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SOLUTION OF A PARTIAL DIFFERENTIAL EQUATION
RELATED TO THE OPERATOR &%

S. BUPASIRI!
ABSTRACT. In this paper, we consider the equation
m
@%U,(l‘) = Z Cr @% 9,

where @ is the operator iterated k-time and is defined by

k
EBIIC? = [(Bﬂm + Bl“z + - +B?L’p)4 - (Bxp+1 + BIP+2 RIS sz+q)4:| ’

2 2v; 1
where p+q=n,r = (21,...,2,) € R}, B,, = %—i— - 8%1-’ v =2a;+1, 0 > —3,
x; >0,i=1,2,...,n, ¢, is a constant, k is a nonnegative integer, ¢ is the Dirac-delta

distribution, #%d = ¢ and n is the dimension of R;. It is shown that, depending
on the relationship between k and m, the solution to this equation can be ordinary
functions, tempered distributions, or singular distributions.

1. INTRODUCTION

Bupasiri [5] has first introduced the elementary solution of the n-dimensional &%
operator and showed that the solution of the convolution form (—1)%%Sg,.(z) * Rex () *
(C**(z))*~! is a unique elementary solution of the ®%u(z) = 4.
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Yildirim, Sarikaya and Ozturk [3] studied the Bessel diamond operator, iterated
k-times,

(1) o = (ZB%) —(Z B>

i=1 j=p+1
[P ptq krop ptq k
L =1 Jj=p+1 =1 j=p+1

Yildirim, Sarikaya and Ozturk [3] showed that the function u(x) = (—1)*Say(2)* Rar(z)
is the unique elementary solution for the operator {%, where * indicates convolution,
and Ro(x), Sox(z) are defined by (1.4) and (1.5) respectively, that is,

o ((—1)kSgk(x) * R%(x)) = d(x).

We consider the equation
Bpulx) =) ¢, O 6,

where @®% is the operator iterated k-time and is defined by

[ P 4 p+q a7k
(12) @k = (Z B:,:Z) - (Z ij>
| \i=1 j=p+1 |
[/ » 2 p+q 2] * P 2 p+q 21"
| \i=1 j=p+1 ] i=1 j=p+1
where
[ p 2 p+q 2 i
| \i=1 j=p+1
r 2 21k
. AB -+ DB X AB — DB
N 2 2
B (NB + D%)k
p— T .

The purpose of this article, is finding the solution to the equation

(1.3) ok u(z) = ZCT ®p 0
r=0
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by using convolutions of the generalized function. It is also shown that the type
of solution to (1.3) depends on the relationship between k and m, according to the
following cases:

(1) If m < k and m = 0, then (1.3) has the solution
u(z) = co ((—1)**Ser(x) * Rex(z) * (C*F(z))*1),
which is an elementary solution of the @% operator in Theorem 2.2, is an

ordinary function when 6k > n, and is a tempered distribution when 6k < n.
(2) If m < k then the solution of (1.3) is

Z crco ((—=1)3F S5y (@) * Ror—py () + (C*F)(2))*71)

r=1
which is an ordinary function when 6k — 6r > n and is tempered distribution
when 6k — 61 < n.
(3) If m > k and k < m < M, then (1.3) has the solution

M
—k
= E Cr @?3 (57
r=Fk

which is only a singular distribution. Before going that point, the following
definitions and some concepts are needed.

Lemma 1.1. Given the equation O%u(z) = 6(z) for v € RY = {z: 2 = (z1,- -~ 3,),

x1>0,...,2, >0}, where [] 15 the Bessel-ultra hyperbolic operator iterated k-times.
Then u(zx) = Rok(x) is an elementary solution of the operator (%, where
p p+q k
> Bu= 3 Byl
i=1 j=p+1
V2k7’;7‘v‘
1.4 Rop(z) = ———
2 2 2 2 2 (E5)
_ (ml+x2+"'+xp—xp+l xp+2 "'_prrq)
K, (2k) ’
for
V=al+ad+ - +a —a, —ay—  — Toy,,
and

JEEE TR (2+2k—2n—2lv|> T (152) T(2k)

2+2k—p—2|v| +2v]—2k
() r (=)
. where AY is the Laplace

Lemma 1.2. Given the equation A%u(z) = §(x) forx € R},
Bessel operator iterated k-times. Then u(x) = (—1)*Sy(x) is an elementary solution
of the operator A%, where

K, (2k) =
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p+q

Zle—i_ Z BIJ

Jj=p+1

)

|.’L’|2k n—2v|
w,(2k)

1

o) = (2] + a5+ +a3)?,

(1.5) Sox() = p+aq=mn,

and

H?:12’Uz'—%r (UZ- + %) F(k‘)

wy(2k) = .
(2k) on+2v|—4k T <n+2|121|—2k>

Lemma 1.3. The convolution Ry (z) % (—1)¥Sor(x) is an elementary solution for the
operator Y iterated k-times and is defined by (1.1).

Lemma 1.4. Roi(x) and Sox () are homogeneous distributions of order (2k—n—2|v|).

We need to show that Ro(x) and (—1)*Sy(x) satisfy the Euler equation; that is,

(2k — n — 2|v|) Ry ( Zx, R%

(2k—n—2|v| Sgk Zl’z SQ]c

Lemma 1.5 (The B-convolution of tempered distribution). Rox(z) % Sox(z) ewists
and is a tempered distribution.

Proof. For the proofs of Lemmas 1.1-1.5, see [3, p. 378-383]. O

Lemma 1.6 (The B-convolution of Ry (x) and Sox(x)). Let Rox(x) and Sox(z) defined
by (1.4) and (1.5) respectively, then we obtain:

(1) Sox(x) * Sam () = Soprom(x), where k and m are nonnegative integers.
(2) Rok(x) * Rop () = Rogrom(x), where k and m are nonnegative integers.

Lemma 1.7. The function R_ox(x) and (—1)*S_g(x) are the inverse in the convo-
lution algebra of Rop(x) and (—1)*Say(x), respectively. That is,

R_op(x) * Rok(x) = R_spyou(x) = Ro(x) = (),
(—1)FS () * (=1)*Sox(2) = S_gprar(x) = So(z) = 8(x).
Proof. For the proofs of Lemma 1.7 and Lemma 1.6, see [4]. O

Lemma 1.8. Given the equation

(1.6) @ u(z) = (),
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where @Y% is the operator iterated k-times defined by (1.2), 6(x) is the Dirac-delta
distribution, x € R} and k is a nonnegative integer. Then we obtain

(1.7) u(z) = (Rer(z) * (=1)**Sg(z)) * (C’*k(x))*f1

is a Green’s function or an elementary solution for the operator ®% iterated k-times
where ®% is defined by (1.2), and

(1.8) O(a) = g Rule) + 5(~17Sux).

where C**(x) denotes the convolution of C' with itself k times, (C*’“(az))*_1 denotes the
inverse of C**(x) in the convolution algebra. Moreover u(z) is a tempered distribution.

Proof. For a proof of the above lemma, see [5]. O

2. MAIN RESULTS
Theorem 2.1. For 0 <r < k,
@ (co ((=1)*"Ser(x) * Rer(x) * (C™*(2))*))
= ((=1)* " Sg(p—r) () * Ro—ry(x) * (CE ()" )
and for k < m,
®F (co ((=1)*"Ser(x) * Rex(x) x (C**(x))* ")) = @F "0,
Proof. For 0 < r < k, from (1.6),
@]Zg (co((—1)3k56k(:z:) * Rex () * (C’*k(x))*_l) =.
Thus,
@ @ (co((=1)"Ser(x) * Re(x) * (C**(2))*™") =6
@%‘T(S * D (CO((—1)3k56k(x) * Rer(z) * (O*k(x))*_l) = 0.
Convolving both sides by ((—1)**~")Sg(,_)(x) * Rg(—r)(x) * (C**7)(2))*~1), we obtain
@ " (=17 Se0e—r) (2) % Rop—n (@) * (C*7(2))* 7))
* ® (co((=1)*"Ser() * Rep(x) * (C™*(2))" ")
= ((=1)** ) Sg—) () * Roor) () % (C*E)(2))"71) % 6.
By Lemma 1.8,
§ % @ (co((—1)* Sei(x) * Rex() * (C**(x))* ")
= ((=1)3*F) Sy (z) * Rogory(@) * (C*F77) (2))*71) % 6.
It follows that
@ (co((=1)"Sex(2) * Rex(x) * (C**(x)))
= (=1 Sg(h—r) () * R (2) % (C*E(2))71)
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as required. For k < m
@F (col(=1)"Ser(x) * Rep(x) * (C** ()" ")
= @F " @ (1) Sex(2) * Rex(z) x (C*(z))* 1) .
It follows that
@ (co((=1)* Ser(x) * Rer(x) + (C*(2))* ") = @ *s

by Lemma 1.8. This completes the proof. 0
Theorem 2.2. Consider the linear differential equation
(2.1) ok u(z) = Z ¢ B 0,

r=0

where p + q = n, n is odd with p odd and q even, or n is even with p odd and q
odd, r € R} ={z: 2z = (x1,...,2,),21 > 0,...,2, > 0}, ¢, is a constant, 0 is the
Dirac-delta distribution, and &%0 = §. Then the type of solution to (2.1) depends on
the relationship between k and m, according to the following cases:

(1) If m < k and m = 0, then (2.1) has the solution
u(z) = co ((—1)**Ser(z) * Rex(z) * (C**(2))* ),

which is an elementary solution of the ®% operator in Theorem 2.1, is an
ordinary function when 6k > n, and is a temper distribution when 6k < n.
(2) If m < k then the solution of (2.1) is

u(@) =Y e (1% Sy (@) % Rogry (@) % (C*F77 (@)1

which is an ordinary function when 6k — 6r > n and is tempered distribution
when 6k — 6r < n.
(3) If m >k and k < m < M, then (2.1) has the solution
M
u(z) = ZCT oL,
r=k
which is only a singular distribution.

Proof. (1) For m = 0, we have ®%u(z) = ¢yd, and by Theorem 2.1 we obtain
u(z) = ((—1)3k56k(x) * Rep(x) * (C’*k(a:))*_l) .

Now, (—1)3%Se,(z) and Re(x) are the analytic function for 6k > n and also
(—1)%8Ser(2) * Rep(x) * (C**(z))*~! exits and is an analytic function by (1.7).
It follows that (—1)%%Se(z) * Rep(x) * (C**(2))*~! is an ordinary function for
6k > n. By Lemma 1.5, (—1)3*Sg (), Rer(z) are tempered distributions with
6k < n, we obtain (—1)%*Sg;,(x) * Rex(x) x (C**(x))*~! exits and is a tempered
distribution.
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(2) For the case 0 < m < k, we have
hu(r) =c, G d+cy @56+ -+ cp @ 0.

We convolved both sides of the above equation by (—1)%¢Se.(z) * Rer(z) *
(C**(z))*~* to obtain

@' ((—1)*Ser() * Rer(z) * (C™(2))" ") * u(2)
=1 @p ((—1)*"Ser() * Rer(z) * (C™(2))"")
+ e @ ((=1)"Sex(w) * Rox(w)  (C**(2))" ")
+ oot e B (1) Ser(@) * Ry () + (C™(2))*71) .
By Theorem 2.1, we obtain
u(r) =¢ ((—1)3(k_1)56(k_1)(x) * Re(r—1) () * (C’*(k_l)(x))*_l)
+ ¢ ((—1)4(k’2)56(k_2) () * Re(r—o)(x) * (C*k=2) ()
+ ot ((—1)3(k_m)56(k,m) () * Re(r—m) () * (C*k=m) (x))*_l) ,

_ ZCT ((_1)3(]6_7,)56(]6‘77‘) (x) « R6(k7r)<x) % (C*(k—r)(w))*—l) ‘

Similarly, as in case (1), u(x) is an ordinary function for 6k — 6 > n and is a
tempered distribution for and 6k — 6r < n.
(3) For the case m > k and k < m < M, we have

Shu(z) = e, B 6+ e B 0+ + ey @Y 0.
Convolved both sides of the above equation by
(=1)%Sei(w) * Rep() * (C*(2))"!
to obtain
@ ((—1)™Sek(w) * Row() * (C(2))" ™) * u(w)
=cx ® ((—1)* Ser(2) * Rox (@) * (C™*(2)) )
+ e @5 (1) Sk (@) * Rew() * (C(x))* ™)
+ ot e BY ((—1)*Ser(z) * Rex(w) x (C** ()1 .

By Theorem 2.1 again, we obtain
U<x>:Ck5+ck+1®3(5+0k+2@235—|— +CM€BM kd—ZCT@TB_kd‘

Since @75 *4 is a singular distribution, hence u(z) is only the singular distribu-
tion. This completes the proofs. U
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