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ACENTRALIZERS OF SOME FINITE GROUPS

ZAHRA MOZAFAR1 AND BIJAN TAERI1

Abstract. Let G be a finite group. The acentralizer of an automorphism α of G,
is the subgroup of fixed points of α, i.e., CG(α) = {g ∈ G | α(g) = g}. In this paper
we determine the acentralizers of the dihedral group of order 2n, the dicyclic group
of order 4n and the symmetric group on n letters. As a result we see that if n ≥ 3,
then the number of acentralizers of the dihedral group and the dicyclic group of
order 4n are equal. Also we determine the acentralizers of groups of orders pq and
pqr, where p, q and r are distinct primes.

1. Introduction

Throughout this article, the usual notation will be used [17]. For example Zn

denotes the cyclic group of integers modulo n, Z∗
n denotes the group of invertible

elements of Zn. The dihedral group of order 2n and the dicyclic group of order 4n
are denoted by Dn, and Qn, respectively. The symmetric group on a finite set of n
symbols is denoted by Sn, or Sym(X), where |X| = n. The symbol G = X ⋉ Y (or
G = Y ⋊ X) indicates that G is a split extension (semidirect product) of a normal
subgroup Y of G by a complement X.

Let G be a finite group. We write Cent(G) = {CG(g) | g ∈ G}, where CG(g) is the
centralizer of the element g in G. The group G is called n-centralizer if |Cent(G)| = n.
There are some results on finite n-centralizers groups (see for instance [1–8, 12, 18]).
Let Aut(G) be the group of automorphisms of G. If α ∈ Aut(G), then the acentralizer
of α in G is defined as

CG(α) = {g ∈ G | α(g) = g},
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which is a subgroup of G. In particular if α = τa is an inner automorphisms of G
induced by a ∈ G, then CG(τa) = CG(a) is the centralizer of a in G. Let Acent(G) be
the set of acentralizers of G, that is

Acent(G) = {CG(α) | α ∈ Aut(G)}.

A group G is called n-acentralizer, if |Acent(G)| = n. It is obvious that G is 1-
acentralizer group if and only if G is a trivial group or Z2. Nasrabadi and Gholamian
[14] proved that G is a 2-acentralizer group if and only if G ∼= Z4, Zp or Z2p, for some
odd prime p. Furthermore, they characterized 3, 4, 5-acentralizer groups. Seifizadeh
et al. [16] characterized n-acentralizer groups, where n ∈ {6, 7, 8}, and obtained a
lower bound on the number of acentralizer subgroups for p-groups, where p is a prime
number. They showed that if p ̸= 2, there is no n-acentralizer p-group for n = 6, 7.
Moreover, if p = 2, then there is no 6-acentralizer p-group. In [13] we showed that
if G is a finite abelian p-group of rank 2, where p is an odd prime, then the number
of acentralizers of G is exactly the number of subgroups of G. Also we obtained
acentralizers of infinite two-generator abelian groups.

Throughout the paper we use the presentations of the dihedral group of order 2n,
Dn, and the dicyclic group of order 4n, Qn, as follows

Dn = ⟨a, b | an = b2 = 1, bab−1 = a−1⟩ = ⟨b⟩ ⋉ ⟨a⟩,
Qn = ⟨a, b | a2n = 1, an = b2, bab−1 = a−1⟩ = ⟨b⟩ ⋉ ⟨a⟩.

We note that if n is a power of 2, then Qn is the generalized quaternion group.
Computing the number of centralizers of finite group have been the object of some
papers. For instance Ashrafi [2, 3] showed that |Cent(Qn)| = n + 2 and

|Cent(Dn)| =

 n + 2, n is odd,
n
2 + 2, n is even.

In this paper we compute |Acent(Dn)|, |Acent(Qn)|, |Acent(Sn)| and the number of
acentralizers of groups of order pqr, where p, q and r are distinct primes.

2. Acentralizers of Dihedral and Dicyclic Groups

Recall that the dihedral group Dn have two type subgroups for n > 3, ⟨ad⟩ and
⟨ad, arb⟩, where d | n, 0 ≤ r < d. The total number of these two type subgroups are
τ(n) = ∑

d|n 1, that is the number of positive divisors of n, and σ(n) = ∑
d|n d, that

is the sum positive divisors of n, respectively. Recall that if n = pk1
1 pk2

2 · · · pkr
r is the

prime factorization of n > 1, then τ(n) = ∏r
j=1(kj + 1) and σ(n) = ∏r

j=1
p

kj +1
j −1
pj−1 .

For n > 2, the automorphism group of Dn is isomorphic to Z∗
n ⋉Zn, the semidirect

product of Zn by Z∗
n, with the canonical action of ε : Z∗

n → Aut(Zn) ∼= Z∗
n. Explicitly,

Aut(Dn) = {γs,t | s ∈ Z∗
n, t ∈ Zn},
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where γs,t is defined by

γs,t(ai) = ais and γs,t(aib) = ais+tb,

for all 0 ≤ i ≤ n − 1. Note that

ai ∈ CDn(γs,t) ⇔ γs,t(ai) = ai

⇔ ais = ai

⇔ is ≡ i (mod n)
⇔ i(s − 1) ≡ 0 (mod n)

and

aib ∈ CDn(γs,t) ⇔ γs,t(aib) = aib

⇔ ais+tb = aib

⇔ is + t ≡ i (mod n)
⇔ i(s − 1) + t ≡ 0 (mod n).

We use the following well-known theorem from elementary number theory.

Theorem 2.1. ([15, Page 102]) Let a, b and m be integers such that m > 0 and
let c = gcd(a, m). If c does not divide b, then the congruence ax ≡ b (mod m) has
no solutions. If c | b, then ax ≡ b (mod m) has exactly c incongruent solutions
modulo m.

First we compute Acent(Dn). Clearly, D1 ∼= Z2 and D2 ∼= Z2×Z2. So |Acent(D1)| =
1 and |Acent(D2)| = 5.

Lemma 2.1. The identity subgroup is not an acentralizer for any automorphism of
Dn. Also if n is even, the subgroups ⟨ad⟩, ⟨ad, arb⟩, where d is a divisor of n such that
d ∤ n

2 and 0 ≤ r < d, are not acentralizers of Dn.

Proof. On the contrary, suppose that the identity subgroup ⟨an⟩ = ⟨1⟩ is an acentral-
izer. Then there exists γs,t ∈ Aut(Dn) such that γs,t fixes only the identity element.
If c := gcd(n, s − 1) ̸= 1, then

γs,t(a
n
c ) = a

n
c

s = a
n
c a

s−1
c

n = a
n
c ,

which is a contradiction. Hence gcd(n, s − 1) = 1, and so by Theorem 2.1, there exists
0 < i < n − 1 such that n | i(s − 1) + t. Since γs,t(aib) = ais+tb = ai(s−1)+taib ̸= aib,
n ∤ i(s − 1) + t, which is a contradiction. Thus the identity subgroup can not be an
acentralizer.

Now suppose, for a contradiction, that H := ⟨ad⟩, where d is a divisor of n and
d ∤ n/2 is an acentralizer of Dn. Since ad ∈ CDn(γs,t) we have ad = γs,t(ad) = asd.
Thus n | (s − 1)d and so s = n

d
k + 1, for some 0 ≤ k < d. Since d | n and d ∤ n

2 , d is
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even. Also k is even, as s is odd. Hence, s = 2n
d

k1 + 1, for some non-negative integer
k1, and so 2n | (s − 1)d. Thus, n | (s − 1)d

2 and

γs,t(a
d
2 ) = as d

2 = a
d
2 a(s−1) d

2 = a
d
2 ,

which is a contradiction, as a
d
2 /∈ H = CDn(γs,t).

Similarly if K := ⟨ad, arb⟩, where d is a divisor of n, d ∤ n/2, 0 ≤ r < d, and
CDn(γs,t) = K, for some γs,t ∈ Aut(Dn), we obtain a contradiction. □

Theorem 2.2. If n is an odd integer, then every non-identity subgroups of Dn is an
acentralizer of Dn. If n is even, then |Acent(Dn)| is equal to the number of subgroups
of Dn

2
, that is

|Acent(Dn)| =

 τ(n) + σ(n) − 1, n is odd,

τ(n
2 ) + σ(n

2 ), n is even.

Proof. First suppose that n is odd. Let d be a divisor of n and put d1 := n/d. If
d = 1, then since γ1,1(a) = a and for 0 ≤ j ≤ n − 1, γ1,1(ajb) = aj+1b ̸= ajb, we
have CDn(γ1,1) = ⟨a⟩ = ⟨ad⟩. If d ̸= 1, then γ1+d1,1(ad) = a(1+d1)d = ad. Since
gcd(n, d1) = d1 ∤ 1, by Theorem 2.1, for every 0 ≤ j ≤ n − 1, n ∤ jd1 + 1, and so
γ1+d1,1(ajb) = aj(1+d1)+1b = ajd1+1ajb ̸= ajb. It follows that CDn(γ1+d1,1) = ⟨ad⟩.

Now consider the subgroup H := ⟨ad, arb⟩ of Dn, where 0 ≤ r < d. If d = 1, then
r = 0 and H = G = CDn(γ1,0). If d = n, then ⟨ad, arb⟩ = ⟨arb⟩. Note that γ2,n−r(ai) =
a2i ̸= ai, for all 1 ≤ i ≤ n − 1. On the other hand γ2,n−r(arb) = a2r+n−rb = arb and
hence CDn(γ2,n−r) = ⟨arb⟩ = H.

If d ̸∈ {1, n}, then we put s = 1 + d1 and t = n − rd1. Since

γs,t(ad) = ads = ad(1+d1) = ad+n = ad,

γs,t(arb) = ars+tb = ar(1+d1)+n−rd1b = arb,

it follows that CDn(γs,t) = H. Therefore |Acent(Dn)| = τ(n) + σ(n) − 1.
Now suppose that n is even. Let d be a divisor of n

2 and put d1 := n/d. Let H := ⟨ad⟩.
If d = 1, then since γ1,1(a) = a and γ1,1(ajb) = aj+1b ̸= ajb, for all 0 ≤ j ≤ n − 1,
we have CDn(γ1,1) = ⟨a⟩ = H. If d ̸= 1, then γ1+d1,1(ad) = a(1+d1)d = ad. Since
gcd(n, d1) = d1 ∤ 1, by Theorem 2.1, for all 0 ≤ j ≤ n − 1, n ∤ jd1 + 1, and so
γ1+d1,1(ajb) = aj(1+d1)+1b = ajd1+1ajb ̸= ajb. It follows that CDn(γ1+d1,1) = ⟨ad⟩.

Now we consider the subgroup H := ⟨ad, arb⟩ of Dn, where 0 ≤ r < d. If d = 1, then
H = G = CDn(γ1,0). If d ̸= 1 and r = 0, then we have γs,0(ad) = ad(1+d1) = ad+n = ad,
γ1+d1,0(b) = b, and so CDn(γ1+d1,0) = ⟨ad, b⟩ = H. If d ̸= 1 and t ̸= 0, then we put
s = 1 + d1 and t = n − rd1. Since

γs,t(ad) = ad(1+d1) = ad+n = ad,

γs,t(arb) = ar(1+d1)+n−rd1b = arb,

we have CDn(γs,t) = H. It follows that |Acent(Dn)| = τ(n
2 ) + σ(n

2 ). □



ACENTRALIZERS OF OME FINITE GROUPS 227

Now we compute Acent(Qn). Recall that if n > 2, then the automorphism group of
Qn is isomorphic to Z∗

2n ⋉Z2n, with the canonical action of ε : Z∗
2n → Aut(Z2n) ∼= Z∗

2n.
In fact

Aut(Qn) = {γs,t | s ∈ Z∗
2n, t ∈ Z2n},

where

γs,t(ai) = ais and γs,t(aib) = ais+tb,

for all 0 ≤ i ≤ 2n − 1. Hence Aut(Qm) ∼= Aut(D2m), where m > 2. Note that
Aut(Q2) ∼= S4 and Aut(D4) ∼= D4. We have

ai ∈ CQn(γs,t) ⇔ γs,t(ai) = ai

⇔ ais = ai

⇔ is ≡ i (mod 2n)
⇔ i(s − 1) ≡ 0 (mod 2n)

and

aib ∈ CQn(γs,t) ⇔ γs,t(aib) = aib

⇔ ais+tb = aib

⇔ is + t ≡ i (mod 2n)
⇔ i(s − 1) + t ≡ 0 (mod 2n).

Lemma 2.2. (1) Every element, x ∈ Qn can be written uniquely as x = aibj, where
0 ≤ i < 2n and j = 0, 1.

(2) Z(Qn) = ⟨an⟩ ∼= Z2.
(3) Qn/Z(Qn) ∼= Dn.
(4) o(ai) = 2n/i for 1 < i ⩽ 2n and o(aib) = 4 for all i.
(5) Every subgroup of Qn is either cyclic or a dicyclic group.

Proof. (1)–(4) are straightforward.
Let H be a subgroup of Qn. Suppose that Z(Qn) ≤ H. Then H/Z(Qn) is a

subgroup of Dn. Since every subgroup of Dn is either cyclic or dihedral, the same is
true for H/Z(Qn). If H/Z(Qn) is cyclic, then H is cyclic (indeed H is a subgroup of
⟨a⟩ or H = ⟨aib⟩). Therefore, we may assume H/Z(Qn) is dihedral. Thus, H/Z(Qn)
has a dihedral presentation ⟨x, y | xm = y2 = 1, yxy = x−1⟩. Hence, H has the same
presentation with H/Z(Qn) and so H is a dicyclic group.

Finally, if H does not contain Z(Qn) then H does not contain an element of the
form aib. Therefore, H ≤ ⟨a⟩ and so it is cyclic. □

In what follows we compute acentralizers of Qn.

Lemma 2.3. Let H be a subgroup of Qn which does not contain Z(Qn). Then H is
not an acentralizer of Qn.
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Proof. By Lemma 2.2, H = ⟨am⟩, where m | 2n, m ∤ n. Now suppose, for a contra-
diction that, H is an acentralizer of Qn. Then there exists γs,t ∈ Aut(Qn) such that
CQn(γs,t) = H. Thus, am = γs,t(am) = asm, and so 2n | (s − 1)m, i.e., s = 2n

m
k + 1,

for some 0 ≤ k < m. Since m | 2n and m ∤ n, m is even. Also k is even, as s is odd.
Therefore, s = 4n

m
k1 + 1, for some non-negative integer k1, and hence 4n | (s − 1)m.

Thus, 2n | (s − 1)m
2 and

γs,t(a
m
2 ) = as m

2 = a
m
2 a(s−1) m

2 = a
m
2 ,

which is a contradiction, as a
m
2 /∈ H = CQn(γs,t). □

Theorem 2.3. We have |Acent(Qn)| = τ(n) + σ(n).

Proof. Suppose d is a divisor of n such that 1 ≤ d < n, and d1 := 2n/d. Let H := ⟨ad⟩.
If d = 1, then since γ1,1(a) = a and for 0 ≤ j ≤ 2n − 1, γ1,1(ajb) = aj+1b ̸= ajb, we
have CQn(γ1,1) = ⟨a⟩.

If d ̸= 1, then γ1+d1,1(ad) = a(1+d1)d = ad. Since gcd(2n, d1) = d1 ∤ 1, by Theorem
2.1, 2n ∤ jd1 +1, for all 0 ≤ j ≤ 2n−1, and so γ1+d1,1(ajb) = aj(1+d1)+1b = ajd1+1ajb ̸=
ajb. It follows that CQn(γ1+d1,1) = ⟨ad⟩.

Now consider the subgroup H := ⟨ad, arb⟩ of Qn, where 0 ≤ r < d. If d = 1, then
r = 0 and H = G = CQn(γ1,0). If d ̸= 1 and r = 0, then we put s = 1 + d1 and
t = 0, where d1 := 2n

d
. We have γs,0(ad) = ads = ad(1+d1) = ad+2n = ad, γs,0(b) = b.

Hence, CQn(γ1+d1,0) = ⟨ad, b⟩ = H. If d ̸= 1 and r ≠ 0, then we put s = 1 + d1 and
t = 2n − rd1, where d1 := 2n

d
. We have

γs,t(ad) = ads = ad(1+d1) = ad+2n = ad,

γs,t(arb) = ars+tb = ar(1+d1)+2n−rd1b = arb.

Hence CQn(γs,t) = H. It follows that |Acent(Qn)| = τ(n) + σ(n) − 1. □

Corollary 2.1. For all n ≥ 3 we have |Acent(Qn)| = |Acent(D2n)|.

3. Acentralizers of Groups of Order pq

It is well-known that the groups of order pq, where p and q are distinct primes,
with p > q, are

Zpq,

Tp,q = ⟨a, b | ap = bq = 1, bab−1 = au⟩, where o(u) = q in Z∗
p and q | p − 1.

Using Theorem 3.1 below, we have |Acent(Zpq)| = |Acent(Zp)| |Acent(Zq)| = 2×2 = 4.

Theorem 3.1. ([14, Lemma 2.1]) Let H and T be finite groups with gcd(|H|, |T |) = 1.
Then

|Acent(H × T )| = |Acent(H)| · |Acent(T )|.

We compute |Acent(Tp,q)|. The proof of the following lemma is straightforward.

Lemma 3.1. Non-trivial subgroups of Tp,q are ⟨a⟩, ⟨baj⟩, where 0 ≤ j ≤ p − 1.
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A Frobenius group of order pq, where p is prime and q | p − 1 is a group with the
presentation Fp,q = ⟨a, b | ap = bq = 1, bab−1 = au⟩, where o(u) = q in Z∗

p. If q is a
prime number, then Fp,q

∼= Tp,q.

Theorem 3.2 ([10]). Let p be a prime number and q | p−1. Then Aut(Fp,q) ∼= Fp,p−1,
in fact

Aut(Fp,q) = {αi,j | 1 ≤ i ≤ p − 1, 0 ≤ j ≤ p − 1},

where
αi,j(am) = aim and αi,j(bnam) = bna(un−1+···+u+1)j+im,

for all 0 ≤ m ≤ p − 1 and 1 ≤ n ≤ q − 1.

Note that if G := Fp,q, then
am ∈ CG(αi,j) ⇔ αi,j(am) = am

⇔ aim = am

⇔ im ≡ m (mod p)
⇔ (i − 1)m ≡ 0 (mod p)

and
bnam ∈ CG(αi,j) ⇔ αi,j(bnam) = bnam

⇔ bna(un−1+···+u+1)j+im = bnam

⇔ im + (un−1 + · · · + u + 1)j ≡ m (mod p)
⇔ (i − 1)m + (un−1 + · · · + u + 1)j ≡ 0 (mod p).

We note that if p | un−1 + · · · + u + 1, then p | un − 1 and un ≡ 1 (mod p), which is a
contradiction. Therefore, p ∤ un−1 + · · · + u + 1.

Lemma 3.2. The identity subgroup is not an acentralizer for any automorphism of
Tp,q.

Proof. Suppose, contrary on our claim, that ⟨1⟩ is an acentralizer of Tp,q. Then there
exists αi,j ∈ Aut(Tp,q) such that αi,j fixes only the identity element. If i = 1, then
α1,j(am) = am, for all 1 ≤ m ≤ p−1, which is a contradiction. Hence gcd(p, i−1) = 1,
and by Theorem 2.1, there exists 0 < m < p − 1, such that p | (i − 1)m + j. But since
αi,j(bam) ̸= bam, we have p ∤ (i − 1)m + j, which is a contradiction. Thus, the identity
subgroup is not an acentralizer. □

Theorem 3.3. Every non-identity subgroup of G := Tp,q is an acentralizer of an
automorphism, and therefore |Acent(Tp,q)| = p + 2.

Proof. Let H := ⟨a⟩, which is a unique Sylow p-subgroup of G. Note that α1,1(am) =
am. Since p ∤ un−1 + · · · + u + 1,

α1,1(bnam) = bna(un−1+···+u+1)+m = bnama(un−1+···+u+1) ̸= bnam.
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Hence, CG(α1,1) = H.
Let K := ⟨bam⟩, where 0 ≤ m ≤ p − 1, which is a subgroup of G of order q.

If m = 0, then K = ⟨b⟩, and since α2,0(b) = b, α2,0(a) = a2 ̸= a, it follows that
CG(α2,0) = K. If 1 ≤ m ≤ p − 1, then α2,p−m(bam) = bap−m+2m = bam. Also since
α2,p−m(am) = a2m ̸= am, for all 1 ≤ m ≤ p − 1, we have am /∈ CG(α2,p−m). It follows
that CG(α2,p−m) = K. Hence, |Acent(Tp,q)| = 1 + 1 + p = p + 2. □

4. Acentralizers of Groups of Order pqr

In this section we compute acentralizers of groups of order pqr, where p, q, and
r are distinct primes. The presentations of groups of order pqr, where p, q and r
are primes such that p > q > r are given in [11]. By [10] all groups of order pqr,
p > q > r, are isomorphic to one of the following groups:

(1) G1 = Zpqr;
(2) G2 = Zr × Tp,q, q | p − 1;
(3) G3 = Zq × Tp,r, r | p − 1;
(4) G4 = Fp,qr, qr | p − 1);
(5) G5 = Zp × Tq,r, r | q − 1;
(6) Gi+5 = ⟨a, b, c | ap = bq = cr = 1, ab = ba, c−1bc = bu, c−1ac = avi⟩, where

r | p − 1, q − 1, o(u) = r in Z∗
q and o(v) = r in Z∗

p, 1 ≤ i ≤ r − 1.
Using the above result, Theorem 3.3 and Theorem 3.1 it is suffices to compute the
number of acentralizers of Fp,qr and Gi+5. The proof of the following lemma is
straightforward.

Lemma 4.1. Let Fp,qr = ⟨a, b | ap = bqr = 1, bab−1 = au⟩ = ⟨b⟩ ⋉ ⟨a⟩ and o(u) = qr
in Z∗

p where p, q, r are prime and qr | p − 1. Then non-trivial subgroups of Fp,qr are
A := ⟨a⟩, Bx := ⟨bax⟩, Cx := ⟨bqax⟩, Dx := ⟨brax⟩, where 0 ≤ x ≤ p − 1, H := ⟨br, a⟩
and K := ⟨bq, a⟩.

Lemma 4.2. Non-trivial subgroups of Gi+5 are A := ⟨a⟩, B := ⟨b⟩, AB, Hj,t :=
⟨cbtaj⟩, Ht := ⟨a, cbt⟩ and Kj := ⟨b, caj⟩, where 0 ≤ j ≤ p − 1, 0 ≤ t ≤ q − 1. In
particular Gi+5 have pq + p + q + 5 subgroups.

Proof. One can easily see that the order of elements of Gi+5 is as in the Table 1,
Elements aj bt btaj ckbi′

aj′

Orders p q pq r

Table 1. The order of elements Gi+5

where 1 ≤ j ≤ p − 1, 1 ≤ t ≤ q − 1, 0 ≤ i′ ≤ q − 1, 0 ≤ j′ ≤ p − 1, 1 ≤ k ≤ r − 1.
It is clear that A = ⟨a⟩ is a unique Sylow p-subgroup of Gi+5 and B = ⟨b⟩ is a unique

Sylow q-subgroup of Gi+5. Thus AB = ⟨a, b⟩ ⊴ Gi+5 is a unique subgroup of order
pq of Gi+5. It is also clear that Hj,t = ⟨cbtaj⟩, where 0 ≤ j ≤ p − 1, 0 ≤ t ≤ q − 1,
are subgroups of order r. Since A and B are normal in Gi+5, every subgroups of
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order pr should contain A and every subgroups of order qr should contain B. Thus
Kj = ⟨b, caj⟩ and Ht = ⟨a, cbt⟩, where 0 ≤ j ≤ p − 1, 0 ≤ t ≤ q − 1 are subgroups of
order pr and qr of Gi+5, respectively. □

Theorem 4.1 ([10]). Automorphism group of Gi+5 is isomorphic to Fp,p−1 × Fq,q−1,
in fact

Aut(Gi+5) = {αj,t,j1,i1 | 1 ≤ j ≤ p − 1, 1 ≤ t ≤ q − 1, 0 ≤ j1 ≤ p − 1, 0 ≤ i1 ≤ q − 1},

where

αj,t,j1,i1(am) = ajm,

αj,t,j1,i1(bn) = btn,

αj,t,j1,i1(ckbn1am1) = ckbi1(uk−1+···+u+1)+tn1aj1(v(k−1)i+···+vi+1)+jm1 ,

for 1 ≤ m ≤ p − 1, 1 ≤ n ≤ q − 1, 0 ≤ m1 ≤ p − 1, 0 ≤ n1 ≤ q − 1 and 1 ≤ k ≤ r − 1.

Note that if G := Gi+5, then

am ∈ CG(αj,t,j1,i1) ⇔ αj,t,j1,i1(am) = am

⇔ ajm = am

⇔ jm ≡ m (mod p)
⇔ m(j − 1) ≡ 0 (mod p)

and

bn ∈ CG(αj,t,j1,i1) ⇔ αj,t,j1,i1(bn) = bn

⇔ btn = bn

⇔ tn ≡ n (mod q)
⇔ n(t − 1) ≡ 0 (mod q)

and

ckbn1am1 ∈ CG(αj,t,j1,i1) ⇔ αj,t,j1,i1(ckbn1am1) = ckbn1am1

⇔ ckbi1(uk−1+···+u+1)+tn1aj1(v(k−1)i+···+vi+1)+jm1 = ckbn1am1

⇔ i1(uk−1 + · · · + u + 1) + tn1 ≡ n1 (mod q),
j1(v(k−1)i + · · · + vi + 1) + jm1 ≡ m1 (mod p)

⇔ i1(uk−1 + · · · + u + 1) + (t − 1)n1 ≡ 0 (mod q),
j1(v(k−1)i + · · · + vi + 1) + (j − 1)m1 ≡ 0 (mod p).

Lemma 4.3. The identity subgroup and the subgroups Cx , Dx, where 0 ≤ x ≤ p−1,
H and K (defined in Lemma 4.1) are not acentralizers for any automorphism of
G := Fp,qr.
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Proof. As in the proof of Lemma 3.2 we can see that the identity subgroup is not an
acentralizer.

Now suppose, for a contradiction that Cx := ⟨bqax⟩, where 0 ≤ x ≤ p − 1 is
an acentralizers of G. Then there exists αi,j ∈ Aut(G) such that CG(αi,j) = Cx,
where 1 ≤ i ≤ p − 1 and 0 ≤ j ≤ p − 1. If i = 1, then α1,j(am) = am, for every
1 ≤ m ≤ p − 1, this contradicts am /∈ ⟨bqax⟩. Hence gcd(i − 1, p) = 1, by Theorem 2.1,
there exists 0 < m < p − 1 such that p | j + (i − 1)m. But since bam /∈ Cx = CG(αi,j),
αi,j(bam) = baj+im = bamaj+(i−1)m ̸= bam, which implies that p ∤ j + (i − 1)m, which
is a contradiction.

Similarly we have H, Dx, and K are not acentralizers. □

Theorem 4.2. We have |Acent(Fp,qr)| = p + 2.

Proof. The proof is similar to that of Theorem 3.3. □

Lemma 4.4. The identity subgroup is not an acentralizer for any automorphism of
Gi+5.

Proof. On the contrary, suppose that ⟨1⟩ is an acentralizer of Gi+5. Then there exists
αj,t,j1,i1 ∈ Aut(Gi+5) such that αj,t,j1,i1 fixes only the identity element. If j = 1 or
t = 1, then α1,t,j1,i1(am) = am and αj,1,j1,i1(bn) = bn, for all 1 ≤ m ≤ p − 1 and
1 ≤ n ≤ q − 1, which is a contradiction. Hence gcd(j − 1, p) = 1 and gcd(t − 1, q) = 1.
Hence, by Theorem 2.1, there exist 0 < m1 < p − 1 and 0 < n1 < q − 1 such that
p | j1 + (j − 1)m1 and q | i1 + (t − 1)n1. But since

αj,t,j1,i1(cbn1am1) = cbi1+tn1aj1+jm1 = cbn1am1bi1+(t−1)n1aj1+(j−1)m1 ̸= cbn1am1 ,

either p ∤ j1 + (j − 1)m1 or q ∤ i1 + (t − 1)n1, which is a contradiction. Thus, the
identity subgroup is not an acentralizer. □

Theorem 4.3. Every non-identity subgroup of G := Gi+5 is an acentralizer of an
automorphism, that is |Acent(Gi+5)| = pq + p + q + 4.

Proof. We use the notation of Theorem 4.1. Note that α1,1,0,0 is the identity automor-
phism of G and so CG(α1,1,0,0) = G.

Now we show that A = ⟨a⟩ is an acentralizer. It is clear that α1,2,1,1(a) = a
and α1,2,1,1(bn) = b2n = bnbn ̸= bn, for all 1 ≤ n ≤ q − 1. Furthermore since
p ∤ (v(k−1)i + · · · + vi + 1),

α1,2,1,1(ckbn1am1) = ckb(uk−1+···+u+1)+2n1a(v(k−1)i+···+vi+1)+m1

= ckbn1am1b(uk−1+···+u+1)+n1a(v(k−1)i+···+vi+1) ̸= ckbn1am1 .

It follows that CG(α1,2,1,1) = A.
Let B = ⟨b⟩ be the unique Sylow q-subgroup of G. It is clear that α2,1,1,1(bn) = bn

and so bn ∈ CG(α2,1,1,1). Since 1 ≤ m ≤ p − 1, α2,1,1,1(am) = a2m = amam ̸= am. Also
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since gcd(uk−1 + · · · + u + 1, q) = 1, so q ∤ (uk−1 + · · · + u + 1). Thus,

α2,1,1,1(ckbn1am1) = ckb(uk−1+···+u+1)+n1a(v(k−1)i+···+vi+1)+2m1

= ckbn1am1b(uk−1+···+u+1)a(v(k−1)i+···+vi+1)+m1 ̸= ckbn1am1 .

Hence, CG(α2,1,1,1) = B.
Let AB = ⟨a, b⟩ be the unique subgroup of G of the order pq. It is clear that

α1,1,1,1(am) = am and α1,1,1,1(bn) = bn. Thus, am, bn ∈ CG(α1,1,1,1). Since gcd(uk−1 +
· · · + u + 1, q) = 1 and gcd(v(k−1)i + · · · + vi + 1, p) = 1, so q ∤ (uk−1 + · · · + u + 1) and
p ∤ (v(k−1)i + · · · + vi + 1). Thus,

α1,1,1,1(ckbn1am1) = ckb(uk−1+···+u+1)+n1a(v(k−1)i+···+vi+1)+m1

= ckbn1am1b(uk−1+···+u+1)a(v(k−1)i+···+vi+1) ̸= ckbn1am1 .

Hence, CG(α1,1,1,1) = AB.
Let Hm1,n1 = ⟨cbn1am1⟩ where 0 ≤ m1 ≤ p − 1 and 0 ≤ n1 ≤ q − 1 be the

unique subgroup of G of order pq. First suppose m1 = n1 = 0. Then α2,2,0,0(c) = c.
Since 1 ≤ m ≤ p − 1, 1 ≤ n ≤ q − 1, we have α2,2,0,0(am) = a2m ̸= am and
α2,2,0,0(bn) = b2n ̸= bn. Thus CG(α2,2,0,0) = H0,0 = ⟨c⟩. Now suppose n1 = 0, m1 ≠ 0.
Then α2,2,p−m1,0(cam1) = cap−m1+2m1 = cam1 and α2,2,p−m1,0(am) = a2m ̸= am and
α2,2,p−m1,0(bn) = b2n ̸= bn. So CG(α2,2,p−m1,0) = Hm1,0 = ⟨cam1⟩. Similarly, if m1 = 0,
n1 ̸= 0, then α2,2,0,q−n1(cbn1) = cbq−n1+2n1 = cbn1 , α2,2,0,n1(am) = a2m ̸= am and
α2,2,p−m1,0(bn) = b2n ̸= bn. Hence, CG(α2,2,0,q−n1) = H0,n1 = ⟨cbn1⟩. Finally suppose
that m1 ̸= 0 and n1 ̸= 0. Then

α2,2,p−m1,q−n1(cbn1am1) = cbq−n1+2n1ap−m1+2m1 = cbq+n1ap+m1 = cbn1am1 ,

and so, cbn1am1 ∈ CG(α2,2,p−m1,q−n1). Since 1 ≤ m ≤ p − 1 and 1 ≤ n ≤ q − 1, we
have α2,2,p−m1,q−n1(am) = a2m = amam ̸= am and α2,2,p−m1,q−n1(bn) = b2n = bnbn ̸= bn.
Hence, CG(α2,2,p−m1,q−n1) = Hm1,n1 .

Now we consider the unique subgroup AHn1 = ⟨a, cbn1⟩, where 0 ≤ n1 ≤ q − 1 of
order rp. First suppose that n1 = 0. Then α1,2,0,0(am) = am. Also α1,2,0,0(ck) = ck.
So am, ck ∈ CG(α1,2,0,0). Since 1 ≤ n ≤ q − 1 we have α1,2,0,0(bn) = b2n = bnbn ̸= bn.
Hence, CG(α1,2,0,0) = ⟨a, c⟩ = AH0. Now suppose that n1 ≠ 0. Then α1,2,0,q−n1(am) =
am. Also, α1,2,0,q−n1(cbn1) = cbq−n1+2n1 = cbq+n1 = cbn1 . So, am, cbn1 ∈ CG(α1,2,0,q−n1).
Since 1 ≤ n ≤ q−1, we have α1,2,0,q−n1(bn) = b2n = bnbn ≠ bn. Hence, CG(α1,2,0,q−n1) =
AHn1 .

Now consider the unique subgroup BHm1 = ⟨b, cam1⟩, where 0 ≤ m1 ≤ p − 1, of
order rq. First suppose that m1 = 0. Then α2,1,0,0(bn) = bn. Also α2,1,0,0(ck) =
ck. So bn, ck ∈ CG(α2,1,0,0). Since 1 ≤ m ≤ p − 1 we have α2,1,j1,0(am) = a2m =
amam ̸= am. Hence, CG(α2,1,0,0) = ⟨b, c⟩ = BH0. Now suppose that m1 ̸= 0. Then
α2,1,p−m1,0(bn) = bn. Also, α2,1,p−m1,0(cam1) = cap−m1+2m1 = cap+m1 = cam1 . So,
bn, cam1 ∈ CG(α2,1,p−m1,0). Since 1 ≤ m ≤ p − 1 we have α2,1,p−m1,0(am) = a2m =
amam ̸= am. Hence, CG(α2,1,p−m1,0) = BHm1 .
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Therefore, |Acent(Gi+5)| = 1 + 1 + 1 + 1 + pq + q + p = pq + p + q + 4. □

5. Acentralizers of Finite Symmetric Groups

In this section we compute |Acent(Sn)|. First we note that S2 ∼= Z2 and so
|Acent(S2)| = 1. Also if n = 6, then Aut(S6) = S6 ⋊ Z2 and by GAP [9] we see
that |Acent(S6)| = 443. Now since for every n ≠ 6, Aut(Sn) = Inn(Sn) = Sn, we have
Acent(Sn) = Cent(Sn). Hence in order to find |Acent(Sn)| we need to find |Cent(Sn)|.
Recall that the conjugacy class an element g of a group G, is the set of elements its
conjugate, that is

xG := {xgx−1 | x ∈ G}.

Let A and G be groups, and let G act on a set X. Let B be the group of all of
functions from X into A. The product of two elements f and g of B fg(x) = f(x)g(x).
The group G acts on B via f g(x) = f(gxg−1). The semidirect product of B and G
with respect to this action is called the general wreath product.

Theorem 5.1. ([17, Page 297]) Let α be an element of Sn of cycle type (rλ1
1 , . . . , rλk

k ),
then the centralizer of α in Sn is a direct product of k groups of the form Zri

≀ Sλi
,

the general wreath product. The order of CSn(α) is equal to ∏λi!rλi
i .

Every permutation α in Sn can be written as the product of disjoint cycles α =
α1 · · · αk, where αj = αj,1αj,2 · · · αj,λj

, j = 1, . . . k, is a product λj disjoint cycles of
length rj such that r1 < r2 < · · · < rk. The cycle, type of α is

r = (r1, . . . , r1︸ ︷︷ ︸
λ1

, . . . , rk, . . . , rk︸ ︷︷ ︸
λk

) = (rλ1
1 , . . . , rλk

k ).

We will not omit those ri which are 1, so we have λ1r1 + · · · + λkrk = n. The rj’s are
distinct and λj’s describe their multiplicities in the partition r of n. For j = 1, . . . , k
let Yj be the of letters in αj = αj,1αj,2 · · · αj,λj

. In fact

Yj =
{
a

(1)
j,1 , a

(2)
j,1 , . . . , a

(rj)
j,1 , . . . , a

(1)
j,λj

, a
(2)
j,λj

, . . . a
(rj)
j,λj

}
,

where αj,1 = (a(1)
j,1 a

(2)
j,1 · · · a

(rj)
j,1 ), . . ., αj,λj

= (a(1)
j,λj

a
(2)
j,λj

· · · a
(rj)
j,λj

). Clearly, Yj is α-
invariant and CG(α)-invariant; and the restriction of α to Yj is αj, A permutation
θ commutes, with α if and only if α = β1 · · · βk, where βj = βj,1βj,2 · · · βj,λj

, βj,1 =
(b(1)

j,1 b
(2)
j,1 · · · b

(rj)
j,1 ), . . ., βj,λj

= (b(1)
j,λj

b
(2)
j,λj

· · · b
(rj)
j,λj

), and θ(a(rj)
j,λj

) = b
(rj)
j,λj

. Now, θ
commutes with α if and only if each Yj is θ-invariant and if the restriction βj of β
on Yj commutes with restriction of αj of α on Yj. Since Yi ∩ Yj = ∅ for i ̸= j, the
permutation β is uniquely determined by giving its restrictions on Yj. Hence we have
CSn(α) = C1 × · · · × Ck, where Cj is the centralizer of αj in Sym(Yj).

Let σ = σ1σ2 · · · σλ, where σ1 = (a1,0 a1,1 · · · a1,r−1), σ2 = (a2,0 a2,1 · · · a2,r−1), . . .,
σλ = (aλ,0 aλ,1 · · · aλ,r−1) be the product of λ cycles of length r. Let Y be the set of
all letters in σ, that is

Y = {a1,0 a1,1 · · · a1,r−1, a2,0 a2,1 · · · a2,r−1, . . . , ai,0, ai,1, . . . ai,r−1}.
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Let Mr := {m ∈ N | m ≤ r, gcd(m, r) = 1}. Then we have |Mr| = ϕ(r), where ϕ is
the Euler’s totient function. For every t ∈ Mr, since gcd(r, t) = 1 and the order of
σ is r, we have CG(σ) = CG(σt), where G := Sym(Y ). It follows that the number of
different centralizers of permeations which are product of λ cycles of the same length
r with letters in Y is

|σSym(Y )|
ϕ(r) .

Now suppose that α = α1 · · · αk, where αj = αj,1αj,2 · · · αj,λj
, j = 1, . . . k, is a

product λj disjoint cycles of length rj such that r1 < r2 < · · · < rk. Let Yj, j = 1, . . . , r,
be the set of letters in αj. The cycle α1 in the decomposition α = α1α2 · · · αk in Sn can
be chosen in

(
n

|Y1|

)
=
(

n
r1λ1

)
ways. The cycle α2 can be chosen in

(
n−|Y1|

|Y2|

)
=
(

n−r1λ1
r2λ2

)
ways. In general αj can be chosen in(

n −∑j−1
i=1 |Yi|

|Yj|

)
=
(

n −∑j−1
i=1 λi

rjλj

)
=
(∑k

i=j riλi

rjλj

)
ways. If r1 = 1, λ1 = 2, r2 = 2, λ2 = 1, and ∑k

j=3 λjrj = n − 4, then let α̂1 be two
cycles of length 1 with letters in α2 and α̂2 be a cycle of length 2 with letters in α1.
Then α1α2α3 · · · αk and α̂1 α̂2α3 · · · αk have the same centralizers. Hence, in this case
we have

1
2

k∏
j=1

|αj
Sym(Yj)|
ϕ(rj)

(∑k
i=j riλi

rjλj

)
different centralizers of permutations whose cycle types are the same with α. Otherwise
there are

k∏
j=1

|αj
Sym(Yj)|
ϕ(rj)

(∑k
i=j riλi

rjλj

)
different centralizers of permutations whose cycle types are the same with α in Sn.

In the following tables we denote the number of acentralizers of the same type as a
permutation π by ♯CSn(π).

π () (∗, ∗) (∗, ∗, ∗)
|πS3| 1 3 2
cycle type (13) (11, 21) (31)
CS3(π) ∼= C1 ≀ S3 ∼= S3 (C2 ≀ S1) × (C1 ≀ S1) ∼= C2 C3 ≀ S1 ∼= C3
♯CS3(π) 1 3 1

So, |Cent(S3)| = 5.

π () (∗, ∗) (∗, ∗, ∗) (∗, ∗)(∗, ∗) (∗, ∗, ∗, ∗)
|πS4 | 1 6 8 3 6
cycle type (14) (12, 21) (11, 31) (22) (41)
CS4(π) ∼= S4 C2 × C2 C3 D4 C4
♯CS4(π) 1 3 4 3 3

So, |Cent(S4)| = 14.
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π () (∗, ∗) (∗, ∗, ∗) (∗, ∗)(∗, ∗) (∗, ∗, ∗, ∗) (∗, ∗)(∗, ∗, ∗) (∗, ∗, ∗, ∗, ∗)
|πS5 | 1 10 20 15 30 20 24
cycle type (15) (13, 21) (12, 31) (11, 22) (11, 41) (21, 31) (51)
CS5(π) ∼= S5 C2 × S3 C3 × C2 D8 C4 C2 × C3 C5
♯CS5(π) 1 10 10 15 15 10 6

So, |Cent(S5)| = 67.

6. Conclusion

The acentralizer of an automorphism of a group is defined to be the subgroup of
its fixed points. In particular the acentralizer of an inner automorphism is just a
centralizer. In this paper we computed the acentralizers of some classes of groups,
namely dihedral, dicyclic and symmetric groups. As a result we see that if n ≥ 3, then
the numbers of acentralizers of the dihedral group and the dicyclic group of order 4n
are equal. Also we determined the acentralizers of groups of orders pq and pqr, where
p, q and r are distinct primes.
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