the estimator δψ2 (X,S2) given in the Example 2.2 and the maxi-
mum likelihood estimator, divided by the risk of the maximum likelihood estimator
R (X, θ) = pσ2, as a function of d = ‖θ‖2 and s = σ2, for various values of n and p.

Figure 1. n = 10 and p = 4

Figure 2. n = 25 and p = 10

In Figure 1 and Figure 2, we note that an upper bound of risks difference of the
estimator δψ2 (X,S2) given in the Example 2.2 and the maximum likelihood estimator
X, divided by the risk of the maximum likelihood estimator is negative, thus the
estimator δψ2 (X,S2) is minimax for n = 10 and p = 4 and for n = 25 and p = 10.
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5. Appendix

Lemma 5.1 (Casella and Hwang [4]). For any real function h such that
E
(
h
(
χ2
q (λ)

)
χ2
q (λ)

)
exists, we have

E
{
h
(
χ2
q (λ)

)
χ2
q (λ)

}
= qE

{
h
(
χ2
q+2 (λ)

)}
+ 2λE

{
h
(
χ2
q+4 (λ)

)}
.

Lemma 5.2 (Benmansour and Hamdaoui [2]). Let f be a real function. If for p ≥ 3,
Eχ2

p(λ)[(f(U)] exists, then
(a) if f is monotone non-increasing, we have

Eχ2
p+2(λ)[(f(U)] ≤ Eχ2

p(λ)[(f(U)];

(b) if f is monotone non-decreasing, we have

Eχ2
p+2(λ)[(f(U)] ≥ Eχ2

p(λ)[(f(U)].

Proof. (Proposition 3.1) (i)

R
(
δφ
(
X,S2, T 2

)
, θ
)

=E
[ p∑
i=1

[(
1− φ

(
S2, T 2

)) (
Xi −X

)
+X − θi

]2]

=E
[[

1− φ
(
S2, T 2

)]2 p∑
i=1

(
Xi −X

)2
]

+ E

[ p∑
i=1

(
X − θi

)2
]

+ 2E
[[

1− φ
(
S2, T 2

)] p∑
i=1

(
Xi −X

) (
X − θi

)]
.

As

E

[[
1− φ

(
S2, T 2

)]2 p∑
i=1

(
Xi −X

)2
]

=E
[
(1− φK)2 T 2

]
=σ2E

[
(1− φK)2 χ2

p−1+2K

]
(5.1)

and

E

[ p∑
i=1

(
X − θi

)2
]

=E
[ p∑
i=1

(
X − θ + θ − θi

)2
]

=E
[ p∑
i=1

(
X − θ

)2
]

+
p∑
i=1

(
θ − θi

)2
+ 2

( p∑
i=1

(
θ − θi

))
E
(
X − θ

)

=σ2 +
p∑
i=1

(
θ − θi

)2
.(5.2)

The last equality comes from the distribution of X, X ∼ Np

(
θ, σ

2

p

)
and the fact that

p∑
i=1

(
θ − θi

)
= 0.
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Furthermore, we have

2E
[[

1− φ
(
S2, T 2

)] p∑
i=1

(
Xi −X

) (
X − θi

)]

=− 2E
[[

1− φ
(
S2, T 2

)] p∑
i=1

(
Xi −X

) (
θi − θ + θ −X

)]

=− 2E
[[

1− φ
(
S2, T 2

)] p∑
i=1

(
Xi −X

) (
θi − θ

)]

− 2E
[[

1− φ
(
S2, T 2

)] (
θ −X

) p∑
i=1

(
Xi −X

)]

=− 2E
[[

1− φ
(
S2, T 2

)] p∑
i=1

(
Xi −X

) (
θi − θ

)]
.

The last equality follows from the fact that
p∑
i=1

(
Xi −X

)
= 0.

Using (b) of Lemma 3.1, we have

(5.3) − 2E
[[

1− φ
(
S2, T 2

)] p∑
i=1

(
Xi −X

) (
θi − θ

)]
= −4σ2E [K (1− φK)] .

From formulas (5.1), (5.2) and (5.3) and the fact that E (K) =

p∑
i=1

(θi−θ)2

2σ2 , we have

R
(
δφ
(
X,S2, T 2

)
, θ
)

= E
{
σ2 (1− φK)2 χ2

p−1+2K + σ2 + 2σ2K − 4σ2K (1− φK)
}

= σ2E
{
φ2
K χ2

p−1+2K − 2φK
(
χ2
p−1+2K − 2K

)
+ p

}
.

(ii) We note that R
(
δφ (X,S2, T 2) , θ

)
can be written as

R
(
δφ
(
X,S2, T 2

)
, θ
)

=σ2E

p−
(
χ2
p−1+2K − 2K

)2

χ2
p−1+2K


+ σ2E

χ2
p−1+2K

(
φK − 1 + 2K

χ2
p−1+2K

)2


≥σ2E

p−
(
χ2
p−1+2K − 2K

)2

χ2
p−1+2K

 = Bp (θ) .

(iii)

Bp (θ) = σ2E

p−
(
χ2
p−1+2K − 2K

)2

χ2
p−1+2K


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= σ2
{
p− E

{
E

[(
χ2
p−1+2K + 4K2

χ2
p−1+2K

− 4K
)
| K

]}}

= σ2
{
p− E

(
p− 1 + 2K + 4K2

p− 3 + 2K − 4K
)}

= σ2
{
p− 2− E

[
(p− 3)2

p− 3 + 2K

]}
.

Thus, from Lemma 3.1 given in Sun [19], we obtain

lim
p→+∞

bp (θ) = lim
p→+∞

Bp (θ)
pσ2 = c

1 + c
. �
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