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ON BOUNDS FOR NORMS OF SINE AND COSINE ALONG A
CIRCLE ON THE COMPLEX PLANE

FENG QI1,2,3

Dedicated to Dr. Prof. Aliakbar Montazer Haghighi at Prairie View A&M University in USA

Abstract. In the paper, the author presents lower and upper bounds for norms
of the sine and cosine functions along a circle on the complex plane.

1. Motivations

This paper is a companion of the formally published article [6].
In the theory of complex functions, the sine and cosine functions sin z and cos z on

the complex plane C are defined by

sin z = eiz − e−iz

2i
and cos z = eiz + e−iz

2 ,

respectively, where z = x + iy, x, y ∈ R and i =
√

−1 is the imaginary unit. They
have the least positive periodicity 2π, that is,

sin(z + 2kπ) = sin z and cos(z + 2kπ) = cos z,

for k ∈ Z.
When restricting z = x ∈ R, the sine and cosine functions sin z and cos z become

sin x and cos x and satisfy

0 ≤ | sin x| ≤ 1 and 0 ≤ | cos x| ≤ 1.
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When restricting z = iy for y ∈ R, the sine and cosine functions sin z and cos z reduce
to

sin(iy) = e−y − ey

2i
= i sinh y → ±i∞

and
cos(iy) = e−y + ey

2 = cosh y → +∞,

as y → ±∞. These imply that the sine and cosine are bounded on the real x-axis,
but unbounded on the imaginary y-axis.

In the textbook [9, page 93], Exercise 6 states that, if z ∈ C and |z| ≤ R, then

| sin z| ≤ cosh R and | cos z| ≤ cosh R.

In [7], a criterion to justify a holomorphic function was discussed.
In [6], the author discussed and computed bounds of the sine and cosine functions

sin z and cos z along straight lines on the complex plane C. The main results in the
paper [6] can be recited as follows.

(a) The complex functions sin z and cos z are bounded along straight lines parallel
to the real x-axis on the complex plane C:
(i) along the horizontal straight line y = α on the complex plane C

(1.1) | sinh α| ≤ | sin(x + iα)| ≤ cosh α

and

(1.2) | sinh α| ≤ | cos(x + iα)| ≤ cosh α,

where α ∈ R is a constant and x ∈ R;
(ii) the equalities in the left hand side of (1.1) and in the right hand side

of (1.2) hold if and only if x = kπ for k ∈ Z;
(iii) the equalities in the right hand side of (1.1) and in the left hand side

of (1.2) hold if and only if x = kπ + π
2 for k ∈ Z.

(b) The complex functions sin z and cos z are unbounded along straight lines whose
slopes are not horizontal:
(i) along the sloped straight line y = α + βx on the complex plane C

| sin z| ≥ | sinh(α + βx)| and | cos z| ≥ | sinh(α + βx)|,

where α ∈ R and β ̸= 0 are constants;
(ii) along the vertical straight line x = γ on the complex plane C

| sin z| ≥ | sinh y| and | cos z| ≥ | sinh y|,

where γ ∈ R is a constant.
In this paper, we present bounds for norms | sin(reiθ)| and | cos(reiθ)| of the sine

and cosine functions sin z and cos z along a circle C(0, r) centered at the origin z = 0
of radius r > 0 on the complex plane C in terms of two double inequalities.
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2. A Double Inequality for the Norm of Sine Along a Circle

In this section, we present a double inequality for the norm | sin(reiθ)| of the sine
function sin z along a circle C(0, r) centered at the origin z = 0 of radius r > 0 on
the complex plane C.

Theorem 2.1. Let r > 0 be a constant and let C(0, r) : z = reiθ for θ ∈ [0, 2π) denote
a circle centered at the origin z = 0 of radius r. Then

(2.1) | sin r| ≤ | sin(reiθ)| ≤ sinh r, θ ∈ [0, 2π).

The left equality is valid if and only if θ = 0, π, while the right equality is valid if and
only if θ = π

2 , 3π
2 .

Proof. The circle C(0, r) can be represented by

z = reiθ, θ ∈ [0, 2π).

It is not difficult to see that, for fixed r > 0, | sin(reiθ)| = | sin r| for θ = 0, π,
| sin(reiθ)| = sinh r for θ = π

2 , 3π
2 , and | sin(reiθ)| has a least positive periodicity π

with respect to the argument θ.
Straightforward computation yields

sin(reiθ) = sin(r cos θ + ir sin θ)

(2.2)

= ei(r cos θ+ir sin θ) − e−i(r cos θ+ir sin θ)

2i

= e−(r sin θ−ir cos θ) − er sin θ−ir cos θ

2i

= e−r sin θ[cos(r cos θ) + i sin(r cos θ)] − er sin θ[cos(r cos θ) − i sin(r cos θ)]
2i

= (e−r sin θ − er sin θ) cos(r cos θ) + i(e−r sin θ + er sin θ) sin(r cos θ)]
2i

= cosh(r sin θ) sin(r cos θ) + i sinh(r sin θ) cos(r cos θ)

and

| sin(reiθ)| =
√

[cosh(r sin θ) sin(r cos θ)]2 + [sinh(r sin θ) cos(r cos θ)]2 .

In Figure 1, we plot the 3D graph of | sin(reiθ)| for r ∈ [0, 5] and θ ∈ [0, 2π). In
Figure 2, we plot the polarized 3D graph of the norm | sin(reiθ)| for r ∈ [0, 4] and
θ ∈ [0, 2π). In Figure 3, we plot the graph of | sin(πeiθ)| for θ ∈ [0, 2π). These three
figures are helpful for analyzing and understanding the behaviour of the sine function
sin z along the circle C(0, r) centered at the origin z = 0 of radius r.

From Figure 3, we can see that the norm | sin(πeiθ)| has only two maximums at
θ = π

2 , 3π
2 , while it has only two minimums at θ = 0, π on the interval [0, 2π).
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Figure 1. The 3D graph of | sin(reiθ)| for r ∈ [0, 5] and θ ∈ [0, 2π)

Figure 2. The polarized 3D graph of | sin(reiθ)| for r ∈ [0, 4] and θ ∈ [0, 2π)
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Figure 3. The graph of | sin(πeiθ)| for θ ∈ [0, 2π)

Differentiating the square of | sin(reiθ)| yields

d | sin(reiθ)|2
d θ

= r[cos θ sinh(2r sin θ) − sin θ sin(2r cos θ)]

= r[sinh(2r sin θ) − tan θ sin(2r cos θ)] cos θ

= r[cot θ sinh(2r sin θ) − sin(2r cos θ)] sin θ

= r2
[

sinh(2r sin θ)
2r sin θ

− sin(2r cos θ)
2r cos θ

]
sin(2θ).

From the first three expressions above, we conclude that the derivative d | sin(reiθ)|2
d θ

is
equal to 0 at θ = 0, π

2 , π, 3π
2 . Considering the fourth expression above on the intervals

(k π
2 , (k + 1)π

2 ) for k = 0, 1, 2, 3, in order that d | sin(reiθ)|2
d θ

̸= 0 for θ ∈ (k π
2 , (k + 1)π

2 ) and
r > 0, it is sufficient to find

(2.3) sinh(2r sin θ)
2r sin θ

> 1

and

(2.4) sin(2r cos θ)
2r cos θ

< 1,

for θ ∈ (k π
2 , (k + 1)π

2 ) and r > 0. Then, for fixed r > 0, the square | sin(reiθ)|2 and
the norm | sin(reiθ)| have only two maximums at θ = π

2 , 3π
2 , while they have only two

minimums at θ = 0, π on the interval [0, 2π). At θ = π
2 , 3π

2 , the values of | sin(reiθ)|
are both sinh r; at θ = 0, π, the values of | sin(reiθ)| are both | sin r|.

Considering the odevity of sinh t and sin t, we see that two inequalities in (2.3)
and (2.4) are equivalent to

(2.5) sinh t

t
> 1 and sin t

t
< 1,
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for t ∈ (0, ∞). The first inequality in (2.5) follows from cosh x > 1 for x ̸= 0 and the
Lazarević inequality

(2.6) cosh x <

(
sinh x

x

)3

in [2, page 270, 3.6.9]. When t ∈ (0, π
2 ), the second inequality in (2.5) follows from

the right hand side of the Jordan inequality

(2.7) π

2 ≤ sin t

t
< 1, 0 < |t| ≤ π

2 ,

in [2, Section 2.3] and the papers [1,3,4,8]. When t > π
2 , the second inequality in (2.5)

follows from sin t ≤ 1 on (0, ∞) and standard argument. The double inequality (2.1)
is thus proved. The proof of Theorem 2.1 is complete. □

3. A Double Inequality for the Norm of Cosine Along a Circle

In this section, we present a double inequality for the norm | cos(reiθ)| of the cosine
function cos z along a circle C(0, r) centered at the origin z = 0 of radius r > 0 on
the complex plane C.

Theorem 3.1. Let r > 0 be a constant and let C(0, r) : z = reiθ for θ ∈ [0, 2π) denote
a circle centered at the origin z = 0 of radius r. Then

(3.1) | cos r| ≤ | cos(reiθ)| ≤ cosh r, θ ∈ [0, 2π).

The left equality is valid if and only if θ = 0, π, while the right equality is valid if and
only if θ = π

2 , 3π
2 .

Proof. It is easy to see that, for fixed r > 0, | cos(reiθ)| = | cos r| for θ = 0, π,
| cos(reiθ)| = cosh r for θ = π

2 , 3π
2 , and | cos(reiθ)| has a least positive periodicity π

with respect to the argument θ.
Direct calculation yields

cos(reiθ) = cos(r cos θ + ir sin θ)

(3.2)

= ei(r cos θ+ir sin θ) + e−i(r cos θ+ir sin θ)

2

= e−(r sin θ−ir cos θ) + er sin θ−ir cos θ

2

= e−r sin θ[cos(r cos θ) + i sin(r cos θ)] + er sin θ[cos(r cos θ) − i sin(r cos θ)]
2

= (e−r sin θ + er sin θ) cos(r cos θ) + i(e−r sin θ − er sin θ) sin(r cos θ)]
2

= cosh(r sin θ) cos(r cos θ) − i sinh(r sin θ) sin(r cos θ)



ON BOUNDS FOR NORMS OF SINE AND COSINE ALONG A CIRCLE 261

and

| cos(reiθ)| =
√

[cosh(r sin θ) cos(r cos θ)]2 + [sinh(r sin θ) sin(r cos θ)]2 .

In Figure 4, we plot the 3D graph of | cos(reiθ)| for r ∈ [0, 5] and θ ∈ [0, 2π). In

Figure 4. The 3D graph of | cos(reiθ)| for r ∈ [0, 5] and θ ∈ [0, 2π)

Figure 5, we plot the polarized 3D graph of the norm | cos(reiθ)| for r ∈ [0, 4] and
θ ∈ [0, 2π). In Figure 6, we plot the graph of | cos(reiθ)| for r = π and θ ∈ [0, 2π).
These three figures are helpful for analyzing and understanding the behaviour of the
cosine function cos z along the circle C(0, r) centered at the origin z = 0 of radius r.

From Figure 6, we can see that the norm | cos(πeiθ)| has only two maximums at
θ = π

2 , 3π
2 , while it has only two minimums at θ = 0, π on the interval [0, 2π).

Differentiating the square of | cos(reiθ)| with respect to θ gives

d | cos(reiθ)|2
d θ

= r[sin θ sin(2r cos θ) + cos θ sinh(2r sin θ)]

= r[tan θ sin(2r cos θ) + sinh(2r sin θ)] cos θ

= r[sin(2r cos θ) + cot θ sinh(2r sin θ)] sin θ

= r2
[

sin(2r cos θ)
2r cos θ

+ sinh(2r sin θ)
2r sin θ

]
sin(2θ).

From the first three expressions above, we conclude that the derivative d | cos(reiθ)|2
d θ

is
equal to 0 at θ = 0, π

2 , π, 3π
2 . Considering the fourth expression above on the intervals

(k π
2 , (k + 1)π

2 ) for k = 0, 1, 2, 3, in order that d | cos(reiθ)|2
d θ

̸= 0, it is sufficient to show

(3.3) sinh(2r sin θ)
2r sin θ

> 1
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Figure 5. The polarized 3D graph of | cos(reiθ)| for r ∈ [0, 4] and θ ∈ [0, 2π)

Figure 6. The graph of | cos(πeiθ)| for θ ∈ [0, 2π)
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and

(3.4) sin(2r cos θ)
2r cos θ

> −1,

for θ ∈ (k π
2 , (k + 1)π

2 ) and r > 0. Then, for fixed r > 0, the square | cos(reiθ)|2 and
the norm | cos(reiθ)| have only two maximums at θ = π

2 , 3π
2 , while they have only two

minimums at θ = 0, π on the interval [0, 2π). At θ = π
2 , 3π

2 , the values of | cos(reiθ)|
are both cosh r, at θ = 0, π the values of | cos(reiθ)| are both | cos r|.

Considering odevity of sinh t and sin t, two inequalities in (3.3) and (3.4) are equiv-
alent to

(3.5) sinh t

t
> 1 and sin t

t
> −1,

for t ∈ (0, ∞). The first inequality in (3.5) follows from cosh x > 1 for x ̸= 0 and
the Lazarević inequality (2.6). When t ∈ (0, π

2 ), the second inequality in (3.5) follows
from the left hand side of the Jordan inequality (2.7). When t > π

2 , the second
inequality in (3.5) follows from sin t ≥ −1 on (0, ∞) and simple argument. The
double inequality (3.1) is thus proved. The proof of Theorem 3.1 is complete. □

4. Remarks

In this final section, we list several remarks on our main results in this paper.

Remark 4.1. Comparing Figure 1 and 4, it is not easy to see the difference between
| sin(reiθ)| and | cos(reiθ)|. However, the difference | sin(reiθ)| − | cos(reiθ)| for r ∈
[0, 2π] and θ ∈ [0, 2π) can be showed by Figure 7.

Figure 7. The 3D graph of | sin(reiθ)| − | cos(reiθ)| for r, θ ∈ [0, 2π)

Comparing Figure 2 and 5, it is not easy to find the difference between | sin(πeiθ)|
and | cos(πeiθ)| yet. However, the difference | sin(πeiθ)| − | cos(πeiθ)| for θ ∈ [0, 2π)
can be presented by Figure 8.
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Figure 8. The polarized 3D graph of | sin(reiθ)| − | cos(reiθ)| for r ∈
[0, 4] and θ ∈ [0, 2π)

Comparing Figure 3 and 6, it is also not easy to see the difference between | sin(πeiθ)|
and | cos(πeiθ)|. However, the difference | sin(πeiθ)| − | cos(πeiθ)| for θ ∈ [0, 2π) can
be demonstrated by Figure 9.

Figure 9. The graph of | sin(πeiθ)| − | cos(πeiθ)| for θ ∈ [0, 2π)

Remark 4.2. From Figure 7, 8, and 9, we can guess that the double inequality
(4.1) − 1 ≤ | sin(reiθ)| − | cos(reiθ)| ≤ 1
is seemingly valid for all r > 0 and θ ∈ [0, 2π). Can one verify, deny, or strengthen
this guess?
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Remark 4.3. It is standard that
(4.2) | sin(reiθ) − cos(reiθ)|2 = |[sin(reiθ) − cos(reiθ)]2| = |1 − sin(2reiθ)|.
From (4.2), it follows that

|1 − | sin(2reiθ)|| ≤ | sin(reiθ) − cos(reiθ)|2 ≤ 1 + | sin(2reiθ)|.
Further by virtue of the double inequality (2.1) in Theorem 2.1, we obtain

| sin(reiθ) − cos(reiθ)|2 ≤ 1 + | sin(2reiθ)| ≤ 1 + sinh(2r).
This means that
(4.3) | sin(reiθ) − cos(reiθ)| ≤

√
1 + sinh(2r),

for r > 0 and θ ∈ [0, 2π).
Motivated by the guess expressed in terms of the double inequality (4.1) and by the

inequality (4.3), we pose an open problem: what are the nontrivial lower and upper
bounds of the norm | sin(reiθ) − cos(reiθ)| for r > 0 and θ ∈ [0, 2π)?

Remark 4.4. From (2.2) and (3.2), it follows that
sin(reiθ) − cos(reiθ) = cosh(r sin θ)[sin(r cos θ) − cos(r cos θ)]

+ i[cos(r cos θ) + sin(r cos θ)] sinh(r sin θ).
Hence, we have

| sin(reiθ) − cos(reiθ)| =
√

sinh2(r sin θ) − sin(2r cos θ) + cosh2(r sin θ),
which is equivalent to
(4.4) | sin(reiθ) − cos(reiθ)|2 = cosh(2r sin θ) − sin(2r cos θ).
From (4.4), it follows that

d | sin(reiθ) − cos(reiθ)|2
d θ

= 2r[sin θ cos(2r cos θ) + cos θ sinh(2r sin θ)]

= 2r[cos(2r cos θ) + cot θ sinh(2r sin θ)] sin θ

= 2r[tan θ cos(2r cos θ) + sinh(2r sin θ)] cos θ

= 2r2
[

cos(2r cos θ)
2r cos θ

+ sinh(2r sin θ)
2r sin θ

]
sin(2θ),

which is clearly equal to 0 at θ = 0, π for all r > 0. The function sinh t
t

is even and not
less than 1 on (−∞, ∞). The function cos t

t
is odd on (−∞, ∞). By finding the set of

all zeros of the function
cos t

t
+ sinh

√
4r2 − t2

√
4r2 − t2

, t ̸= 0, r > 0,

we can obtain sharp bounds of | sin(reiθ) − cos(reiθ)| for r > 0 and θ ∈ [0, 2π). This
is a hint, clue, sketch, or approach to solve the above open problem.
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Remark 4.5. To the best of my knowledge, the double inequalities (2.1) and (3.1) in
Theorems 2.1 and 3.1 are fundamental and new in the literature.

Remark 4.6. This paper is a revised version of the preprint [5].
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