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STATISTICAL CONVERGENCE OF A SEQUENCE OF
NEUTROSOPHIC RANDOM VARIABLES

CARLOS GRANADOS1

Abstract. In this paper the notions of three kinds of statistical convergence of
a sequence of neutrosophic random variables are defined, these types of statistical
convergence are called neutrosophic statistical convergence in probability, neutro-
sophic statistical convergence in the mean of order r and neutrosophic statistical
convergence in distribution. Also, some relations and properties among them are
investigated.

1. Introduction

Smarandache [4] introduced an innovative philosophical framework termed neu-
trosophy, which explores the nature, origin, and interactions of neutralities within
logical and epistemological systems. A central assertion in neutrosophy is that every
concept or proposition carries not only a degree of truth commonly treated in many
valued logics but also distinct and independent degrees of falsity and indeterminacy.
This triadic characterization captures both subjective and objective aspects of un-
certainty, encompassing imprecision, vagueness, and ambiguity. Neutrosophy forms
the theoretical foundation for several extended mathematical constructs, including
neutrosophic set theory, neutrosophic probability, neutrosophic statistics, and neu-
trosophic logic. In 2020, Bisher and Hatip [7] extended this conceptual apparatus
by incorporating the notion of indeterminacy into classical probability theory. They
introduced the idea of neutrosophic random variables and formulated preliminary
definitions to support further development. Following this, Granados [8] advanced
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the theory by establishing new results, while Granados and Sanabria [9] investigated
independence criteria for neutrosophic random variables. Additional developments in-
clude the works of Granados et al. [10,11], who formulated and analyzed both discrete
and continuous probability distributions governed by neutrosophic randomness. In
parallel, the concept of statistical convergence dates back to the work of A. Zygmund
in the 1930s and was formally revisited by Steinhaus [5] and Fast [6] in 1951. Since
then, the notion has undergone numerous generalizations and has found fertile ground
in the context of neutrosophic mathematics. For example, Kisi et al. [15] introduced
statistical convergence within neutrosophic normed spaces, including the notion of
statistically Cauchy sequences and statistical completeness. Granados and Dhital [16]
extended these ideas to double sequences, offering new criteria for convergence and
completeness. Subsequent contributions have expanded the landscape: Gonul [17]
explored convergence behaviors linked to difference and lacunary sequences; Kisi [18]
focused on ideal convergence and its implications; Khan et al. [19] analyzed lacunary
statistically Cauchy sequences and their structural properties in neutrosophic settings.
In a related direction, Khan et al. [20] proposed generalizations using λ-statistical con-
vergence, establishing inclusion relationships and completeness conditions. Further,
Ali et al. [21] developed a framework for statistical convergence in neutrosophic metric
spaces, and Kisi et al. [22] explored triple lacunary ∆-statistical convergence, utilizing
lacunary density to elucidate structural connections. Al-Hamido [23] proposed a novel
approach to neutrosophic topology, demonstrating that this construction is distinct
from classical and previously known neutrosophic topologies, thereby introducing new
forms of sets and spatial reasoning. Most recently, Granados and Choudhury [24] intro-
duced quasi-statistical convergence for triple sequences in neutrosophic normed spaces,
generalizing prior definitions and providing comprehensive results on equivalence with
quasi-statistical Cauchy sequences. Inspired by this growing body of literature and the
continuing interest in convergence behaviors under neutrosophic frameworks, this pa-
per introduces three new forms of statistical convergence for sequences of neutrosophic
random variables:

(a) Neutrosophic statistical convergence in probability;
(b) Neutrosophic statistical convergence in mean of order r;
(c) Neutrosophic statistical convergence in distribution.

Each mode of convergence is developed with accompanying limit theorems, expanding
and enhancing classical convergence theory as well as previously established neutro-
sophic results (cf. [1–3]).

2. Preliminaries

In this section, we present some well-known notions which will be useful for the
development of this paper.

Definition 2.1 ([14]). Let X be a non-empty fixed set. A neutrosophic set A is
an object having the form {x, (µA(x), δA(x), γA(x)) : x ∈ X}, where µA(x), δA(x)
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and γA(x) represent the degree of membership, the degree of indeterminacy, and the
degree of non-membership respectively of each element x ∈ X to the set A.

Definition 2.2 ([13]). Let K be a field, the neutrosophic filed generated by K and I
is denoted by ⟨K∪ I⟩ under the operations of K, where I is the neutrosophic element
with the property I2 = I.

Definition 2.3 ([12]). Classical neutrosophic number has the form a + bI, where a, b
are real or complex numbers and I is the indeterminacy such that 0 · I = 0 and I2 = I
which results that In = I for all positive integers n.

Definition 2.4 ([12]). The neutrosophic probability of event A occurrence is

NP (A) = (ch(A), ch(neutA), ch(antiA)) = (T, I, F ),

where T, I, F are standard or non-standard subsets of the non-standard unitary inter-
val ]−0, 1+[.

Now, we present some notions of neutrosophic random variables [7].

Definition 2.5. Consider the real valued crisp random variable X which is defined as
X : Ω → R, where Ω is the events space. Now, they defined a neutrosophic random
variable XN as XN : Ω → R(I) and XN = X + I, where I is indeterminacy.

Theorem 2.1. Consider the neutrosophic random variable XN = X + I, where cu-
mulative distribution function of XN is FXN

(x) = P (XN ≤ x). Then, the following
statements hold:

(a) FXN
(x) = FX(x − I);

(b) fXN
(x) = fX(x − I),

where FXN
and fXN

are cumulative distribution function and probability density func-
tion of XN , respectively.

Theorem 2.2. Consider the neutrosophic random variable XN = X + I, expected
value can be found as follows:

E(XN) = E(X) + I.

Next, we define the notion of neutrosophic statistical convergence.

Definition 2.6. The sequence of neutrosophic numbers {xNn}n∈N is said to be neu-
trosophic statistically convergent to a neutrosophic number xN if for each ε > 0

lim
n→+∞

1
n

|{k ≤ n : |xNn − xN | ≥ ε}| = 0,

and this will be denoted by xNn

stN−−−→ xN or stN - lim
n→+∞

xNn = xN .
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3. Neutrosophic Statistical Convergence in Probability

Definition 3.1. Let {XNn}n∈N be a sequence of neutrosophic random variables where
each XNn is defined on the same event space S with respect to a given class of subsets
of S as the class Λ of events and a given probability function P : Λ → R. The
sequence {XNn}n∈N is said to be neutrosophic statistically convergent in probability
to a neutrosophic random variable X, where X : S → R, if for any ε, δ > 0

lim
n→+∞

1
n

|k ≤ n : P(|XNk
− XN | ≥ ε) ≥ δ}| = 0,(3.1)

or equivalently,

lim
n→+∞

1
n

|k ≤ n : 1 − P(|XNk
− XN | < ε) ≥ δ}| = 0.(3.2)

(3.1) and (3.2) can be written as

lim
n→+∞

1
n

|k ≤ n : P(|Xk + Ik − X − I| ≥ ε) ≥ δ}| = 0

and

lim
n→+∞

1
n

|k ≤ n : 1 − P(|Xk + Ik − X − I| < ε) ≥ δ}| = 0,

respectively. In any case, we will denote them as stN - lim
n→+∞

P(|XNn − XN | ≥ ε) = 0

or stN - lim
n→+∞

P(|XNn − XN | < ε) = 1 or XNn

stpN−−−−→ XN .

Theorem 3.1. If a sequence of constants xNn

stN−−−→ xN , then regarding a constant
as a random variable having one-point distribution at that point, we may also write
xNn

stpN−−−−→ xN .

Proof. Let ε be any positive real number. Then, d(U) = 1, where U = {n ∈ N :
|xNn −uN | < ε}. So, for any δ > 0, V = {n ∈ N : 1−P(|xNn −xN | < ε) ≥ δ} ⊂ N−U ,
which implies d(U) = 0. Therefore, this proves that xNn

stpN−−−−→ xN . □

The converse of the above theorem is not always true, as can be seen from the
following example.

Example 3.1. Let XNn be a neutrosophic random variable with neutrosophic probability
density

fn(x − I) =



1, if I < x < 1 + I,
0, otherwise, if n = 2m, where m ∈ N,

n(x−I)n−1

2n , where I < x < 2 + I;
0, otherwise, if n ̸= 2m, where m ∈ N.

Let 0 < ε, δ > 1. Then,
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P(|XNn − (2 + I)| ≥ ε) =



1, if n = 2m, where m ∈ N,

1 − P(|XNn − (2 + I)| < ε)
= 1 −

{
1 −

(
2−ε+I

2+I

)n}
=
(
1 − ε

2

)
if n ̸= 2m, where m ∈ N.

Then,

lim
n→+∞

1
n

|{k ≤ n : P(|XNk
− (2 + I)| ≥ ε) ≥ δ}|

≤ lim
n→+∞

1
n

|{(2 + I)0, (2 + I)1, . . .} ∪ A| = 0,

where A is a finite subset of N. Therefore,

lim
n→+∞

1
n

|{k ≤ n : P(|XNk
− (2 + I)| ≥ ε) ≥ δ}| = 0.

Theorem 3.2. The following properties are satisfied for neutrosophic statistical con-
vergence in probability:

(a) if XNn

stpN−−−−→ XN and XNn

stpN−−−−→ YN , then P(XN = YN) = 1;
(b) XNn

stpN−−−−→ XN if and only if XNn − XN

stpN−−−−→ 0;
(c) ifXNn

stpN−−−−→ XN , then cXNn

stpN−−−−→ cXN , where c ∈ R;
(d) if XNn

stpN−−−−→ XN and YNn

stpN−−−−→ YN , then XNn + YNn

stpN−−−−→ XN + YN ;
(e) if XNn

stpN−−−−→ XN and YNn

stpN−−−−→ YN , then XNn − YNn

stpN−−−−→ XN − YN ;
(f) if XNn

stpN−−−−→ x + I, then X2
Nn

stpN−−−−→ (x + I)2;
(g) if XNn

stpN−−−−→ x+I1 and YNn

stpN−−−−→ y+I2, then XNnYNn

stpN−−−−→ (x+I1)(y+I2),
where I1 ̸= I2;

(h) if XNn

stpN−−−−→ x + I1 and YNn

stpN−−−−→ y + I2, then XNnYNn

stpN−−−−→ [xy + I(1 +
x + y)], where I1 = I2 = I;

(i) if XNn

stpN−−−−→ x + I1 and YNn

stpN−−−−→ y + I2, then XNn

YNn

stpN−−−−→ x+I1
y+I2

provided
y ̸= −I2;

(j) if XNn

stpN−−−−→ XN and YNn

stpN−−−−→ YN , then XNnYNn

stpN−−−−→ XNYN ;
(k) if 0 ≤ XNn ≤ YNn and YNn

stpN−−−−→ 0, then XNn

stpN−−−−→ 0;
(l) if XNn

stpN−−−−→ XN , then for each ε, δ > 0, there exists k ∈ N such that
d({n ∈ N : P(|XNn − XNk

| ≥ ε) ≥ δ}) = 0.

This will be called the neutrosophic statisical Cauchy condition in probability.

Proof. Let δ and ε be two positive real numbers.
(a) Let k ∈ {n ∈ N : P(|XNn−XN | ≥ 1

2ε) < 1
2δ} ∩ {n ∈ N : P(|XNn−Y| ≥ 1

2ε) < 1
2δ}.

Then, P(|XN − YN | ≥ ε) ≤ P(|XNk
− XN | ≥ 1

2ε) +P(|XNk
− Y| ≥ 1

2ε) < δ. Therefore,
this implies P{XN = YN} = 1.
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(b), (c), (d) and (e) are followed directly from the definitions, hence their proofs
are omitted.

(f) If ZNn

stpN−−−−→ 0, then Z2
Nn

stpN−−−−→ 0 for {n ∈ N : P(|Z2
Nn

− 0| ≥ ε) ≥ δ}
= {n ∈ N : |ZNn − 0| ≥

√
ε) ≥ δ}. Next,

X2
Nn

= (XNn − (x + I))2 + 2(x + I)(XNn − (x + I)) + (x + I)2 stpN−−−−→ (x + I)2.

(g) We get XNnYNn = 1
4{(XNn + YNn)2 − (XNn − YNn)2}

stpN−−−−→ 1
4{(x + I1 + y +

I2)2 − (x + I1 − (y + I2))2 = (x + I1)(y + I2).
(h) We have XNnYNn = 1

4{(XNn + YNn)2 − (XNn − YNn)2}
stpN−−−−→ 1

4{(x + y + 2I)2 −
(x − y)2 = [xy + I(1 + x + y)].

(i) Let A and B be events of |YNn −(y+I2)| < |y+I2|,
∣∣∣ 1
YNn

− 1
y+I2

∣∣∣ ≥ ε, respectively.
Now, ∣∣∣∣∣ 1

YNn

− 1
y + I2

∣∣∣∣∣ = |YNn − (y + I2)|
|(y + I2)YNn

= |YNn − (y + I2)
|y + I2| · |(y + I2) + (YNn − (y + I2)|

≤ |YNn − (y + I2)
|y + I2| · |(|y + I2| − |YNn − (y + I2)|)|

.

If A and B occur simultaneously, then

|YNn − (y + I2)| ≥ ε|y + I2|2

1 + ε|y + I2|
,

follows from the above inequality. Next, let ε0 = ε|y+I2|2
1+ε|y+I2| and let C be the event

|YNn − (y + I2)| ≥ ε0. This implies AB ⊂ C and then, P(B) ≤ C + P(A), where the
bar represents the set of complement. This implies{

n ∈ N : P
(∣∣∣∣∣ 1

YNn

− 1
y + I2

∣∣∣∣∣ ≥ ε

)
≥ δ

}

⊂
{

n ∈ N : P(|YNn − (y + I2)| ≥ ε0) ≥ 1
2δ
}

∪
{

n ∈ N : P(YNn − (y + I2)| ≥ |y + I2|) ≥ 1
2δ
}

.

Therefore, 1
YNn

stpN−−−−→ 1
y+I2

provided y ̸= I2. Consequently, XNn

YNn

stpN−−−−→ x+I1
y+I2

provided

y ̸= I2. If I2 = I1 = I, it can be seen that XNn

YNn

stpN−−−−→ x+I
y+I

, provided y ̸= I.

(j) First at all, we should prove that if XNn

stpN−−−−→ XN and ZN is a neutrosophic
random variable, then XNnZN

stpN−−−−→ XNZN . Since ZN is a neutrosophic random
variable, given δ > 0, there exists an α > 0 such that P(|ZN | > α) ≤ 1

2δ. Then, for
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any ε > 0,
P(XNnZN − XNZN | ≥ ε) =P(|XNn − XN | · |ZN | ≥ ε, |ZN > α)

+ P(|XNn − XN | · |ZN | ≥ ε, |ZN ≤ α)

≤1
2δ + P

(
|XNn − XN | ≥ ε

α

)
.

This implies,

{n ∈ N : P(|XNnZN −XNZN | ≥ ε) ≥ δ}⊂
{

n ∈ N : P(|XNn − (x + I)| ≥ ε/α) ≥ 1
2δ
}

.

Thus, (XNn −XN)(YNn −YN)
stpN−−−−→ 0. Therefore, this implies XNnYNn

stpN−−−−→ XNYN .
(k) Proof is straightforward and hence omitted.
(l) Take k ∈ N such that P(|XNk

−XN | ≥ 1
2ε) < 1

2δ. Then, {n ∈ N : P(|XNn −XNk
| ≥

ε) ≥ δ} ⊂ {n ∈ N : P(|XNn − XN | ≥ 1
2ε) ≥ 1

2δ}. □

Theorem 3.3. Let {XNn}n∈N be a sequence of identically and independently dis-
tributed neutrosophic random variables and YNn = SNn −E(SNn )

n
, where SNn = XN1 +

· · · + XNn and E(·) is the expected value. Then, YNn

stpN−−−−→ 0 if and only if stN -
limn→+∞E

{
Y2

Nn

1+Y2
Nn

}
= 0.

Proof. Let stN - lim
n→+∞

E
{

Y2
Nn

1+YNn

}
= 0 and ε > 0. Then, |YNn| ≥ ε and |YNn|2 ≥ ε2.

Consequently, Y2
Nn

+ Y2
Nn

ε2 ≥ ε2 + Y2
Nn

ε2, hence
Y2

Nn

1 + Y2
Nn

ε2

1 + ε2

≥ 1.

Therefore, by neutrosophic Markov’s inequality,

P(|YNn| ≥ ε) ≤ P


Y2

Nn

1 + Y2
Nn

ε2

1 + ε2

 ≤ E


Y2

Nn

1 + Y2
Nn

ε2

1 + ε2

 .

This implies, YNn

stpN−−−−→ 0. Conversely, let us consider that XNi
are continuous and

YNn have the neutrosophic probability density function fNn(y) = fn(y − In). Then,

E

{
Y2

Nn

1 + Y2
Nn

}
=
∫ +∞

−∞

(y + In)2
n

1 + (y + In)2
n

fNn(y)dy

=
∫

|YNn |≥ε

(y + In)2
n

1 + (y + In)2
n

fNn(y)dy +
∫

|YNn |<ε

(y + In)2
n

1 + (y + In)2
n

fNn(y)dy

≤
∫

|YNn |≥ε
fNn(y)dy +

∫
|YNn |<ε

(y + In)2
nfNn(y)dy
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≤ P(|YNn| ≥ ε) + ε
∫

|YNn |<ε
fNn(y)dy

= P(|YNn| ≥ ε) + ε2P(|YNn| < ε)
≤ P(|YNn| ≥ ε) + ε2.

Since YNn

stpN−−−−→ 0 and ε2 is an arbitrarily small positive real number, we obtain
stN - lim

n→+∞
E
{

Y2
Nn

1+Y2
Nn

}
= 0. □

Remark 3.1. The result of Theorem 3.3 holds even if E(XNi
) does not exist. In this

case we simply define YNn = SNn

n
rather than SNn −E(SNn )

n
.

4. Neutrosophic Statistical Convergence in Mean of Order r

Definition 4.1. A sequence of neutrosophic random variables {XNn}n∈N is said to
be statistically convergent in the rth-mean, where r > 0, to a neutrosophic random
variable XN if for any δ > 0

d({n ∈ N : E(|XNn − XN |r) ≥ δ}) = 0
provided E(|XNn|r) exists for every n ∈ N and if E(|XNn|r) exists we write

stN - lim
n→+∞

E(|XNn − XN |r) = 0

or XNn

strmN−−−−−→ XN .

Remark 4.1. Neutrosophic statistical convergence in the mean of orders one and two
are called neutrosophic statistical convergence in mean and neutrosophic statistical
convergence in quadratic mean (or mean square), respectively.

Remark 4.2. A slightly stronger concept of neutrosophic statistical convergence in
probability was defined by neutrosophic statistical convergence in the mean of order
r (see Definition 4.1) and it is proved in Theorem 4.1.

Theorem 4.1. Let XNn

strmN−−−−−→ XN . Then, XNn

stpN−−−−→ XN , i.e., neutrosophic
statistical convergence in rth-mean implies neutrosophic statistical convergence in
probability.

Proof. The proof is easily carried using the neutrosophic Bienayme-Tchebycheff in-
equality, i.e., P(|XN − m|r| ≥ ε) ≤ E{|XN −m|r}

εr . □

The following example shows that in general the converse of Theorem 4.1 need not
be true.

Example 4.1. Let us consider the sequence of neutrosophic random variables {XNn}n∈N
given as follows XNn ∈ {−In, n − In} with P(Xn = −In) = 1 − 1

(n−In)r and P(Xn =
n − In) = 1

(n−In)r , where r > 0, n ∈ N. For any ε > 0, P(|XNn + In| ≥ ε) =
P(Xn = m − In) if 0 < ε ≤ n − In and P(|XNn + In| ≥ ε) = 0 if ε > n − In.
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Therefore, for any δ > 0, {n ∈ N : P(|XNn + In| ≥ ε) ≥ δ} is equal to a finite set.
Thus, stN - lim

n→+∞
P(|XNn + In| ≥ ε) = 0. But, E(|XNn|r = 1 for all n ∈ N, then

{n ∈ N : E(|XNn + In|r) ≥ 1
2}. This implies, {E(|XNn + In|r)}n∈N is not neutrosophic

statistically convergent to −In.

Proposition 4.1. Let {aNn}n∈N, {bNn}n∈N and {cNn}n∈N be three sequences of neu-
trosophic numbers such that d({n ∈ N : aNn ≤ bNn ≤ cNn}) = 1 and stN - lim

n→+∞
aNn =

stN - lim
n→+∞

cNn = x + yI. Then, stN - lim
n→+∞

bNn = x + yI, where x, y ∈ N.

Proof. The proof is straightforward and hence omitted. □

Proposition 4.2. Let {aNn}n∈N be a sequence of non-negative neutrosophic numbers
such that stN - lim

n→+∞
aNn = aN and a ≥ 0. Then, stN - lim

n→+∞
(aNn)q = aq

N , where
aN = a + bI and a, b ∈ N.

Proof. Let q = m/r ∈ Q+. If aN = 0, the result is obvious. Take a, b ≥ 0. It
is sufficient to show stN - lim

n→∞
aNn = aN implies stN - lim

n→∞
(aNn)1/r = a

1/r
N , where r ∈

N − {1}. Then, {n ∈ N : |aNn − aN | < 1
2aN} ⊂ n ∈ N : aNn > 1

2aN} = M (say, then
d(M) = 1). If n ∈ M, then

|aNn − aN | =
∣∣∣(aNn)1/r − a

1/r
N

∣∣∣ · ∣∣∣{(aNn)(r−1)/r + · · · + a
(r−1)/r
N

∣∣∣
≥ L

∣∣∣(aNn)1/r − a
1/r
N

∣∣∣ ,
where L = a

(r−1)/r
Nn

2
(

1− 1
r√2

) , i.e., M ⊂ {n ∈ N : 0 ≤
∣∣∣(aNn)1/r − a

1/r
N

∣∣∣ ≤ L−1|aNn − aN |}.

Therefore, by Proposition 4.1, stN - lim
n→+∞

r
√

aNn = r
√

aN . □

Theorem 4.2. Let p > 1, q > 1 such that 1
p

+ 1
q

= 1. Then,

E|XNYN | ≤ (E|XN |p)1/p(E|YN |q)1/q.

Proof. By Holder’s inequality, taking x = XN{E|XN |p}−1/p, y = YN{E|YN |q}−1/q, we
obtain

|XNYN | ≤p−1|XN |p{E|XN |p}1/p−1{E|YN |q}1/q + q−1|YN |p{E|YN |q}1/q−1{E|XN |p}1/p.

Taking the expectation on both sides leads to the result. □

Theorem 4.3. For p ≥ 1,

{E|XN + YN |p}1/p ≤ {E|XN |p}1/p + {E|YN |p}1/p.

Proof. For p > 1, we have

|XN + YN | ≤ |XN | · |XN + YN |p−1 + |YN | · |XN + YN |p−1.
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Choosing expectations and using Holder’s inequality with YN replaced by |XN +YN |p−1,
we get

E|XN + YN |p ≤{E|XN |p}1/p{E|XN + YN |(p−1)q}1/q

+ {E|YN |p}1/p{E|XN + YN |(p−1)q}1/q

=[{E|XN |p}1/p + {E|YN |p}1/p]{E|XN + YN |(p−1)q}1/q.

Excluding the trivial case in which E|XN + YN |p = 0, and noting that (p − 1)q = p,
we obtain, after dividing both sides of the last inequality by E|XN + YN |p}1/q,

{E|XN + YN |p}1/p ≤ {E|XN |p}1/p + {E|YN |p}1/p, p > 1.

The case p = 1 is trivial. □

Proposition 4.3. Let {XNn}n∈N be a sequence of neutrosophic random variables such
that XNn

st2mN−−−−−→ XN . Then, stN - lim
n→+∞

E(XNn) = E(XN) and stN - lim
n→+∞

E(X2
Nn

) =
E(X2

N)

Proof. The proof follows from Theorems 4.2 and 4.3. □

5. Neutrosophic Statistical Convergence in Distribution

Definition 5.1. Let {XNn}n∈N be a sequence of neutrosophic random variables, where
FNn(x) is the neutrosophic distribution function of XNn for n ∈ N. If there exists a
neutrosophic random variable XN whose distribution function is FN(x) = F (x − I)
such that stN - lim

n→+∞
FNn(x) = FN(x) = F (x − I) at every point of continuity x − I of

FN(x) = F (x − I), then {XNn}n∈N is said to be neutrosophic statistically convergent
in distribution to XN and we write XNn

stdN−−−−→ XN .

Proposition 5.1. Let {aNn}n∈N and {bNn}n∈N be two sequences of neutrosophic num-
bers such that aNn ≤ bNn for all n ∈ N. Then,

stN − limaNn ≤ st − limbNn

and
stN − limaNn ≤ st − limbNn

Proof. The proof is straightforward and hence omitted. □

Theorem 5.1. Let XNn

stpN−−−−→ XN . Then, XNn

stdN−−−−→ XN .

Proof. Let FNn(x) and FN(x) be the neutrosophic distribution functions of XNn and
XN , respectively. Now, for any two real numbers x and y with x < y, we get

(XN ≤ x) = (XNn ≤ y,XN ≤ x) + (XNn > y,XN ≤ x).
Since (XNn ≤ y,XN ≤ y) ⊂ (XNn ≤ y), we obtain

(XN ≤ x) ⊂ (XNn ≤ y) + (XNn > y,XN ≤ x).
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Hence,
P(XN ≤ x) ≤ P{(XNn ≤ y) + (XNn > y,XN ≤ x)}

≤ P(XNn ≤ y) + P(XNn > y,XN ≤ x)(5.1)

implies FNn(y) ≥ FN(x) − P(XNn > y,XN ≤ x).
Next, if XNn > y, XN ≤ x occur simultaneity, then XNn > y, −XN ≥ −x, thus

XNn − XN > y − x. This implies,
P(XNn > y,XN ≤ x) ≤ P(|XNn − XN | > y − x).

Now, from (5.1) and Proposition 5.1, stN -limFNn(y) ≥ FN(x). Similarly, if y < z,
then

(XNn ≤ y) = (XN ≤ z,XNn ≤ y) + (XN > z,XNn ≤ y).
Then, FNn(y) ≤ FN(z)+P(XN > z,XNn ≤ y) and stN - lim

n→+∞
P(XN > z,XNn ≤ y) = 0.

Finally, we have stN -limFNn(y) ≤ FN(z). Therefore, for x < y < z, we get
FN(x) ≤ stN − limFNn(y) ≤ stN − limFNn(y) ≤ FN(z).

If F is continuous at y, then
FN(y) = lim

x→y−
FN(x) ≤ stN − limFNn(y) ≤ stN − limFNn(y) ≤ lim

z→y+
FN(z) = FN(y).

Therefore, we have stN -limFNn(y) = stN -limFNn(y) = FN(y). This proves XNn

stdN−−−−→
XN . □

The converse of Theorem 5.1 need not be true as can be seen from the following
example.

Example 5.1. Let us consider neutrosophic random variables XN ,XN1 ,XN2 , . . . having
identical neutrosophic distribution. Let the spectrum of the two dimensional neutro-
sophic random variable (XNn ,XN) be (−In, −I), (−In, 1−I), (1−In, −I), (1−In, 1−I)
and

P(Xn = −In,X = −I) = 0 = P(Xn = 1 − In,X = 1 − I),

P(Xn = −In,X = 1 − I) = 1
2 = P(Xn = 1 − In,X = −I).

Therefore, stN - lim
n→+∞

FNn(x) = FN(x) for all x ∈ R. But, P(|XNn − XN | ≥ 1
2) =

P(|XNn − XN | = 1) = P(Xn = −In,X = 1 − I) +P(Xn = 1 − In,X = −I) = 1.
Therefore, stN - lim

n→+∞
P(|XNn − X| ≥ 1

2) ̸= 0. Then, stN - lim
n→+∞

P(|XNn − X| ≥ ε) ̸= 0.
Hence, the result follows.

Theorem 5.2. If {XNn}n∈N and {YNn}n∈N are sequences of neutrosophic random
variables on some probability space with XNn −YNn

stpN−−−−→ 0 and YNn

stdN−−−−→ XN , then
XNn

stdN−−−−→ XN .
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Proof. Let x and x+ε be points of continuity of the neutrosophic distribution function
FN corresponding to the neutrosophic random variable XN , where ε > 0. Thus,
P(XNn ≤ x) = P(YNn ≤ x + YNn − XNn) = P(YNn ≤ x + YNn − XNn ;YNn − XNn ≤ ε)
+P(YNn ≤ x + YNn − XNn ;YNn − XNn > ε) ≤ P(YNn ≤ x + ε) +P(YNn − XNn > ε).
Therefore, this implies stN -limFNn(x) ≤ F (x + ε − I) and analogously F (x − ε − I) ≤
stN -limFNn(x). Since ε is arbitrary, so F (x − I) = FN(x) = stN -lim FNn(x). □

Example 5.2. Let us consider the neutrosophic random variables XNn and YNn defined
on the standard probability space ([0, 1],B, λ), where λ is the Lebesgue measure.
Define

XNn(ω) = ω + 1
n

· I, YNn(ω) = ω, for ω ∈ [0, 1],

and let the limiting neutrosophic random variable be:

XN(ω) = ω.

Here, I represents an indeterminacy component in the neutrosophic framework, such
that 1

n
· I tends to 0 neutrosophically in probability as n → +∞. We observe that:

XNn − YNn = 1
n

· I
stpN−−→ 0,

and clearly,

YNn = ω
stdN−−→ XN = ω.

Therefore, by Theorem 5.2, it follows that

XNn

stdN−−→ XN .

Thus, we have verified the conditions and conclusion of Theorem 5.2 using a simple,
explicit construction of neutrosophic random variables.

Theorem 5.3. If {XNn}n∈N and {YNn}n∈N are sequences of neutrosophic random
variables on some probability space and α is a constant, then the following hold.

(a) If XNn

stdN−−−−→ XN and YNn

stpN−−−−→ α, then XNn + YNn

stdN−−−−→ XN + α.
(b) If XNn

stdN−−−−→ XN and YNn

stpN−−−−→ α, then XNnYNn

stdN−−−−→ αXN .
(c) If XNn

stdN−−−−→ XN and YNn

stpN−−−−→ α, then XNn

YNn

stdN−−−−→ XN

α
, where α ̸= 0.

(d) If XNn

stdN−−−−→ XN and ιNn

stN−−−→ 0, then ιNnXNn

stpN−−−−→ 0, where ιNn is a
sequence of positive constants.

(e) If XNn

stdN−−−−→ XN , then XNn + α
stdN−−−−→ XN + α.

(f) If XNn

stdN−−−−→ XN , then αXNn

stdN−−−−→ αXN , where α ̸= 0.
(g) If XNn

stdN−−−−→ α if and only if XNn

stpN−−−−→ α.
(h) If XNn

stdN−−−−→ XN and YNn

stpN−−−−→ 0, then XNnYNn

stpN−−−−→ 0.
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Proof. Proofs of (a)-(g) are followed easily and hence are omitted.
(h) For any δ > 0, take ±β in set of points of continuity of the neutrosophic

distribution function FN of XN such that FN(β) − FN(−β) ≥ 1 − β. Any ε > 0,
P(|XNnYNn| ≥ ε) = P(|XNnYNn| ≥ ε, |YNn| < ε/β) +P(|XNnYNn | ≥ ε, |YNn| ≥ ε/β)
≤ P(|XNn| > β) + P(|YNn| ≥ ε/β). Thus, stN -limP(|XNnYNn| ≥ ε) < δ. Therefore,
this implies XNnYNn

stpN−−−−→ 0. □

Example 5.3. Let (Ω,F,P) be the standard probability space ([0, 1],B, λ), and let I
represent the neutrosophic indeterminacy component. Define the sequences:

XNn(ω) = ω + 1
n

I, YNn(ω) = 1
n

+ 1
n2 I, for ω ∈ [0, 1].

Let α = 1 and the limiting neutrosophic random variable:

XN(ω) = ω.

(a) Since XNn

stdN−−→ XN and YNn

stpN−−→ 1, then

XNn + YNn

stdN−−→ XN + 1 = ω + 1.

(b) Using the same sequences, the product:

XNn · YNn

stdN−−→ ω · 1 = ω.

(c) For the quotient, since YNn

stpN−−→ 1 ̸= 0, we get
XNn

YNn

stdN−−→ ω

1 = ω.

(d) Let ιNn = 1
n

(a sequence of positive constants with ιNn

stN−−→ 0). Then,

ιNn · XNn

stpN−−→ 0.

(e) Adding a constant to the sequence

XNn + α
stdN−−→ XN + 1 = ω + 1.

(f) Multiplying the sequence by a constant α = 2

2 · XNn

stdN−−→ 2 · ω = 2ω.

(g) Let XNn = 1 + 1
n
I so that

XNn

stdN−−→ 1 if and only if XNn

stpN−−→ 1.

(h) Since XNn

stdN−−→ ω and YNn

stpN−−→ 0, then

XNn · YNn

stpN−−→ 0.
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6. Conclusion

In this paper, we have defined the notion of statistical convergence of a sequence
of neutrosophic random variables. Also, we proved and showed some of their basic
properties and relationships. For further results, we suggest studding λ-statistical
convergence, f -statistical convergence of order α and many others based on sequences
of neutrosophic random variables and to find some relations or equivalences between
the notions which were defined in this paper. Additionally, we can imply that the
results presented in this paper, are more general than the classical theory presented by
[1,2]. Indeed, this supports that Smarandache said [3,4] that statistical Neutrosophic
theory is more general than classical statistical theory.
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