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WHEN IS A BI-JORDAN HOMOMORPHISM
BI-HOMOMORPHISM?

A. ZIVARI-KAZEMPOUR

Abstract. For Banach algebrasA andB, we show that if U = A×B is commutative
(weakly commutative), then each bi-Jordan homomorphism from U into a semisimple
commutative Banach algebra D is a bi-homomorphism. We also prove the same
result for 3-bi-Jordan homomorphism with the additional hypothesis that the Banach
algebra U is unital.

1. Introduction

Let A and B be complex Banach algebras and ϕ : A→ B be a linear map. Then
ϕ is called an n-homomorphism if for all a1, a2, ...an ∈ A,

ϕ(a1a2...an) = ϕ(a1)ϕ(a2)...ϕ(an).
The concept of an n-homomorphism was studied for complex algebras by Hejazian et
al. in [5]. A 2-homomorphism is then just a homomorphism, in the usual sense. One
may refer to [1] for certain properties of 3-homomorphisms.

The notion of n-Jordan homomorphisms was dealt with firstly by Herstein in [6]. A
linear map ϕ between Banach algebras A and B is called an n-Jordan homomorphism
if

ϕ(an) = ϕ(a)n, a ∈ A.

A 2-Jordan homomorphism is called simply a Jordan homomorphism.
It is obvious that each n-homomorphism is an n-Jordan homomorphism, but in

general the converse is false. The converse statement may be true under certain
conditions. For example, it is shown in [2] that every n-Jordan homomorphism
between two commutative Banach algebras is an n-homomorphism for n ∈ {2, 3, 4},
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and this result extended to the case n = 5 in [3]. Lee in [7] generalized this result and
proved it for all n ∈ N. See also [4] for another proof of Lee’s theorem.

Zelazko in [9] has given a characterization of Jordan homomorphism, that we
mention in the following (see also [8]). We refer to [10] for another approach to the
same result.

Theorem 1.1. Suppose that A is a Banach algebra, which need not be commutative,
and suppose that B is a semisimple commutative Banach algebra. Then each Jordan
homomorphism ϕ : A→ B is a homomorphism.

Also it is shown in [11] that Theorem 1.1 is valid for 3-Jordan homomorphism with
the extra condition that the Banach algebra A is unital. Some significant results
concerning Jordan homomorphisms and their generalizations on Banach algebras ob-
tained by the author in [12].

Throughout the paper, let U = A × B. Then U is a Banach algebra for the
multiplication

(a, b)(x, y) = (ax, by), (a, b), (x, y) ∈ U,

and with norm
‖(a, b)‖ = ‖a‖+ ‖b‖.

Let D be a complex Banach algebra. A bilinear map is a function ϕ : U→ D such
that for any a ∈ A the map b 7→ ϕ(a, b) is linear map from B to D, and for any b ∈ B

the map a 7→ ϕ(a, b) is linear map from A to D.
A bilinear map ϕ is called an n-bi-homomorphism if for all (ai, bi) ∈ U,

ϕ(a1a2...an, b1b2...bn) = ϕ(a1, b1)ϕ(a2, b2)...ϕ(an, bn),

and it is called an n-bi-Jordan homomorphism if

ϕ(an, bn) = ϕ(a, b)n, (a, b) ∈ U.

The concept of an n-bi-Jordan homomorphism introduced by the author in [13]. A
(2-bi-Jordan) 2-bi-homomorphism is called simply a (bi-Jordan) bi-homomorphism.

It is obvious that each n-bi-homomorphism is n-bi-Jordan homomorphism, but in
general the converse is not true.

Recently, the author proved [13] that every bi-Jordan homomorphism from unital
commutative Banach algebra U into a semisimple commutative Banach algebra D is
a bi-homomorphism.

In this paper, we extended this result for nonunital Banach algebra U. We also
prove the same result for 3-bi-Jordan homomorphism with the additional hypothesis
that the Banach algebra U is unital.

2. Characterization of Bi-Jordan Homomorhisms

The following Theorem is the generalization of Theorem 4 of [13].
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Theorem 2.1. Every bi-Jordan homomorphism ϕ from commutative Banach algebra
U into a semisimple commutative Banach algebra D is a bi-homomorphism.

Proof. We first assume that D = C and let ϕ : U→ C be a bi-Jordan homomorphism.
Then for all (a, b) ∈ U,
(2.1) ϕ(a2, b2) = ϕ(a, b)2.

Replacing a by a+ x and b by b+ y in (2.1), gives
(2.2) ϕ(a2 + x2 + 2ax, b2 + y2 + 2by) = ϕ(a+ x, b+ y)2.

By Lemma 1 of [13], for all (a, b), (x, y) ∈ U we have
(2.3) ϕ(a2, by) = ϕ(a, b)ϕ(a, y) and ϕ(ax, b2) = ϕ(a, b)ϕ(x, b).
It follows from (2.2) and (2.3) that
(2.4) 2ϕ(ax, by) = ϕ(a, b)ϕ(x, y) + ϕ(a, y)ϕ(x, b),
for all (a, b), (x, y) ∈ U. Take I = ϕ(a, b)ϕ(x, y), J = ϕ(a, y)ϕ(x, b) and t = I − J .
Then we get
(2.5) t2 = I2 + J2 − 2IJ, 4ϕ(ax, by)2 = I2 + J2 + 2IJ.
By (2.4) and (2.5), we deduce

4ϕ(ax, by)2 + t2 = 2(I2 + J2)
= 2[ϕ(a, b)2ϕ(x, y)2 + ϕ(a, y)2ϕ(x, b)2]
= 2[ϕ(a2, b2)ϕ(x2, y2) + ϕ(a2, y2)ϕ(x2, b2)]
= 4ϕ(a2x2, b2y2)
= 4ϕ(ax, by)2.

Hence, t = 0, which proves that I = J . Thus, by (2.4) we have
ϕ(ax, by) = ϕ(a, b)ϕ(x, y),

for all (a, b), (x, y) ∈ U, so ϕ is a bi-homomorphism.
Now suppose that D is semisimple and commutative. Let M(D) be the maximal

ideal space of D. We associate with each f ∈M(D) a function ϕf : U → C defined
by

ϕf (a, b) := f(ϕ(a, b)), (a, b) ∈ U.

Pick f ∈M(D) arbitrary. It is easy to see that ϕf is a bi-Jordan homomorphism, so
by the above argument it is a bi-homomorphism. Thus, by the definition of ϕf we
have

f(ϕ(ax, by)) = f(ϕ(a, b))f(ϕ(x, y)) = f(ϕ(a, b)ϕ(x, y)).
Since f ∈M(D) was arbitrary and D is assumed to be semisimple,

ϕ(ax, by) = ϕ(a, b)ϕ(x, y),
for all (a, b), (x, y) ∈ U. This complete the proof. �
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A bilinear map ϕ : U→ D is called co-bi-homomorphism if

ϕ(ax, by) = −ϕ(a, b)ϕ(x, y),

for all (a, b), (x, y) ∈ U, and it is called co-bi-Jordan homomorphism if

ϕ(a2, b2) = −ϕ(a, b)2, (a, b) ∈ U.

By a same method as Theorem 2.1, we have the following result for co-bi-Jordan
homomorphisms.

Theorem 2.2. Every co-bi-Jordan homomorphism from commutative Banach algebra
U into a semisimple commutative Banach algebra D is a co-bi-homomorphism.

We say that the Banach algebra A is weakly commutative if

(ax)2 = a2x2 and ax2a = x2a2,

for all a, x,∈ A. Clearly, every commutative Banach algebra is weakly commutative,
but in general, the converse is false. For example, let

A =
{[
a b
0 0

]
: a, b ∈ R

}
.

Then it is obvious to check that with the usual matrix product for all x, y ∈ A,

(xy)2 = x2y2 and xy2x = y2x2.

Thus, A is weakly commutative, but it is neither unital nor commutative.
Note that a unital Banach algebra is weakly commutative if and only if it is

commutative.

Lemma 2.1. Let U be a weakly commutative Banach algebra, and ϕ : U → C be a
bi-Jordan homomorphism. Then

ϕ(ax, by) = ϕ(ax, yb) = ϕ(xa, by),

for all (a, b), (x, y) ∈ U.

Proof. By Lemma 1 of [13],

(2.6) ϕ(a2, by + yb) = 2ϕ(a, b)ϕ(a, y), (a, b), (a, y) ∈ U.

Replacing a by ax in (2.6) we get

(2.7) ϕ((ax)2, by + yb) = 2ϕ(ax, b)ϕ(ax, y).

Replacing b by by and y by yb in (2.7), gives

(2.8) ϕ((ax)2, by2b+ yb2y) = 2ϕ(ax, by)ϕ(ax, yb).



WHEN IS A BI-JORDAN HOMOMORPHISM BI-HOMOMORPHISM? 489

Since U is weakly commutative, by (2.8) we have

2ϕ(ax, by)ϕ(ax, yb) = ϕ((ax)2, by2b+ yb2y)
= ϕ((ax)2, y2b2 + b2y2)
= ϕ((ax)2, b2y2) + ϕ((ax)2, y2b2)
= ϕ(ax, by)2 + ϕ(ax, yb)2.

Thus, (
ϕ(ax, by)− ϕ(ax, yb)

)2
= 0,

which proves that
ϕ(ax, by) = ϕ(ax, yb),

for all (a, b), (x, y) ∈ U. In a similar way, we can prove that ϕ(ax, by) = ϕ(xa, by).
This complete the proof. �

The next result is the generalization of Theorem 2.1.

Theorem 2.3. Suppose that ϕ is a bi-Jordan homomorphism from weakly commuta-
tive Banach algebra U into a semisimple commutative Banach algebra D. Then ϕ is
a bi-homomorphism.

Proof. We first assume that D = C and let ϕ : U→ C be a bi-Jordan homomorphism.
Then for all (a, b) ∈ U,

(2.9) ϕ(a2, b2) = ϕ(a, b)2.

Replacing a by a+ x and b by b+ y in (2.9), gives

(2.10) ϕ(ax+ xa, by + yb) = 2ϕ(a, b)ϕ(x, y) + 2ϕ(a, y)ϕ(x, b),

for all (a, b), (x, y) ∈ U. It follows from (2.10) and Lemma 2.1 that

4ϕ(ax, by) = ϕ(ax+ xa, by + yb)
= 2ϕ(a, b)ϕ(x, y) + 2ϕ(a, y)ϕ(x, b).

Hence,
2ϕ(ax, by) = ϕ(a, b)ϕ(x, y) + ϕ(a, y)ϕ(x, b),

for all (a, b), (x, y) ∈ U. Thus, the relation (2.4) in Theorem 2.1 holds. Now the rest
of proof is similar to the proof of Theorem 2.1. �

As a consequence of Theorem 2.3 we have the next result.

Corollary 2.1. Suppose that U is weakly commutative and ϕ : U→ C satisfies

(2.11) |ϕ(ax, by)− ϕ(a, b)ϕ(x, y)| ≤ δ(‖(a, b)‖+ ‖(x, y)‖),

for all (a, b), (x, y) ∈ U and for some δ ≥ 0. Then ϕ is a bi-homomorphism.
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Proof. Replacing (x, y) by (a, b) in (2.11), gives
(2.12) |ϕ(a2, b2)− ϕ(a, b)2| ≤ 2δ(‖a‖+ ‖b‖),
for all (a, b) ∈ U. Take a = 2nx and b = 2ny in (2.12), then

|ϕ(x2, y2)− ϕ(x, y)2| ≤ 2n+1δ(‖x‖+ ‖y‖)
24n

→ 0,

as n→∞. Hence,
ϕ(x2, y2) = ϕ(x, y)2, (x, y) ∈ U.

Therefore, ϕ is a bi-Jordan and so it is a bi-homomorphism by Theorem 2.3. �

Example 2.1. Let

U =
{([

a b
0 0

]
,

[
x y
0 0

])
: a, b, x, y ∈ R

}
.

Then U is a weakly commutative Banach algebra, but it is not commutative. Hence by
Theorem 2.3, each bi-Jordan homomorphism from U into a semisimple commutative
Banach algebra D is a bi-homomorphism and via versa.

The commutativity of Banach algebra D in Theorem 2.3 is essential. For example,
let

A =
{[
a b
0 0

]
: a, b ∈ R

}
,

as above and let A] be the unitization of A with the identity matrix as a unit. Set
U = A×A] and define ϕ : U→ A by ϕ(x, y) = xy. Then for all (x, y) ∈ U,

ϕ(x2, y2) = ϕ(x, y)2.

Hence ϕ is bi-Jordan homomorphism, but it is not bi-homomorphism. Because, let

x =
[
a b
0 0

]
, y =

[
c d
0 0

]
, m =

[
s t
0 0

]
and n = I,

where I is the identity matrix. Then (x, y), (m,n) ∈ U, but
ϕ(xm, yn) 6= ϕ(x, y)ϕ(m,n).

3. Chracterization of 3-bi-Jordan Homomorhisms

Clearly, the Banach algebra U is unital if and only if both A and B are unital.
Without any confusion we denote by e, the unit element of both A and B.

Lemma 3.1. Let U be a unital commutative Banach algebra, and ϕ : U → C be a
3-bi-Jordan homomorphism. Then for all (a, b) ∈ U,

(a) ϕ(a3, b2 + b) = ϕ(a, b)2ϕ(a, e) + ϕ(a, b)ϕ(a, e)2,
(b) ϕ(a2 + a, b3) = ϕ(a, b)2ϕ(e, b) + ϕ(a, b)ϕ(e, b)2.

Proof. The proof is straightforward. �

Lemma 3.2. By the hypotheses of above Lemma, for all (a, b), (x, y) ∈ U,
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(a) 3ϕ(ax2, b) = ϕ(a, b)ϕ(x, e)2 + 2ϕ(a, e)ϕ(x, e)ϕ(x, b),
(b) 3ϕ(a, by2) = ϕ(a, b)ϕ(e, y)2 + 2ϕ(e, b)ϕ(e, y)ϕ(a, y).

Proof. We prove (a), that the assertion (b) can be proved similarly. Let ϕ : U → C
be a 3-bi-Jordan homomorphism. Then for all (a, b) ∈ U,
(3.1) ϕ(a3, b3) = ϕ(a, b)3.

Replacing b by b+ y in (3.1), gives
(3.2) ϕ(a3, b2y + by2) = ϕ(a, b)2ϕ(a, y) + ϕ(a, b)ϕ(a, y)2,

for all (a, b), (a, y) ∈ U. Replacing y by −y in (3.2), we get
(3.3) ϕ(a3,−b2y + by2) = −ϕ(a, b)2ϕ(a, y) + ϕ(a, b)ϕ(a, y)2.

By (3.2) and (3.3) we have
(3.4) ϕ(a3, by2) = ϕ(a, b)ϕ(a, y)2.

Replacing y by e in (3.4), gives
(3.5) ϕ(a3, b) = ϕ(a, b)ϕ(a, e)2.

Replacing a by a+ x in (3.5), to obtain
(3.6) 3ϕ(ax2 + a2x, b) = I + J,

where
I = ϕ(x, b)ϕ(a, e)2 + 2ϕ(a, b)ϕ(a, e)ϕ(x, e)

and
J = ϕ(a, b)ϕ(x, e)2 + 2ϕ(a, e)ϕ(x, b)ϕ(x, e).

Replacing x by −x in (3.6), we get
(3.7) 3ϕ(ax2 − a2x, b) = −I + J.

By (3.6) and (3.7) we have
3ϕ(ax2, b) = ϕ(a, b)ϕ(x, e)2 + 2ϕ(a, e)ϕ(x, b)ϕ(x, e),

for all (a, b), (x, e) ∈ U, as required. �

Now we state and prove the main Theorem of this section.

Theorem 3.1. Suppose that ϕ is a 3-bi-Jordan homomorphism from unital commu-
tative Banach algebra U into C. Then ϕ is a 3-bi-homomorphism.

Proof. Let ϕ : U→ C be a 3-bi-Jordan homomorphism. Then
(3.8) ϕ(a3, b3) = ϕ(a, b)3, (a, b) ∈ U.

Replacing both of a and b by e, gives ϕ(e, e) = ϕ(e, e)3. Since ϕ(e, e) 6= 0, so
ϕ(e, e) = 1 or ϕ(e, e) = −1. We first assume that ϕ(e, e) = 1. Replacing a by a + e
and b by b+ e in (3.8), and simplifies the result by Lemma 3.1, we get
(3.9) 9ϕ(a2 + a, b2 + b) = 3{ϕ(a, b)2 + ϕ(a, b) + P +Q+R + S},
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where

P = 2ϕ(a, b)ϕ(a, e) + ϕ(e, b)ϕ(a, e)2, Q = 2ϕ(a, b)ϕ(e, b) + ϕ(a, e)ϕ(e, b)2,

R = 2ϕ(a, e)ϕ(e, b), S = 2ϕ(a, e)ϕ(a, b)ϕ(e, b).

It follows from preceding Lemma that for all (a, b) ∈ U,

(3.10) P = 3ϕ(a2, b), Q = 3ϕ(a, b2), R = 2ϕ(a, b) and S = 2ϕ(a, b)2.

By (3.9) and (3.10) we obtain

ϕ(a2, b2) = ϕ(a, b)2,

for all (a, b) ∈ U. Hence, ϕ is bi-Jordan homomorphism and so it is bi-homomorphism
by Theorem 2.1. Thus, ϕ is 3-bi-homomorphism.

Now suppose that ϕ(e, e) = −1. Then by a similar arqument we have

ϕ(a2, b2) = −ϕ(a, b)2, (a, b) ∈ U.

Therefore by Theorem 2.2, ϕ is co-bi-homomorphism. That is,

ϕ(ax, by) = −ϕ(a, b)ϕ(x, y),

for all (a, b), (x, y) ∈ U. Thus,

ϕ(axu, byv) = −ϕ(a, b)[ϕ(xu, yv)]
= −ϕ(a, b)[−ϕ(x, y)ϕ(u, v)]
= ϕ(a, b)ϕ(x, y)ϕ(u, v),

for all (a, b), (x, y), (u, v) ∈ U. So ϕ is 3-bi-homomorphism, as claimed. �

As a consequence of Theorem 3.1 we have the next result.

Corollary 3.1. Suppose that ϕ is a 3-bi-Jordan homomorphism from unital commu-
tative Banach algebra U into a semisimple commutative Banach algebra D. Then ϕ
is a 3-bi-homomorphism.

In view of Theorem 1.1 and Theorem 2.1, the following question suggests itself:
does Theorem 2.1 hold without commutativity of U?
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