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BI-UNIVALENT FUNCTIONS CLASSES DEFINED BY POISSON
DISTRIBUTION SERIES

G. E. ABO ELYAZYD1, P. AGARWAL2,3,4,5, A. I. ELMAHDY1, H. E. DARWISH1, AND S. JAIN6

Abstract. By using Poisson distribution series we introduce and derive different
subclasses of regular and bi-univalent functions in the open unit disk. We then present
special estimates for the Taylor coefficient inequalities |a2| and |a3| of functions
belonging to this new subclass. In addition, several consequences of our results
are pointed out which are new and have not yet been discussed in association with
bounded boundary rotation.

1. Introduction

By ρ we denote the class of functions Im(ς) in the open unit disk O = {ς : |ς| < 1}
and normalized by the conditions Im(0) = 0 and Im′(0) = 1. Each Im ∈ ρ has the
form

Im(ς) = ς +
+∞∑
r=2
xrς

r, ς ∈ O.(1.1)

Indicate by S the class of all univalent functions in O.
Some of the important and well-investigated subclasses of the univalent function

class J include the class J∗(τ) of starlike functions of order τ in O and the class k(τ) of
convex functions of order τ , 0 ≤ τ < 1, in O.

It is well known that every function Im ∈ J has an inverse Im−1 defined by

Im−1(Im(ς)) = ς, ς ∈ O,
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and
Im−1(Im(ϱ)) = ϱ, |ϱ| < n0(Im), n0(Im) ≥ 1/4,

where
Im−1(ϱ) = G(ϱ) = ϱ− a2ϱ

2 + (2x2
2 − x3)ϱ3 − (5x3

2 − 5x2x3 + x4)ϱ4 + · · · .(1.2)

A function Im(ς) ∈ ρ is said to be bi-univalent in O if both Im(ς) and Im−1(ς) are
univalent in O. Indicated by H, the class of bi-univalent functions in O is given by
(1.1).

Brannan and Taha [1] present bi-starlike functions of order τ , 0 ≤ τ < 1, indicated
by J∗

H(τ) and bi-convex functions of order τ indicated by KH(τ).
Srivastava et al. [14], Xu et al. [16,17], Frasin and Aouf [3] and Hayami and Owa

[5] defined more interesting examples of bi-univalent function in the class H (also
[2, 3, 15] and [17]).

A regular function Im(ς) is subordinate to an analytic function G(ς), written Im(ς) ≺
G(ς), provided there is an analytic function ϱ defined on O with ϱ(0) = 0 and |ϱ(ς)| <
1 satisfying Im(ς) = G(ϱ(ς)). Ma and Minda [6] unified various subclasses of starlike
and convex functions for which either of the quantity ςIm′(ς)

Im(ς) or 1+ ςIm
′′

(ς)
Im′(ς) is subordinate

to a more general superordinate function. For this purpose, they considered an analytic
function ϕ with positive real part in the unit disk O, ϕ(0) = 1, ϕ′(0) > 0, and ϕ maps
O onto a region starlike with respect to 1 and symmetric with respect to the real axis.
The class of Ma-Minda starlike-functions consists of functions Im(ς) ∈ ρ satisfying
the subordination ςIm′(ς)

Im(ς) ≺ ϕ(ς). Similarly, the class of Ma-Minda convex functions of

functions Im(ς) ∈ ρ satisfying the subordination 1 + ςIm
′′

(ς)
Im′(ς) ≺ ϕ(ς).

A function Im(ς) is bi-starlike of Ma-Minda type or bi-convex of Ma-Minda type
if both Im(ς) and Im−1(ς) are respectively Ma-Minda starlike or convex. These
classes are denoted respectively by J∗

H(ϕ) and KH(ϕ). In the sequel, it is assumed
that is an analytic function with positive real part in the unit disk O, satisfying
ϕ(0) = 1, ϕ′(0) > 0 and ϕ(O) is symmetric with respect to the real axis. Such a
function has a series expansion of the form

ϕ(ς) = 1 + V1ς + V2ς
2 + V3ς

3 + · · · , V1 > 0.(1.3)

A parameter σ is called Poisson distributed taken the values 0, 1, 2, 3, . . ., with e−µ,
µ e−µ

1! , µ
2 e−µ

2! , µ
3 e−µ

3! , . . ., respectively, probabilities, where µ is called the parameter.
Thus,

P(σ = n) = µr e
−µ

i! , i = 0, 1, 2, 3, . . .(1.4)

Lately, in [10] ([7, 8]) Porwal presented

K(µ, ς) = ς +
+∞∑
r=2

µr−1

(r − 1)!e
−µςr, z ∈ O,(1.5)
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the coefficients of this power series are probabilities of Poisson distribution, where
µ > 0.

In [10], Porwal also defined series

g(µ, ς) = 2ς − K(µ, ς) = ς −
+∞∑
r=2

µr−1

(r − 1)!e
−µςr, ς ∈ O.(1.6)

Using the convolution, in [11] Porwal and Kumar introduced a linear operator ϖµ :
χ → χ defined by

ϖµIm(ς) = K(µ, ς) ∗ Im(ς) = ς +
+∞∑
r=2

µr−1

(r − 1)!e
−µ
r xrς

r, ς ∈ O.(1.7)

In [4] Goodman defined uniformly convex UCV functions so that its regular charac-
terization is ϕ ∈ UCV if and only if

Re
{

1 + ςϕ′′(ς)
ϕ′(ς)

}
≥ Reζϕ

′′(ς)
ϕ′(ς) , (ς, ζ) ∈ O × O.

Ronning [12] defined the class SP consisting of functions ψ(ς) = ςϕ′(ς), so ϕ ∈ UCV. By
choosing ζ = eiγς in suitable way, Rosy et al. [13] wrote the regular description of
SP as ψ ∈ UCV if and only if

Re
{
ςψ′(ς)
ψ(ς) + eiγ

(
ςψ′(ς)
ψ(ς) − 1

)}
≥ 0,

or equivalently SP is the subclass of ρ consisting of functions described in (1.1) satis-
fying

Re
{

(1 + eiγ)ςIm
′(ς)

Im(ς) − eiγ

}
≥ 0.

2. Preparation

Definition 2.1. A function Im(ς) ∈ H described in (1.1) is said to belong to class
S

µ
λ(ϕ, ς) if it satisfies

(1 + βeiγ)
{

(1 − λ)ς(ϖµIm(ς))′

ϖµIm(ς) + λ

(
1 + ς(ϖµIm(ς))′′

(ϖµIm(ς))′

)}
− βeiγ ≺ ϕ(ς),(2.1)

where β ≥ 0, 0 ≤ λ ≤ 1, −π ≤ γ < π, µ > 0 and ς ∈ O, and

(1 + βeiγ)
{

(1 − λ)ϱ(ϖµIm(ϱ))′

ϖµIm(ϱ) + λ

(
1 + ϱ(ϖµIm(ϱ))′′

(ϖµIm(ϱ))′

)}
− βeiγ ≺ ϕ(ϱ),(2.2)

where β ≥ 0, 0 ≤ λ ≤ 1, −π ≤ γ < π, µ > 0 and ϱ ∈ O.

Definition 2.2. A function Im(ς) ∈ H, as described in (1.1), is said to belong to the
class K

µ
λ(ϕ, ς) if it satisfies

(1 + βeiγ)
{

(1 − λ)ϖµIm(ς)
ς

+ λ(ϖµIm(ς))′
}

− βeiγ ≺ ϕ(ς),(2.3)
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where β ≥ 0, 0 ≤ λ ≤ 1, −π ≤ γ < π, µ > 0 and ς ∈ O, and

(1 + βeiγ)
{

(1 − λ)ϖµIm(ϱ)
ϱ

+ λ(ϖµIm(ϱ))′
}

− βeiγ ≺ ϕ(ϱ),(2.4)

where β ≥ 0, 0 ≤ λ ≤ 1, −π ≤ γ < π, µ > 0 and ϱ ∈ O.

By specializing the parameter λ in Definitions 2.1 and 2.2, we obtain the following
subfamilies.

Remark 2.1. A function Im(ς) ∈ H described in (1.1) and for λ = 0, we note that
S

µ
λ(ϕ, ς) ≡ Sµ(ϕ, ς) in Definition 2.1, satisfies the following conditions

(1 + βeiγ)
{
ς(ϖµIm(ς))′

ϖµIm(ς)

}
− βeiγ ≺ ϕ(ς)

and

(1 + βeiγ)
{
ϱ(ϖµIm(ϱ))′

ϖµIm(ϱ)

}
− βeiγ ≺ ϕ(ϱ).

Remark 2.2. A function Im(ς) ∈ H given by (1.1) and for λ = 1, we note that
S

µ
λ(ϕ, ς) ≡ S

µ
1(ϕ, ς) in Definition 2.1, satisfies the following conditions

(1 + βeiγ)
[
1 + ς(ϖµIm(ς))′′

(ϖµIm(ς))′

]
− βeiγ ≺ ϕ(ς)

and

(1 + βeiγ)
[
1 + ϱ(ϖµIm(ϱ))′′

(ϖµIm(ϱ))′

]
− βeiγ ≺ ϕ(ϱ).

Remark 2.3. A function Im(ς) ∈ H given by (1.1) and for λ = 0, we note that
K

µ
λ(ϕ, ς) ≡ Kµ(ϕ, ς) in Definition 2.2, satisfies the following conditions

(1 + βeiγ)
{
ϖµIm(ς)

ς

}
− βeiγ ≺ ϕ(ς)

and

(1 + βeiγ)
{
ϖµIm(ϱ)

ϱ

}
− βeiγ ≺ ϕ(ϱ).

Remark 2.4. A function Im(ς) ∈ H given by (1.1) and for λ = 1, we note that
K

µ
λ(ϕ, ς) ≡ K

µ
1(ϕ, ς) in Definition 2.2, satisfies the following conditions

(1 + βeiγ)(ϖµIm(ς))′ − βeiγ ≺ ϕ(ς)

and

(1 + βeiγ)(ϖµIm(ϱ))′ − βeiγ ≺ ϕ(ϱ).
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3. Coefficient Estimates for S
µ
λ(ϕ, ς) and K

µ
λ(ϕ, ς)

Before starting and proving our main results, we need the following lemma for
deriving our main results.

Lemma 3.1 ([9]). If h ∈ P, then |ck| ≤ 2 for each k, where P is the family of all
functions h analytic in O for which R(h(ς)) > 0 and

h(z) = 1 + c1ς + c2ς
2 + · · · , for ς ∈ O.

Define the functions s(ς) and t(ς) by

s(ς) = 1 + u(ς)
1 − u(ς) = 1 + s1ς + s2ς

2 + · · ·

and

t(ς) = 1 + υ(ς)
1 − υ(ς) = 1 + t1ς + t2ς

2 + · · · .

It follows that

u(ς) : = s(ς) − 1
s(ς) + 1 = 1

2

[
s1ς +

(
s2 − s2

1
2

)
ς2 + · · ·

]
and

υ(ς) : = t(ς) − 1
t(ς) + 1 = 1

2

[
t1ς +

(
t2 − t21

2

)
ς2 + · · ·

]
.

Then, s(ς) and t(ς) are analytic in O with s(0) = t(0) = 1.
Since u, υ : O → O, the functions s(ς) and t(ς) have a positive real part in O, and

|si| ≤ 2 and |ti| ≤ 2 for each i.

Now, we will obtain the coefficient estimates for the class S
µ
λ(ϕ, ς) in Theorem 3.1

and the class K
µ
λ(ϕ, ς) in Theorem 3.2.

Theorem 3.1. If Im(ς) belongs to S
µ
λ(ϕ, ς) and has the series representation described

in (1.1), then

|x2|≤
V1

√
V1

µ
√

(1 + βeiγ)e−µ {[(1 + 2λ)−(1 + 3λ)e−µ]V 2
1 + (V1−V2)(1 + βeiγ)(1 + λ)2e−µ}

(3.1)

and

|x3| ≤ V1

(1 + βeiγ)(1 + 2λ)µ2e−µ
+ V 2

1
(1 + βeiγ)2(1 + λ)2µ2e−2m

.(3.2)

Proof. From (2.1) and (2.2) we can get

(1 + βeiγ)
{

(1 − λ)ς(ϖµIm(ς))′

ϖµIm(ς) + λ

[
1 + ς(ϖµIm(ς))′′

(ϖµIm(ς))′

]}
− βeiγ = ϕ(u(ς))(3.3)
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and

(1 + βeiγ)
{

(1 − λ)ϱ(ϖµIm(ϱ))′

ϖµIm(ϱ) + λ

[
1 + ϱ(ϖµIm(ϱ))′′

(ϖµIm(ϱ))′

]}
− βeiγ = ϕ(υ(ϱ)),(3.4)

where s(ς), t(ς) ∈ P and

ϕ(u(ς)) = ϕ

(
1
2

[
s1ς +

(
s2 − s2

1
2

)
ς2 + · · ·

])
and

ϕ(υ(ϱ)) = ϕ

(
1
2

[
t1ϱ+

(
t2 − t21

2

)
ϱ2 + · · ·

])
.

Now, from (3.3) and (3.4), we get

(1 + βeiγ)(1 + λ)µe−µ
2 x2 = 1

2V1s1,(3.5)

(1 + βeiγ)(1 + 2λ)µ2e−µx3 − (1 + βeiγ)(1 + 3λ)µ2e−2µx2
2

=1
2V1

(
s2 − s2

1
2

)
+ 1

4V
2

2 s1,(3.6)

− (1 + βeiγ)(1 + λ)µe−µx2 = 1
2V1t1(3.7)

and
(1 + βeiγ)(1 + 2λ)µ2e−µ(2x2

2 − x3) − (1 + βeiγ)(1 + 3λ)µ2e−2µx2
2

=1
2V1

(
t2 − t21

2

)
+ 1

4V
2

2 t1.(3.8)

From (3.5) and (3.7), we get
s1 = −t1(3.9)

and
8(1 + βeiγ)2(1 + λ)2µ2e−2µx2

2 = V 2
1 (s2

1 + t21).(3.10)
Now, from (3.6), (3.8) and (3.10), we obtain

4(1 + βeiγ)µ2e−µ
{[

(1 + 2λ) − (1 + 3λ)e−µ
]
V 2

1

+(V1 − V2)(1 + βeiγ)(1 + λ)2e−µ
}
x2

2 = V 3
1 (s2 + t2).(3.11)

By using Lemma 3.1 to the coefficients s2 and t2, we have

|x2|≤
V1

√
V1

µ
√

(1 + βeiγ)e−µ{[(1 + 2λ)−(1 + 3λ)e−µ]V 2
1 +(V1−V2)(1 + βeiγ)(1 + λ)2e−µ}

.

To find |x3|, we subtract (3.6) from (3.8) and using (3.9), we have

2(1 + βeiγ)(1 + 2λ)µ2e−µ(x3 − x2
2) = 1

2V1(s2 − t2).
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Upon substituting the value of x2
2 from (3.10), we get

x3 = V1(s2 − t2)
4(1 + βeiγ)(1 + 2λ)µ2e−µ

+ V 2
1 (s2

1 + t21)
8(1 + βeiγ)2(1 + λ)2µ2e−2µ

.

By using Lemma 3.1 once again to the coefficients s1, s2, t1 and t2, we get

|x3| ≤ V1

(1 + βeiγ)(1 + 2λ)µ2e−µ
+ V 2

1
(1 + βeiγ)2(1 + λ)2µ2e−2µ

,

we obtain the estimate given by (3.2). □

Theorem 3.2. If Im(ς) belongs to K
µ
λ(ϕ, ς) and has the series representation described

in (1.1), then

|x2| ≤ V1
√
V1√

2µ(1 + βeiγ)e−µ {(2λ+ 1)V 2
1 + 2µ(V1 − V2)(1 + βeiγ)(λ+ 1)2e−µ}

(3.12)

and

|x3| ≤ 2V1

µ(1 + βeiγ)(2λ+ 1)e−µ
+ V 2

1
µ2(1 + βeiγ)2(λ+ 1)2e−2µ

.(3.13)

Proof. From (2.3) and (2.4), we have

(1 + βeiγ)
{

(1 − λ)ϖµIm(ς)
ς

+ λϖµIm(ς))′
}

− βeiγ = ϕ(u(ς))(3.14)

and

(1 + βeiγ)
{

(1 − λ)ϖµIm(ϱ)
ϱ

+ λ(ϖµIm(ϱ))′
}

− βeiγ = ϕ(v(ϱ)),(3.15)

where s(ς), t(ς) ∈ P and

ϕ(u(ς)) = ϕ

(
1
2

[
s1ς +

(
s2 − s2

1
2

)
ς2 + · · ·

])
and

ϕ(υ(ϱ)) = ϕ

(
1
2

[
t1ϱ+

(
t2 − t21

2

)
ϱ2 + · · ·

])
.

From (3.14) and (3.15), we get

(1 + βeiγ)(λ+ 1)µe−µx2 = 1
2V1s1,(3.16)

µ(1 + βeiγ)(2λ+ 1)e−µx3 = V1s2 +
(
V2 − V1

2

)
s2

1,(3.17)

− (1 + βeiγ)(λ+ 1)µe−µx2 = 1
2V1t1(3.18)

and

µ(1 + βeiγ)(2λ+ 1)e−µ(2x2
2 − x3) = V1t2 +

(
V2 − V1

2

)
t21.(3.19)
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From (3.16) and (3.18), we get

s1 = −t1(3.20)

and

8(1 + βeiγ)2(λ+ 1)2µ2e−2µx2
2 = V 2

1 (s2
1 + t21).(3.21)

Now, from (3.17), (3.19) and (3.11), we obtain

2(1 + βeiγ)µe−µ
{
(2λ+ 1)V 2

1 + 2µ(V1 − V2)(1 + βeiγ) (λ+ 1)2e−µ
}
x2

2

=V 3
1 (s2 + t2).(3.22)

By using Lemma 3.1 to the coefficients s2 and t2, we have

|x2| ≤ V1
√
V1√

2µ(1 + βeiγ)e−µ {(2λ+ 1)V 2
1 + 2µ(V1 − V2)(1 + βeiγ)(λ+ 1)2e−µ}

.

To find |x3|, we subtract (3.17) from (3.19) and using (3.20), we have

2µ(1 + βeiγ)(2λ+ 1)e−µ(x3 − x2
2) = 1

2V1(s2 − t2).

Upon replacing the value of x2
2 from (3.21), we get

x3 = V1(s2 − t2)
2µ(1 + βeiγ)(2λ+ 1)e−µ

+ V 2
1 (s2

1 + t21)
8µ2(1 + βeiγ)2(λ+ 1)2e−2µ

.

By using Lemma 3.1 once again to the coefficients s1, s2, t1 and t2, we have

|x3| ≤ 2V1

µ(1 + βeiγ)(2λ+ 1)e−µ
+ V 2

1
µ2(1 + βeiγ)2(λ+ 1)2e−2µ

,

we obtain the estimate given by (3.13). □

By specializing the parameter λ = 0 in Theorems 3.1 and 3.2, we get the coefficients
for the functions in Sµ(ϕ, ς) and Kµ(ϕ, ς) defined in Remark 2.1 and Remark 2.3.

Corollary 3.1. If Im(ς) belongs to the class Sµ(ϕ, ς) and has the series representation
described in (1.1), then

|x2| ≤ V1
√
V1

µ
√

(1 + βeiγ)e−µ {(1 − e−µ)V 2
1 + (V1 − V2)(1 + βeiγ)e−µ}

and

|x3| ≤ V1

(1 + βeiγ)µ2e−µ
+ V 2

1
(1 + βeiγ)2µ2e−2µ

.
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Corollary 3.2. If Im(ς) belongs to the class Kµ(ϕ, ς) and has the series representation
described in (1.1), then

|x2| ≤ V1
√
V1√

2µ(1 + βeiγ)e−µ {V 2
1 + 2µ(V1 − V2)(1 + βeiγ)e−µ}

and

|x3| ≤ 2V1

µ(1 + βeiγ)e−µ
+ V 2

1
µ2(1 + βeiγ)2e−2µ

.

Putting λ = 1 in Theorems 3.1 and 3.2, the coefficient estimates for the functions
in S

µ
1(ϕ, ς) and K

µ
1(ϕ, ς) was defined in Remark 2.2 and 2.4.

Corollary 3.3. If Im(ς) belongs to the class S
µ
1 (ϕ, ς) and has the series representation

described in (1.1), then

|x2| ≤ V1
√
V1

µ
√

(1 + βeiγ)e−µ {(3 − 4e−µ)V 2
1 + 4(V1 − V2)(1 + βeiγ)e−µ}

and

|x3| ≤ V1

3(1 + βeiγ)µ2e−µ
+ V 2

1
4(1 + βeiγ)2µ2e−2µ

.

Corollary 3.4. Let Im(ς) given by (1.1) be in the class K
µ
1(ϕ, ς). Then,

|x2| ≤ V1
√
V1√

2µ(1 + βeiγ)e−µ {3V 2
1 + 8µ(V1 − V2)(1 + βeiγ)e−µ}

and

|x3| ≤ 2V1

3µ(1 + βeiγ)e−µ
+ V 2

1
4µ2(1 + βeiγ)2e−2µ

.

4. Corollaries and Consequences

For the function ϕ, given by

ϕ(ς) =
(1 + ς

1 − ς

)α

= 1 + 2ας + 2α2ς2 + · · · , 0 < α ≤ 1,(4.1)

we have V1 = 2α and V2 = 2α2.
On the other hand if we take

ϕ(ς) = 1 + (1 − 2ζ)ς
1 − ς

= 1 + 2(1 − ζ)ς + 2(1 − ζ)ς2 + · · · , 0 ≤ ζ < 1,(4.2)

then V1 = V2 = 2(1 − ζ).



1508 G. E. ABO ELYAZYD, P. AGARWAL, A. I. ELMAHDY, H. E. DARWISH, AND S. JAIN

Corollary 4.1. By using ϕ(ς) of the form (4.1) for functions Im(ς) ∈ S
µ
λ(ϕ, ς) as

given by Theorem 3.1, we state the following results:

|x2|≤
2α

µ
√

(1 + βeiγ)e−µ {2α [(1 + 2λ) − (1 + 3λ)e−µ] + (1 − α)(1 + βeiγ)(1 + λ)2e−µ}

and

|x3| ≤ 2α
(1 + βeiγ)(1 + 2λ)µ2e−µ

+ 4α2

(1 + βeiγ)2(1 + λ)2µ2e−2µ
.

Corollary 4.2. By choosing ϕ(ς) of the form (4.1) for functions Im(ς) ∈ K
µ
λ(ϕ, ς)

as given by Theorem 3.2, we state the following results:

|x2| ≤ 2α√
2µ(1 + βeiγ)e−µ {2α(2λ+ 1) + 2(1 − α)µ(1 + βeiγ)(λ+ 1)2e−µ}

and

|x3| ≤ 4α
µ(1 + βeiγ)(2λ+ 1)e−µ

+ 4α2

µ2(1 + βeiγ)2(λ+ 1)2e−2µ
.

Remark 4.1. From Corollary 4.1, taken λ = 0, we can get

|x2| ≤ 2α
µ
√

(1 + βeiγ)e−µ {2α(1 − e−µ) + (1 − α)(1 + βeiγ)e−µ}

and

|x3| ≤ 2α
(1 + βeiγ)µ2e−µ

+ 4α2

(1 + βeiγ)2µ2e−2µ
.

Remark 4.2. From Corollary 4.2, taken λ = 0, we obtain the following results:

|x2| ≤ 2α√
2µ(1 + βeiγ)e−µ {2α + 2(1 − α)µ(1 + βeiγ)e−µ}

and

|x3| ≤ 4α
µ(1 + βeiγ)e−µ

+ 4α2

µ2(1 + βeiγ)2e−2µ
.

Remark 4.3. From Corollary 4.1, taken λ = 1, we obtain the following results:

|x2| ≤ 2α
µ
√

(1 + βeiγ)e−µ {2α (3 − 4e−µ) + 4(1 − α)(1 + βeiγ)e−µ}

and

|x3| ≤ 2α
3(1 + βeiγ)µ2e−µ

+ α2

(1 + βeiγ)2µ2e−2µ
.
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Remark 4.4. From Corollary 4.2, taken λ = 1, we obtain the following results:

|x2| ≤ α√
µ(1 + βeiγ)e−µ {3α + 4µ(1 − α)(1 + βeiγ)e−µ}

and

|x3| ≤ 4α
3µ(1 + βeiγ)e−µ

+ α2

µ2(1 + βeiγ)2e−2µ
.

Corollary 4.3. By using ϕ(ς) of the form (4.2) for functions Im(ς) ∈ S
µ
λ(ϕ, ς) as

given by Theorem 3.1, we acquire the results:

|x2| ≤ 1
µ

√√√√ 2(1 − ζ)
(1 + βeiγ)e−µ [(1 + 2λ) − (1 + 3λ)e−µ]

and

|x3| ≤ 2(1 − ζ)
(1 + βeiγ)(1 + 2λ)µ2e−µ

+ 4(1 − ζ)2

(1 + βeiγ)2(1 + λ)2µ2e−2µ
.

Corollary 4.4. By using ϕ(ς) of the form (4.2) for functions Im(ς) ∈ K
µ
λ(ϕ, ς) as

given by Theorem 3.2, we acquire the following results:

|x2| ≤

√√√√ 2(1 − ζ)
2µ(1 + βeiγ)e−µ(2λ+ 1)

and

|x3| ≤ 4(1 − ζ)
µ(1 + βeiγ)(2λ+ 1)e−µ

+ 4(1 − ζ)2

µ2(1 + βeiγ)2(λ+ 1)2e−2µ
.

Remark 4.5. From Corollary 4.3, taken λ = 0, we obtain the following results:

|x2| ≤ 1
µ

√√√√ 2(1 − ζ)
(1 + βeiγ)e−µ (1 − e−µ)

and

|x3| ≤ 2(1 − ζ)
(1 + βeiγ)µ2e−µ

+ 4(1 − ζ)2

(1 + βeiγ)2µ2e−2µ
.

Remark 4.6. From Corollary 4.4, taken λ = 0, we obtain the results:

|x2| ≤

√√√√ 2(1 − ζ)
2µ2(1 + βeiγ)e−µ2

and

|x3| ≤ 4(1 − ζ)
µ(1 + βeiγ)e−µ

+ 4(1 − ζ)2

µ2(1 + βeiγ)2e−2µ
.
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Remark 4.7. From Corollary 4.3, taken λ = 1, we acquire the following results:

|x2| ≤ 1
µ

√√√√ 2(1 − ζ)
(1 + βeiγ)e−µ (3 − 4e−µ)

and

|x3| ≤ 2(1 − ζ)
3(1 + βeiγ)µ2e−µ

+ (1 − ζ)2

(1 + βeiγ)2µ2e−2µ
.

Remark 4.8. From Corollary (4.4), taken λ = 1, we obtain the following results:

|x2| ≤

√√√√ 2(1 − ζ)
6µ(1 + βeiγ)e−µ

and

|x3| ≤ 4(1 − ζ)
3µ(1 + βeiγ)e−µ

+ (1 − ζ)2

µ2(1 + βeiγ)2e−2µ
.

Notation

There are many applications of Poisson distribution such as a space-time spectral
order since collocation method for the fourth-order nonlocal heat model arising in vis-
coelasticity, a high-order and efficient numerical technique for reactors, a robust error
analysis of the OSC method for multi-term fourth-order sub-diffusion equation, an ef-
ficient ADI difference scheme for the nonlocal evolution problem in three-dimensional
space.

Conclusion

We successfully used the Poisson distribution series to introduce and derive different
subclasses of regular and bi-univalent functions in the open unit disk in part two. In
part three we present special estimates for the Taylor coefficients’ inequalities |a2|
and |a3| of the functions belonging to the new two classes Sµ

λ(ϕ, ς) and K
µ
λ(ϕ, ς). Also,

in part four we investigated certain corollaries and consequences of the results by
choosing V 2081 = 23b1, V 2082 = 23b1, V 2081 = V 2082 = 2(1 − ζ). The results
presented in this paper have been beneficial supplement for the research of geometric
function theory of complex analysis.
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