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EXISTENCE AND STABILITY RESULTS OF A NONLINEAR
FRACTIONAL INTEGRO-DIFFERENTIAL EQUATION WITH

INTEGRAL BOUNDARY CONDITIONS

NAIMI ABDELLOUAHAB1, BRAHIM TELLAB1, AND KHALED ZENNIR2

Abstract. This paper deals with the stability results for solution of a fractional
integro-differential problem with integral conditions. Using the Krasnoselskii’s,
Banach fixed point theorems, we proof the existence and uniqueness results. Based
on the results obtained, conditions are provided that ensure the generalized Ulam
stability of the original system. The results are illustrated by an example.

1. introduction and Formulation of the problem

So far, similar to the simplest case-solution of a system of linear ordinary differential
equations, the fractional derivative is not explicitly presented, and therefore it makes
sense to consider for t ∈ [0, 1], 0 < α, β < 1, the problem for the system

CDα+β
0+ u(t) = h(t, u(t)) + Iα0+f(t, u(t)) +

∫ t
0 K(t, s, u(s))ds,

u(0) = b
η∫
0
u(s)ds, 0 < η < 1,(1.1)

where b is a real constant, 0 < α+β ≤ 1, CDα+β
0+ is the Caputo fractional derivative of

order α + β, Iα0+ denotes the left sided Riemann-Liouville fractional integral of order
α and f, h,K defined as

f : [0, 1]×X → X,
h : [0, 1]×X → X,
K : [0, 1]× [0, 1]×X → X,

(1.2)
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are an appropriate functions satisfying some conditions which will be stated later. X
here is a Banach space. It is also interesting to study solution to fractional integro-
differential problem with integral conditions, which will allow a generalized stability.
The fractional differential equation

Dα
∗ x(t) = f(t, x(t)), α ∈ R, 0 < α < 1,(1.3)

was considered in [4, 5, 8] and results related to the existence and uniqueness for
solution, with some analytical properties and useful inequalities, were obtained. Next,
it is shown in [9] that, in a real n-dimensional Euclidean space, the local and global
solutions exist for the following Cauchy problem{

CDα
0+u(t) = f(t, u(t)) +

∫ t
t0
K(t, s, u(s))ds,

u(0) = u0,
(1.4)

where 0 < α ≤ 1, f ∈ C
(
[0, 1]×Rn,Rn

)
, K ∈ C

(
[0, 1]× [0, 1]×Rn,Rn

)
and CDα

0+ is
the Caputo fractional operator.

A class of abstract delayed fractional neutral integro-differential equations was
introduced in [11]{

Dα
t N(xt) = AN(xt) +

∫ t
0 B(t− s)N(xs)ds+ f(t, xρ(t,xt)),

x0 = φ, x′(0) = 0, α ∈ (1, 2),(1.5)

Using the Leray-Schauder alternative fixed point theorem, the existence results were
obtained (for more details, please see [10]). Recently, much attention has been paid
to the study of differential equations with fractional derivatives [2, 3], mainly to the
questions of the existence and stability for a fractional order differential equation with
non-conjugate Riemann-Stieltjes Integro-multipoint boundary conditions.

Note that in [3], the authors introduced and studied a related problem. Precisely
the authors studied the existence for the following problem

CDp
0+{CDq

0+x(t) + f(t, x(t))} = g(t, x(t)), t ∈ [0, 1],
x(0) = ∑j=m

j=1 βjx(σj),
bx(1) = a

∫ 1
0 x(s)dH(s) +∑i=n

i=1 αi
∫ ηi
ξi
x(s)ds,

(1.6)

where

0 < σj < ξi < ηi < 1, 0 < p, q < 1, βj, αi ∈ R, i = 1, 2, . . . n, j = 1, 2, . . . ,m.
CDp

0+ is the Caputo fractional derivative of order p, f, g, are given continuous functions.
By using a classical tools of fixed point theory, the existence and uniqueness results
were obtained. On an arbitrary domain, in [2], the authors study the existence
and stability results for a fractional order differential equation with non-conjugate
Riemann-Stieltjes integro-multipoint boundary conditions by using a new tools on
function analysis.

Here we focused our study on the question of existence and uniqueness in section
3. Section 4 is devoted to show a generalized stability. Note that this representation
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also allows us to generalize the results obtained recently in the literature. The paper
is ended by an example illustrating our results.

2. Notations and Notions Preliminaries

In the present section, we present some notations, definitions and auxiliary lemmas
concerning fractional calculus and fixed point theorems. Let J = [0, 1], X is Banach
space equipped with the norm ‖ · ‖ and C(J,X), Cn(J,X) denotes respectively the
Banach spaces of all continuous bounded functions and n times continuously differen-
tiable functions on J. In addition, we define the norm ‖g‖ = max{|g(t)| : t ∈ J} for
any continuous function g : J → X.

Definition 2.1 ([1, 6]). Let α > 0 and g : J → X. The left sided Riemann-Liouville
fractional integral of order α of a function g is defined by

Iα0+g(t) = 1
Γ(α)

∫ t

0
(t− s)α−1g(s)ds, t ∈ J.

Definition 2.2 ([1,7]). Let n− 1 < α < n, n ∈ N?, and g ∈ Cn(J,X). The left sided
Caputo fractional derivative of order α of a function g is given by

CDα
0+g(t) = 1

Γ(n− α)

∫ t

0
(t− s)n−α−1g(n)(s)ds = In−α0+

dn

dtn
g(t), t ∈ J,

where n = [α] + 1 and [α] denotes the integer part of the real number α.

Lemma 2.1 ([1, 7]). For real numbers α, β > 0 and appropriate function g, we have
for all t ∈ J :

1) Iα0+I
β
0+g(t) = Iβ0+Iα0+g(t) = Iα+β

0+ g(t);
2) Iα0+

CDα
0+g(t) = g(t)− g(0), 0 < α < 1;

3) CDα
0+Iα0+g(t) = g(t).

Lemma 2.2 (Banach fixed point theorem, [12]). Let U be a non-empty complete
metric space and T : U → U is contraction mapping. Then, there exists a unique
point u ∈ U such that T (u) = u.

Lemma 2.3 (Krasnoselskii fixed point theorem, [12]). Let E be bounded, closed and
convex subset in a Banach space X. If T1, T2 : E → E are two applications satisfying
the following conditions:

1) T1x+ T2y ∈ E for every x, y ∈ E;
2) T1 is a contraction;
3) T2 is compact and continuous.

Then there exists z ∈ E such that T1z + T2z = z.

Before presenting our main results, we need the following auxiliary lemma.

Lemma 2.4. Let 0 < α + β < 1 and b 6= 1
η
. Assume that h, f and K are three

continuous functions. If u ∈ C(J,X), then u is solution of (1.1) if and only if u
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satisfies the integral equation

u(t) =
∫ t

0

(t− s)α+β−1

Γ(α + β)

[
h(s, u(s)) +

∫ s

0
K(s, τ, u(τ))dτ

+
∫ s

0

(s− τ)α−1

Γ(α) f(τ, u(τ))dτ
]
ds

+ b

1− bη

∫ η

0

(η − τ)α+β

Γ(α + β + 1)

[
h(τ, u(τ)) +

∫ τ

0
K(τ, σ, u(σ))dσ

+
∫ τ

0

(τ − σ)α−1

Γ(α) f(σ, u(σ))dσ
]
dτ.(2.1)

Proof. Let u ∈ C(J,X) be a solution of (1.1). Firstly, we show that u is solution of
integral equation (2.1). By Lemma 2.1, we obtain

Iα+β
0+

CDα+β
0+ u(t) = u(t)− u(0).(2.2)

In addition, from equation in (1.1) and Definition 2.1, and use the assumption 1) of
Lemma 2.1 we have

Iα+β
0+

CDα+β
0+ u(t) =Iα+β

0+

(
h(t, u(t)) +

∫ t

0
K(t, s, u(s))ds+ Iα0+f(t, u(t))

)
ds

=
∫ t

0

(t− s)α+β−1

Γ(α + β)

[
h(s, u(s)) +

∫ s

0
K(s, τ, u(τ))dτ

+
∫ s

0

(s− τ)α−1

Γ(α) f(τ, u(τ))dτ
]
ds.(2.3)

By substituting (2.3) in (2.2) with nonlocal condition in problem (2.1), we get the
following integral equation:

u(t) =
∫ t

0

(t− s)α+β−1

Γ(α + β)

[
h(s, u(s)) +

∫ s

0
K(s, τ, u(τ))dτ

+
∫ s

0

(s− τ)α−1

Γ(α) f(τ, u(τ))dτ
]
ds+ u(0).(2.4)

From integral boundary condition of our problem with using Fubini’s thorem and
after some computations, we get:

u(0) =b
∫ η

0
u(s)ds

=b
∫ η

0

[ ∫ s

0

(s− τ)α+β−1

Γ(α + β)

(
h(τ, u(τ)) +

∫ τ

0
K(τ, σ, u(σ))dσ

+
∫ τ

0

(τ − σ)α−1

Γ(α) f(σ, u(σ))dσ
)
dτ

]
ds+ bηu(0)

=b
∫ η

0

∫ s

0

(s− τ)α+β−1

Γ(α + β) h(τ, u(τ))dτds
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+ b
∫ η

0

∫ s

0

(s− τ)α+β−1

Γ(α + β)

∫ τ

0
K(τ, σ, u(σ))dσdτds

+ b
∫ η

0

∫ s

0

(s− τ)α+β−1

Γ(α + β)

∫ τ

0

(τ − σ)α−1

Γ(α) f(σ, u(σ))dσdτds+ bηu(0)

=b
∫ η

0

∫ η

τ

(s− τ)α+β−1

Γ(α + β) dsh(τ, u(τ))dτ

+ b
∫ η

0

∫ η

τ

(s− τ)α+β−1

Γ(α + β) ds
∫ τ

0
K(τ, σ, u(σ))dσdτ

+ b
∫ η

0

∫ η

τ

(s− τ)α+β−1

Γ(α + β) ds
∫ τ

0

(τ − σ)α−1

Γ(α) f(σ, u(σ))dσdτ + bηu(0),

that is

u(0) = b

1− bη

∫ η

0

(η − τ)α+β

Γ(α + β + 1)

[
h(τ, u(τ)) +

∫ τ

0
K(τ, σ, u(σ))dσ

+
∫ τ

0

(τ − σ)α−1

Γ(α) f(σ, u(σ))dσ
]
dτ.(2.5)

Finally, by substituting (2.5) in (2.4) we find (2.1).
Conversely, from Lemma 2.1 and by applying the operator CDα+β

0+ on both sides of
(2.1), we find

CDα+β
0+ u(t) =CDα+β

0+ Iα+β
0+

[
h(t, u(t)) +

∫ t

0
K(t, s, u(s))ds+ Iα0+f(t, u(t))

]
+CDα+β

0+ u(0).

=h(t, u(t)) + Iα0+f(t, u(t)) +
∫ t

0
K(t, s, u(s))ds,(2.6)

this means that u satisfies the equation in problem (1.1). Furthermore, by substituting
t by 0 in integral equation (2.1), we have clearly that the integral boundary condition
in (1.1) holds. Therefore, u is solution of problem (1.1), which completes the proof. �

3. Existence Results

In order to prove the existence and uniqueness of solution for the problem (1.1) in
C([0, 1], X), we use two fixed point theorem.

Firstly, we transform the system (1.1) into fixed point problem as u = Tu, where
T : C(J,X)→ C(J,X) is an operator defined by following

Tu(t) =
∫ t

0

(t− s)α+β−1

Γ(α + β)

[
h(s, u(s)) +

∫ s

0
K(s, τ, u(τ))dτ

+
∫ s

0

(s− τ)α−1

Γ(α) f(τ, u(τ))dτ
]
ds

+ b

1− bη

∫ η

0

(η − τ)α+β

Γ(α + β + 1)

[
h(τ, u(τ)) +

∫ τ

0
K(τ, σ, u(σ))dσ
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+
∫ τ

0

(τ − σ)α−1

Γ(α) f(σ, u(σ))dσ
]
dτ.(3.1)

In order to simplify the computations, we offer the following notations

∆ =‖µ1‖L∞ + ‖µ3‖L∞

Γ(α + β + 1) + ‖µ2‖L∞β(α + 1, α + β)
Γ(α + 1)Γ(α + β)

+ |b|‖µ1‖L∞ηα+β+1 + |b|‖µ3‖L∞ηα+β+1

|1− bη|Γ(α + β + 2)

+ |b|‖µ2‖L∞η2α+β+1β(α + 1, α + β + 1)
|1− bη|Γ(α + 1)Γ(α + β + 1)(3.2)

and

∆1 = |b|
|1− bη|

[
2ηα+β+1

Γ(α + β + 2) + η2α+β+1β(α + 1, α + β + 1)
Γ(α + 1)Γ(α + β + 1)

]
.(3.3)

3.1. Existence result by Krasnoselskii’s fixed point.

Theorem 3.1. Let h, f : [0, 1] × X → X and K : [0, 1] × [0, 1] × X −→ X be
continuous functions satisfying the following.

(H1) The inequalities

‖h(t, u(t))− h(t, v(t))‖ ≤L1‖u(t)− v(t)‖, t ∈ [0, 1], u, v ∈ X,
‖f(t, u(t))− f(t, v(t))‖ ≤L2‖u(t)− v(t)‖, t ∈ [0, 1], u, v ∈ X,

‖K(t, s, u(s))−K(t, s, v(s))‖ ≤L3‖u(s)− v(s)‖, (t, s) ∈ G, u, v ∈ X,

hold, where L1, L2, L3 ≥ 0, with L = max{L1, L2, L3} and G = {(t, s) : 0 ≤ s ≤ t ≤
1}.

(H2) There exist three functions µ1, µ2, µ3 ∈ L∞([0, 1],R+) such that

‖h(t, u(t))‖ ≤µ1(t)‖u(t)‖, t ∈ [0, 1], u ∈ X,
‖f(t, u(t))‖ ≤µ2(t)‖u(t)‖, t ∈ [0, 1], u ∈ X,

‖K(t, s, u(s))‖ ≤µ3(t)‖u(s)‖, (t, s) ∈ G, u ∈ X.

If ∆ ≤ 1 and L∆1 ≤ 1, then the problem (1.1) has at least one solution on [0, 1].

Proof. For any function u ∈ C(J,X) we define the norm

‖u‖1 = max{e−t‖u(t)‖ : t ∈ [0, 1]},

and consider the closed ball

Br = {u ∈ C(J,X) : ‖u‖1 ≤ r}.

Next, let us define the operators T1, T2 on Br as follows

T1u(t) =
∫ t

0

(t− s)α+β−1

Γ(α + β)

[
h(s, u(s)) +

∫ s

0
K(s, τ, u(τ))dτ
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+
∫ s

0

(s− τ)α−1

Γ(α) f(τ, u(τ))dτ
]
ds

(3.4)

and

T2u(t) = b

1− bη

∫ η

0

(η − τ)α+β

Γ(α + β + 1)

[
h(τ, u(τ)) +

∫ τ

0
K(τ, σ, u(σ))dσ

+
∫ τ

0

(τ − σ)α−1

Γ(α) f(σ, u(σ))dσ
]
dτ.(3.5)

For u, v ∈ Br, t ∈ [0, 1] and by the assumption (H2), we find

‖T1u(t) + T2v(t)‖ ≤
∫ t

0

(t− s)α+β−1

Γ(α + β)

[
‖h(s, u(s))‖+

∫ s

0
‖K(s, τ, u(τ))‖dτ

+
∫ s

0

(s− τ)α−1

Γ(α) ‖f(τ, u(τ))‖dτ
]
ds

+ |b|
|1− bη|

∫ η

0

(η − τ)α+β

Γ(α + β + 1)

[
‖h(τ, v(τ))‖+

∫ τ

0
‖K(τ, σ, v(σ))‖dσ

+
∫ τ

0

(τ − σ)α−1

Γ(α) ‖f(σ, v(σ))‖dσ
]
dτ

≤
∫ t

0

(t− s)α+β−1

Γ(α + β)

[
µ1(s)‖u(s)‖+

∫ s

0
µ3(s)‖u(τ)‖dτ

+
∫ s

0

(s− τ)α−1

Γ(α) µ2(τ)‖u(τ)‖dτ
]
ds

+ |b|
|1− bη|

∫ η

0

(η − τ)α+β

Γ(α + β + 1)

[
µ1(τ)‖v(τ)‖+

∫ τ

0
µ3(τ)‖v(σ)‖dσ

+
∫ τ

0

(τ − σ)α−1

Γ(α) µ2(σ)‖v(σ)‖dσ
]
dτ

≤
∫ t

0

(t− s)α+β−1

Γ(α + β)

[
‖µ1‖L∞‖u‖1e

s + ‖µ3‖L∞‖u‖1(es − 1)

+ ‖µ2‖L∞‖u‖1

∫ s

0

(s− τ)α−1

Γ(α) eτdτ

]
ds

+ |b|
|1− bη|

∫ η

0

(η − τ)α+β

Γ(α + β + 1)

[
‖µ1‖L∞‖v‖1e

τ + ‖µ3‖L∞‖v‖1(eτ − 1)

+ ‖µ2‖L∞‖v‖1

∫ τ

0

(τ − σ)α−1

Γ(α) eσdσ

]
dτ.
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Therefore,

‖T1u+ T2v‖1 ≤
∫ t

0

(t− s)α+β−1

Γ(α + β)

[
‖µ1‖L∞‖u‖1

es

et
+ ‖µ3‖L∞‖u‖1

(es − 1)
et

+ ‖µ2‖L∞‖u‖1

∫ s

0

(s− τ)α−1

Γ(α)
eτ

et
dτ

]
ds

+ |b|
|1− bη|

∫ η

0

(η − τ)α+β

Γ(α + β + 1)

[
‖µ1‖L∞‖v‖1

eτ

et
+ ‖µ3‖L∞‖v‖1

(eτ − 1)
et

+ ‖µ2‖L∞‖v‖1

∫ τ

0

(τ − σ)α−1

Γ(α)
eσ

et
dσ

]
dτ.

≤r
[
‖µ1‖L∞ + ‖µ3‖L∞

Γ(α + β + 1) + ‖µ2‖L∞

Γ(α + 1)Γ(α + β)

∫ 1

0
(1− s)α+β+1sαds

+ |b|‖µ1‖L∞ηα+β+1 + |b|‖µ3‖L∞ηα+β+1

|1− bη|Γ(α + β + 1)

+ |b|‖µ2‖L∞

|1− bη|Γ(α + 1)Γ(α + β + 1)

∫ η

0
(η − τ)α+βταdτ

]

=r
[
‖µ1‖L∞ + ‖µ3‖L∞

Γ(α + β + 1) + ‖µ2‖L∞β(α + 1, α + β)
Γ(α + 1)Γ(α + β)

+ |b|
|1− bη|

(
‖µ1‖L∞ηα+β+1 + ‖µ3‖L∞ηα+β+1

Γ(α + β + 2)

+ ‖µ2‖L∞η2α+β+1β(α + 1, α + β + 1)
Γ(α + 1)Γ(α + β + 1)

)]
=r∆ ≤ r.(3.6)

This implies that (T1u+ T2v) ∈ Br. Here we used the computations∫ 1

0
(1− s)α+βsαds =β(α + 1, α + β),∫ η

0
(η − τ)α+βταds =η2α+β+1β(α + 1, α + β + 1),

and the estimations: es

et
≤ 1, eτ

et
≤ 1, eσ

et
≤ 1. Now, we establish that T2 is a contraction

mapping. For u, v ∈ X and t ∈ [0, 1], we have

‖T2u(t)− T2v(t)‖ ≤ |b|
|1− bη|

∫ η

0

(η − τ)α+β

Γ(α + β + 1)

[
‖h(τ, u(τ))− h(τ, v(τ))‖

+
∫ τ

0
‖K(τ, σ, u(σ))−K(τ, σ, v(σ))‖dσ

+
∫ τ

0

(τ − σ)α−1

Γ(α) ‖f(σ, u(σ))− f(σ, v(σ))‖dσ
]
dτ
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≤ |b|
|1− bη|

∫ η

0

(η − τ)α+β

Γ(α + β + 1)

[
L1‖u− v‖1e

τ +
∫ τ

0
L3‖u− v‖1e

σdσ

+
∫ τ

0

(τ − σ)α−1

Γ(α) L2‖u− v‖1e
σdσ

]
dτ

≤ |b|
|1− bη|

∫ η

0

(η − τ)α+β

Γ(α + β + 1)

[
L‖u− v‖1e

τ + L‖u− v‖1(eτ − 1)

+
∫ τ

0

(τ − σ)α−1

Γ(α) L‖u− v‖1e
σdσ

]
dτ.

Thus,

‖T2u− T2v‖1 ≤
|b|

|1− bη|

∫ η

0

(η − τ)α+β

Γ(α + β + 1)

[
L‖u− v‖1

eτ

et
+ L‖u− v‖1

(eτ − 1)
et

+
∫ τ

0

(τ − σ)α−1

Γ(α) L‖u− v‖1
eσ

et
dσ

]
dτ

≤ |b|L
|1− bη|

[
2ηα+β+1

Γ(α + β + 2) + η2α+β+1β(α + 1, α + β + 1)
Γ(α + 1)Γ(α + β + 1)

]
‖u− v‖1.

Then since L∆1 ≤ 1, T2 is a contraction mapping. The continuity of the functions
h, f and K implies that the operator T1 is continuous. Also, T1Br ⊂ Br, for each
u ∈ Br,, i.e., T1 is uniformly bounded on Br as

‖(T1u)(t)‖ ≤
∫ t

0

(t− s)α+β−1

Γ(α + β)

[
‖h(s, u(s))‖+

∫ s

0
‖K(s, τ, u(τ))‖dτ

+
∫ s

0

(s− τ)α−1

Γ(α) ‖f(τ, u(τ))‖dτ
]
ds,

which implies that

‖T1u‖1 ≤
∫ t

0

(t− s)α+β−1

Γ(α + β)

[
‖µ1‖L∞‖u‖1

es

et
+ ‖µ3‖L∞‖u‖1

(es − 1)
et

+ ‖µ2‖L∞‖u‖1

∫ s

0

(s− τ)α−1

Γ(α)
eτ

et
dτ

]
ds

≤r
[
‖µ1‖L∞ + ‖µ3‖L∞

Γ(α + β + 1) + ‖µ2‖L∞β(α + 1, α + β)
Γ(α + 1)Γ(α + β)

]
≤r∆.
≤r.(3.7)

Finally, we will show that (T1Br) is equi-continuous. For this end, we define
h = sup

(s,u)∈[0,1]×Br
‖h(s, u)‖,

f = sup
(s,u)∈[0,1]×Br

‖f(s, u)‖,
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K = sup
(s,τ,u)∈G×Br

∫ s

0
‖K(t, s, u)‖dτ.

Let for any u ∈ Br and for each t1, t2 ∈ [0, 1] with t1 ≤ t2, we have:

‖(T1u)(t2)− (T1u)(t1)‖

≤ 1
Γ(α + β)

∫ t2

t1
(t2 − s)α+β−1

[
‖h(s, u(s))‖+

∫ s

0
‖K(s, τ, u(τ))‖dτ

+ 1
Γ(α)

∫ s

0
(s− τ)α−1‖f(τ, u(τ))‖dτ

]
ds

+ 1
Γ(α)

∫ t1

0

[
(t1 − s)α+β−1 − (t2 − s)α+β−1

][
‖h(s, u(s))‖

+
∫ s

0
‖K(s, τ, u(τ))‖dτ + 1

Γ(α)

∫ s

0
(s− τ)α−1‖f(τ, u(τ))‖dτ

]
ds

≤ 1
Γ(α + β)

∫ t2

t1
(t2 − s)α+β−1

[
h+K + f

Γ(α)

∫ s

0
(s− τ)α−1dτ

]
ds

+ 1
Γ(α + β)

∫ t1

0

[
(t1 − s)α+β−1 − (t2 − s)α+β−1

][
h+K + f

Γ(α)

∫ s

0
(s− τ)α−1dτ

]
ds

≤ 1
Γ(α + β)

∫ t2

t1
(t2 − s)α+β−1

[
h+K + f

Γ(α + 1)

]
ds

+ 1
Γ(α + β)

∫ t1

0

[
(t1 − s)α+β−1 − (t2 − s)α+β−1

][
h+K + f

Γ(α + 1)

]
ds

= 1
Γ(α + β + 1)

[
h+K + f

Γ(α + 1)

] [
2(t2 − t1)α+β + tα+β

1 − tα+β
2

]
.

The RHS of the last inequality is independent of u and tends to zero when |t2−t1| → 0,
this means that |T1u(t2)−T1u(t1)| → 0, which implies that (T1Br) is equi-continuous,
then T1 is relatively compact on Br. Hence by Arzela-Ascoli theorem, T1 is compact
on Br. Now, all hypothesis of Theorem 3.2 hold, therefore the operator T1 + T2 has a
fixed point on Br. So the problem (1.1) has at least one solution on [0, 1]. This proves
the theorem. �

3.2. Existence and uniqueness result.

Theorem 3.2. Assume that (H1) holds. If L∆ < 1, then the BVP (1.1) has a unique
solution on [0, 1].

Proof. Define M = max{M1,M2,M3}, where M1,M2,M3 are positive numbers such
that:

M1 = sup
t∈[0,1]

‖h(t, 0)‖, M2 = sup
t∈[0,1]

‖f(t, 0)‖, M3 = sup
(t,s)∈G

‖K(t, s, 0)‖.
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We fix r ≥ M∆
1−L∆ and we consider

Dr = {x ∈ C([0, 1], X) : ‖u‖ ≤ r}.
Then, in view of the assumption (H1), we have
‖h(t, u(t))‖ =‖h(t, u(t))− h(t, 0) + h(t, 0)‖ ≤ ‖h(t, u(t))− h(t, 0)‖+ ‖h(t, 0)‖

≤L1‖u‖+M1,

‖f(t, u(t))‖ ≤L2‖u‖+M2,

and
‖K(t, s, u(s))‖ ≤ L3‖u‖+M3.

First step. We show that TDr ⊂ Dr. For each t ∈ [0, 1] and for any u ∈ Dr

‖(Tu)(t)‖ ≤
∫ t

0

(t− s)α+β−1

Γ(α + β)

[
‖h(s, u(s))‖+

∫ s

0
‖K(s, τ, u(τ))‖dτ

+
∫ s

0

(s− τ)α−1

Γ(α) ‖f(τ, u(τ))‖dτ
]
ds

+ |b|
|1− bη|

∫ η

0

(η − τ)α+β

Γ(α + β + 1)

[
‖h(τ, v(τ))‖+

∫ τ

0
‖K(τ, σ, v(σ))‖dσ

+
∫ τ

0

(τ − σ)α−1

Γ(α) ‖f(σ, v(σ))‖dσ
]
dτ

≤(Lr +M)∆
≤r.

Hence, TDr ⊂ Dr.
Second step. We shall show that T : Dr → Dr is a contraction. From the

assumption (H1) we have for any u, v ∈ Dr and for each t ∈ [0, 1]
‖(Tu)(t)− (Tv)(t)‖

≤
∫ t

0

(t− s)α+β−1

Γ(α + β)

[
‖h(s, u(s))− h(s, v(s))‖(3.8)

+
∫ s

0
‖K(s, τ, u(τ))−K(s, τ, v(τ))‖dτ

+
∫ s

0

(s− τ)α−1

Γ(α) ‖f(τ, u(τ))− f(τ, v(τ))‖dτ
]
ds

+ |b|
|1− bη|

∫ η

0

(η − τ)α+β

Γ(α + β + 1)

[
‖h(τ, u(τ))− h(τ, v(τ))‖(3.9)

+
∫ τ

0
‖K(τ, σ, u(σ))−K(τ, σ, v(σ))‖dσ

+
∫ τ

0

(τ − σ)α−1

Γ(α) ‖f(σ, u(σ))− f(σ, v(σ))‖dσ
]
dτ
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≤L∆‖u− v‖.
Since L∆ < 1, it follows that T is a contraction. All assumptions of Lemma 2.2 are
satisfied, then there exists u ∈ C(J,X) such that Tu = u, which is the unique solution
of the problem (1.1) in C(J,X). �

4. Generalized Ulam Stabilities

The aim is to discus the Ulam stability for (1.1), by using the integration

v(t) =
∫ t

0

(t− s)α+β−1

Γ(α + β)

[
h(s, v(s)) +

∫ s

0
K(s, τ, v(τ))dτ

+
∫ s

0

(s− τ)α−1

Γ(α) f(τ, v(τ))dτ
]
ds

+ b

1− bη

∫ η

0

(η − τ)α+β

Γ(α + β + 1)

[
h(τ, v(τ)) +

∫ τ

0
K(τ, σ, v(σ))dσ

+
∫ τ

0

(τ − σ)α−1

Γ(α) f(σ, v(σ))dσ
]
dτ.(4.1)

Here v ∈ C([0, 1], X) possess a fractional derivative of order α+β, where 0 < α+β < 1
and

f, h : [0, 1]×X → X,

and
K : [0, 1]× [0, 1]×X → X,

are continuous functions. Then we define the nonlinear continuous operator
P : C([0, 1], X)→ C([0, 1], X),

as follows

Pv(t) = CDα+βv(t)− Iα0+f(t, v(t))− h(t, v(t))−
∫ t

0
K(t, s, v(s))ds.

Definition 4.1. For each ε > 0 and for each solution v of (1.1), such that
(4.2) ‖Pv‖ ≤ ε,

the problem (1.1), is said to be Ulam-Hyers stable if we can find a positive real number
ν and a solution u ∈ C([0, 1], X) of (1.1), satisfying the inequality
(4.3) ‖u− v‖ ≤ νε∗,

where ε∗ is a positive real number depending on ε.

Definition 4.2. Let m ∈ C(R+,R+) such that for each solution v of (1.1), we can
find a solution u ∈ C([0, 1], X) of (1.1) such that
(4.4) ‖u(t)− v(t)‖ ≤ m(ε), t ∈ [0, 1].
Then the problem (1.1), is said to be generalized Ulam-Hyers stable.
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Definition 4.3. For each ε > 0 and for each solution v of (1.1), the problem (1.1) is
called Ulam-Hyers-Rassias stable with respect to θ ∈ C([0, 1],R+) if
(4.5) ‖Pv(t)‖ ≤ εθ(t), t ∈ [0, 1],
and there exist a real number ν > 0 and a solution v ∈ C([0, 1], X) of (1.1) such that
(4.6) ‖u(t)− v(t‖ ≤ νε∗θ(t), t ∈ [0, 1],
where ε∗ is a positive real number depending on ε.

Theorem 4.1. Under assumption (H1) in Theorem 3.1, with L∆ < 1. The problem
(1.1) is both Ulam-Hyers and generalized Ulam-Hyers stable.

Proof. Let u ∈ C([0, 1], X) be a solution of (1.1), satisfying (2.1) in the sense of
Theorem 3.2. Let v be any solution satisfying (4.2). Lemma 2.4 implies the equivalence
between the operators P and T − Id (where Id is the identity operator) for every
solution v ∈ C([0, 1], X) of (1.1) satisfying L∆ < 1. Therefore, we deduce by the
fixed-point property of the operator T that:
‖v(t)− u(t‖ = ‖v(t)− Tv(t) + Tv(t)− u(t)‖ = ‖v(t)− Tv(t) + Tv(t)− Tu(t)‖

≤ ‖Tv(t)− Tu(t)‖+ |Tv(t)− v(t)‖ ≤ L∆‖u− v‖+ ε,

because L∆ < 1 and ε > 0, we find

‖u− v‖ ≤ ε

1− L∆ .

Fixing ε∗ = ε
1−L∆ and ν = 1, we obtain the Ulam-Hyers stability condition. In

addition, the generalized Ulam-Hyers stability follows by taking m(ε) = ε
1−L∆ . �

Theorem 4.2. Assume that (H1) holds with L < ∆−1, and there exists a function
θ ∈ C([0, 1],R+) satisfying the condition (4.5). Then the problem (1.1) is Ulam-Hyers-
Rassias stable with respect to θ.

Proof. We have from the proof of Theorem 4.1,
‖u(t)− v(t‖ ≤ ε∗θ(t), t ∈ [0, 1],

where ε∗ = ε
1−L∆ . This completes the proof. �

Example 4.1. Consider the following fractional integro-differential problem

(4.7)

 CD
2
5
0+u(t) = h(t, u(t)) + Iα0+f(t, u(t)) +

∫ t
0 K(t, s, u(s))ds, t ∈ [0, 1],

u(0) = 3
∫ 1

5
0 u(s)ds, 0 < η < 1,

where α = β = 1
5 , b = 3, η = 1

5 . By the above, we find that ∆ = 0.4602, ∆1 = 4.3755.
To illustrate our results in Theorem 3.1 and Theorem 4.1, we take for u, v ∈ X = R+

and t ∈ [0, 1] the following continuous functions:

h(t, u(t)) = (2− t)u(t)
60 , f(t, u(t)) = 3− t2

72 u(t), K(t, s, u(s)) = e−(s+t)

64 u(s).
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Note that we can find

L1 = 1
20 , L2 = 1

18 , L3 = 1
64 ,

Moreover,

µ1(t) = 2− t
60 , µ2(t) = 3− t2

72 , µ3(t) = e−t

64 .
Obviously,

‖µ1‖L∞ = 1
30 , ‖µ2‖L∞ = 1

24 , ‖µ3‖L∞ = 1
64 ,

and
L = max{L1, L2, L3} = 1

18 .
Then, we get

L∆1 = 0.2431 < 1, ∆ = 0.3229 < 1.
All assumptions of Theorem 3.1 are satisfied. Hence, there exists at least one solution
for the problem (4.7) on [0, 1].

By take the same functions, we result the assumption
L∆ = 0.0179 < 1,

then there exists a unique solution of (4.7) on [0, 1].
In order to illustrate our stability result, we consider the same above example:

L = 1
18 , L∆1 = 0.2431

This implies that the system (4.7) is Ulam-Hyers stable, then it is generalized Ulam-
Hyers stable. It is Ulam-Hyers-Rassias stable if there exists a continuous and positive
function.
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