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ABSTRACT. In this article, it is shown that a map & : 2 — 2 (not necessarily linear)
satisfies {((AoB)e(C) = (£(A)oB)eC+(Ac&(B))eC+ (Ao B)e&(C) holds for all
A, B,C € 2 if and only if £ is an additive *-derivation where 2 a unital x-algebra
over the complex fields C. As applications, we apply our main result to some special
classes of unital x-algebras such as prime *-algebras, standard operator algebras,
factor von Neumann algebras and von Neumann algebras with no central summands
of type I;.

1. INTRODUCTION

Let A be a x-algebra over the complex field C. A map £ : A — 2A is called an
additive derivation if (A + B) = £(A) + &(B) and {(AB) = {(A)B + A¢(B) holds
for all A, B € 2. Moreover, £ is said to be an additive s-derivation if it is an
additive derivation and {(A*) = £(A)* holds for all A € (. For A, B € 2, define
the Jordan product and bi-skew Jordan product of A and B by Ao B= AB + BA
and A e B = AB* + BA*, respectively. A map £ : 2 — 2 (not necessarily linear)
is said to be nonlinear Jordan derivation (resp. nonlinear Jordan triple derivation)
if (Ao B) =¢&(A)oB+ Ao&(B) (resp. (Ao B)o(C) = (((A)oB)oC + (Ao
£(B)) o C + (Ao B)o((C)) holds for all A,B,C € . Analogously, a map ¢ :
2A — 2 (not necessarily linear) is called a nonlinear bi-skew Jordan derivation (resp.
nonlinear bi-skew Jordan triple derivation) if £(A e B) = {(A) @ B+ A e &(B) (resp.
£((AeB)e() = (((A)eB)eC+(Ae(B))eC+(AeB)eL(C)) holds forall A, B,C € . In
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the last decade, many mathematicians devoted themselves to the study of mappings
involving new products on various kind of rings and algebras. These kind of new
products are playing an increasingly important role in some research topics, and their
study has attracted the attention of many authors (see [1,2,4-8,12,13,15-18]). In
2016, Zhang [17] studied nonlinear skew Jordan derivations on factor von Neumann
algebras and proved that every nonlinear skew Jordan derivation on a factor von
Neumann algebra is an addtive x-derivation. Later, this result has been extended
to skew Jordan triple derivation and skew Jordan-type derivations on x-algebras in
8, 18], respectively. Khan [5] proved that every multiplicative bi-skew Jordan triple
derivations on a prime x-algebra is an additive x-derivations. This result has been
generalized in [2] by Ashraf et al. where they proved that every nonlinear bi-skew
Jordan-type derivation on a factor von Nuemann algebra is an additive *-derivation.
Recently, many researchers paid more attention to the study of Lie (Jordan) mappings
involving two different kinds of products at the same time in the nonlinear settings
(see, for examples [9-11,19,20]). In [20], Zhou et al. proved that every nonlinear mixed
Lie triple derivation on prime *-algebra is an additive *-derivation. Rehman et al. in
[11] proved that every nonlinear mixed Jordan triple derivation on a x-algebra is an
additive #-derivation. Similar kinds of problems has been investigated in [9, 10, 19].
Motivated by the above cited works, in this article, we combine the Jordan product
and the bi-skew Jordan product in order to get the mixed bi-skew Jordan triple
product (Ao B) e C, where A, B,C € 2. Correspondingly, a map & : 2 — 2 (not
necessarily linear) is called a nonlinear mixed bi-skew Jordan triple derivation if

E((AoB)e () =({(A)oB)e(C + (Aoc&(B))eC+ (Ao B)el(C)

holds for all A, B,C € 2. The aim of this article is to find the relationship between
nonlinear mixed bi-skew Jordan triple derivations and additive x-derivation on ar-
bitrary =x-algebras. More precisely, we show that, under mild assumptions, every
nonlinear mixed bi-skew Jordan triple derivation on a unital *-algebra is an additive
x-derivation.

2. THE MAIN RESULTS
The main result of this article states as follows.

Theorem 2.1. Let A be a x-algebra with the unity I and containing a nontrivial
projection Py. Write P, = I — P, and assume that 2l satisfies

(2.1) XAP, =0=X=0 (k=1,2),

where X € A. Then a map § : A — A (not necessarily linear) satisfies

(2.2) E((AoB)e () =({(A)oB)e(C + (Ac&(B))e(C + (Ao B)e&(C),
for all A, B,C € A if and only if £ is an additive x-derivation.

Proof. Let us choose an arbitrary nontrivial projection P, and write P, = I — P;.
Then, 2 can be written as A = PiRAP, + PRAP; + PRAP;, + PRAP;.
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Let At = {H e A : H* = H} and 2~ = {S € 2 : S* = —S}. Further write
AL =PATP, i =1,2and A}, = {PLHP, + B, HP, : H € A7}, Then, any H € A"
can be written as H = H11 + H12 + H22, where H” c Q[iia 1= 1,2 and H12 < qug It
is easy to verify that if £ is an additive *-derivation, then it satisfies (2.2). Thus, here
we only need to prove the necessity part, which will be established by checking the
following series of lemmas. Taking A = B = C' = 0 in (2.2), the following lemma is
easy to obtain. 0

Lemma 2.1. £(0) = 0.
Lemma 2.2. {(H)* = &(H) for every H € 2AT.
Proof. For any H € A", we have H = (H o %) e 1 Thus, we obtain

(1))
(lm)e (e (-9 )
ong o 3 <) 2 )
ol 3

and hence,

o cnf o ({3 )

I( (1\" I\’ I\’ I
(o) eme(z) ) oel) o)
That is, {(H) = §(H)* for all H € AT, O

Lemma 2.3. For any Hy, € f,, Hi» € A, and Hyy € A3y, we have
§(Hn + Hig) = §(Hi) +&(Hi2) and  §(Hig + Ha) = §(Hiz) + E(Haa).

Proof. Assume that T' = {(Hyy + Hio) — E(Hyp) — §(Hiz). It is easy to observe that
T* = T by Lemma 2.2. Our target is to show that 7' = 0. Using the fact that
(Hqp 0 Py) @ P, = 0 and making use of Lemma 2.1, we have

E(((Hiy + Hiz) o Py) @ Py)
={((Hy o Py) @ Po) +&((Hig 0 Py) @ Py)
:((f(Hn) +&(Hig)) o Pz) o Py
+ ((Hi1 + Hi2) 0 §(P)) @ Py + ((Hiy + Hig) 0 Po) @ E(F).
On the other hand, we have
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5(((1’111 + Hiz)o Py)e PQ) =(&(H1y1 + Hi2) o Po) @ Py + ((Hyy + Hiz) 0 £(P2)) @ Py
+ ((Hy1 + Hyz) o Py) @ £(P).

On comparing the above two expressions for £(((Hy1 + Hi2) o P) @ Py), we get ((T o
P,) e P,) = 0. Application of the fact that 7% = T leads us to 115 = Ty = T = 0.
Invoking the fact (Hiz 0 (P, — P;)) @ P, = 0 and Lemma 2.1, we find that

5(((H11+H12)0(P2—P1))°P1)
=¢((Hyo (Po— P)) o P) +&((Hizo (P — P) o P)
:<(§<H11) +&§(Hi2)) o (P — P1)> o P+ ((Hi1+ Hiz) o&(P, — Pp)) o P,
+ ((Hi1 + Hig) o (P, — Py)) o &(Py).
On the other hand, we have
f(((Hn + Hyp)o (P, — Py))e Pl)
=((Hn+ Hig)o (P — Py)) @ P+ (Hii + Hig) o (P — Py)) o P
+ ((Hu + Hiz) o (P, — P1)) o ().

From the last two expressions for £(((H11 + Hi2) o (P> — Py)) @ P;), we obtain ((7" o
(P, — Py)) e P;) = 0. Using the fact 7* = T and simplifying gives T7; = 0. Hence,
T =0, that is, {(Hy1 + Hi2) = £(Hu) + E£(Hio).

Symmetrically, one can prove that £(Hyo + Hao) = {(Hia) + £(Hae). O

Lemma 2.4. For any Hyy € 2f,, Hi» € A}, and Hyy € A3, we have
§(Hy + Hip + Hyo) = E(Hu) + E(Hi2) + §(Hao).

Proof. Let T = £(Hy1+ Hyo+ Hoo) —&(Hyy ) —&(Hio) —&(Hao). Tt is easy to observe that
T* =T by Lemma 2.2. We show that 7" = 0. Using the fact that (Hj; 0 P,) @ P, =0
and Lemmas 2.1 and 2.3, we have

5(((1‘111 + Hig + Hy)o Py) e P2)
=¢((Hy1 0 Py) @ Po) + &(((Hig + Hag) 0 P) @ Py)
:((é(Hn) +&(Hiz) + §(Haz)) 0 Pz) o P+ ((Hiu + Hip + Hy) 0 §(Py)) @ P
+ ((Hiy + Hig + Hy) o Pr) @ £( ).
On the other hand, we obtain
f(((Hll + Hig + Hy) o Py) e Pz)
=<§(H11 + Hip + Hp) o P2) o Py + ((Hiy + Hig+ Hy) 0 &(P)) o Ps
+ ((Hi1 + Hig + Ha) 0 Po) @ E(F).
(

Comparing the above two expressions for £(((Hyy + His + Hay) o Py) @ Py), we find
that (T o P,) @ P, = 0, which in turn implies that 715 = Ty, = Tos = 0.
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Invoking the fact (Hoy 0 Py) @ P; = 0 and using Lemmas 2.1 and 2.3, we find that
(((Hy + Hiz + Hy) o Pr) o P)
=¢(((Hy + Hyz) o Py) @ Pr) + &((Hyy 0 Pr) o Py)
=<(§(H11) + &(Hiz) + £(H2)) 0 Pl) o PL+ ((Hu + Hiz + Hy) 0 {(P,)) @ Py
+ ((H11 + Hia + Ha) o P) @ &(P).
On the other hand, we have
(((Hy + Hiz + Hy) o Pr) o Py)

=(E(Hy1 + Hyo + Hz) 0 Py) @ P+ ((Hyy + Hyg + Hay) 0E(P1)) @ Py
+ ((Hi1 + Hip + Hyp) o Pr) @ (Py).

Comparing the above two expressions for £(((Hy; + His + Haz) o Py) ® P;), we obtain
that (7o P;) e P, = 0 which further implies that 77; = 0. Hence, T' = 0, that is,

E(Hv + Hig + Hao) = E(Hu1) + §(Ha2) + E(Hao).

Lemma 2.5. For any Hyy, Hy, € Uiy, we have E(Hyo + Hyy) = E(Hy) + E(H).
Proof. For any X, Y12 € ya, let Hio = Xq5 + X7, and H12 =Y + Y. Then, it is
easy to calculate that

(P + Hiz) o (Py+ H1p) o 5

=((P+ X12 + X}p) o (Pr+ Yiz +Y3)) @ g
=(X12 + X7o) + (Yiz + Y15) + (X12V75 + Yo XTy) + (X15Y12 + Y15.X00)
=Hyy+ Hyy + Hyy + Hy,

where Hy; = X0V} + Yo X7y € A} and Hyy = X5,Y10 + Y5 X 9 € 35, Therefore,

using Lemmas 2.3 and 2.4, we have
§(Hrg + Hyy) + E(Hiy) + E(Hy,)
=¢(Hyy + Hyy + Hyy + Ha,)

(R + Xia 4 X0 (P24 Vi V) o )

:<((§(P1) +E(X + X0y)) o (P + Yia +175)) @ é)

(P4 X X0 (6P + €+ YD) o)
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+(((Pl+X12+Xf2)O(P2+Y12+Yfz))°§<g>>
~¢((Ropeg)+e((Roiryaned)

re((0+ X5 o P o L) +e( (i + X o (a4 ¥z o )

—E(Hya) + E(Hy) + E(Hiy) + €(Ha).
Hence, £(Hg + Hyy) = E(Hyp) + &(Hy,) for any Hig € A, and Hy, € A O
Lemma 2.6. For any Hy, H; € A for i = 1,2, we have
§(Hyi + Hyy) = §(Hu) +E(Hyy)  and  €(Hay + Hyp) = §(Han) + §(Hy).

Proof. Let T = &(Hyy + Hyy) — E(Hyp) — €(Hy,). Tt is easy to observe that T* = T by
Lemma 2.2. We show that T = 0.
Using the fact that (H; 0 P,) e Py = (H,, o P,) ® P, = 0 and Lemma 2.1, we obtain

E(((Hu + Hyy) o Pa) o P)

=¢((Hi1 0 Py) o B) +&((H,yy 0 Po) o Py)

((§(Hyy) +&(Hy,)) 0 Po) @ Py+ (Hy + Hyy) 0 £(Py)) o Py

+ ((Hi + Hyy) o Py) 0 £(Py).

On the other hand, we have

f(((H11+H11)OP2)'P2) :(f((HnJth)OP2)°P2+((H11+H11>05(P2))’P2
+ ((Hu + Hyy) o Py) @ £(Py).

Comparing the above two expressions for £(((Hyy + Hy,) o P») @ P,), we find that
(T o P,) ® P, =0, which in turn gives T15 = Ty = Tas = 0.

Next, we show that 73; = 0. For this, assume that Hys = X5 + X7, for some
X2 € Ay, then Hyy € A, and it is easy to observe that

1 / I
((Hn o Hip)e 2>, ((Hn o Hyy)e 2) € 2.

Thus, using Lemma 2.5, we find that

e((t+ ) o o) o )

:§<(HH o Hyy)e g) + 5((}[11 o Hyy) e g)

=((6(H) + E(H}y)) o Ha) o 5 + ((Hux + H}y) 0 E(Fro)) o



NON-LINEAR MIXED BI-SKEW JORDAN TRIPLE DERIVATIONS 1213

+ ((Hy + Hpy) o Hip) o 5(5)

On the other hand, we have
, I , I / I
E\ ((Hi + Hyp)o Hyp) e 5 =((Hu + Hyy)oHyp)e 5t (Hi+ Hyy)o&(Hpp)) e 3

+ ((Hy + Hyy) o Hip) @ f(é)

From the last two expressions for 5(((H11 + Hi;)oHyp)e é), we get (T'o Hiz) o4 =0
and using the fact that 7™ =T, we get T' X5 + T X{y + X121 + X{,T = 0. Multiplying
it by P; and P, from left and right, we obtain T1; X P, + P; XT5 = 0. Since Ty, = 0,
we obtain 73; X P, = 0. Application of the condition (2.1) yields T}; = 0. Hence,
T =0, that is, £(Hy + Hy,) = £(Hyp) + €(Hy,). Symmetrically, one can prove that
E(Ha + Hyy) = E(Haa) + E(Hayy). O

Using Lemmas 2.4, 2.5 and 2.6, the following lemma is easy to obtain.
Lemma 2.7. £ is additive on A" .

Lemma 2.8. £{(/) = 0.

Proof. 1t follows from é = (é o %) ° % that

1 I I 1
() <((5°3)3)
1 1 1 1 I 1 I 1 1
- () )

Simplifying with the help of Lemma 2.2, we obtain

1 I 1 1

() =<(z) =<(5) +<2)

Hence, 5(%) = 0. Since ¢ is additive on AT, we get (1) = 5(%) + 5(%) =0. O
Lemma 2.9. For any S € 2™, we have £(S)* = —=£(9).

Proof. Since 0 = ((S ol)e é) for any S € 2, using the facts that (1) = S(%) =0,
we obtain

1 1
0=¢0 =¢((Sene ;) = (€S oD ey),
which implies that £(5)* = —¢(5) for any S € A~. O
Lemma 2.10. £(i) = 0.
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Proof. We have (il)* = —£(il), by Lemma 2.9. Since (il o i) @ I = —41, invoking
Lemmas 2.7 and 2.8, we obtain that

0= —4€(I) = &(—4I) = (il o il) o I) = (£(il) 0 il) o T + (il 0 £(iI)) ® I = £(i).
U
Lemma 2.11. For any H € A", we have §(iH) = i§(H).

Proof. Observe that (iHoil)el = —4H for any H € A". Using Lemmas 2.7, 2.8, 2.9
and 2.10, we find that

—4¢(H) =&(—4H) =&((iHoil) o I) = (£(iH) oil) o I = 4i&(iH),
which implies that £(iH) = i{(H). O
Lemma 2.12. For any A € A, we have {(A*) = £(A)*.

Proof. Let A = Hy+1iH, € 2 for some Hy, Hy € A" Since 4Hy = ((Hy+iHy)o1)e 1,
and making use of Lemmas 2.7 and 2.8, we obtain

A§(Hy) =€(4Hy) = €(((Hy +iHy) o I) @ 1)
:(g(Hl + ZHQ) e} I) o/ — 2{5([’[1 + ZHQ) + §(H1 + ZHQ)*}

Thus, we have
(2.3) 26(Hy) = &(Hy +iHs) + £(Hy +iHs)™.

On the other hand, we have 4Hy = ((Hy + iHs) o I)  iI. Invoking Lemmas 2.7, 2.8
and 2.10, we obtain

A§(Hy) =€(4H) = §(((Hy + iHz) o I) @)
=(&(Hy + iHy) o 1) @il = 2(&(Hy + iH) — §(Hy + iH)").

Therefore, we have

(2.4) 2E(H,) = E(Hy + iHy) — E(Hy + iH,)*.
The addition of (2.2) and (2.3) yields
(2.5) E(Hy +iHy) =¢(Hy) + i€(Hy).

Since ¢ is additive on AT and £(0) = 0, we have {(—H) = —§(H) for any H € A+,
By using (2.4) and Lemmas 2.2 and 2.7, we have

§(A) =E(Hy +iHy)" = (§(Hy) +1i€(Ha))" = E(Hy) — i€(H>)
={(H, —iHy) = £(A"),

for all A € 2. O
Lemma 2.13. ¢ is additive on 2.
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Proof. Let us consider any two arbitrary elements A; = Hy +1Hs, Ay = Hi + @'H; e
for some Hy, Hy, Hy, H, € A", Using (2.4) and Lemma 2.7, we find that

(A1 + Ag) =€((Hy +iHs) + (H, +iH,)) = E((Hy + H,) +i(Hs + H,))

—¢(Hy 4 H)) 4 i€(Hy + Hy) = £(Hy) + E(HY) 4 i€(Hy) + i€ (H,)
E(Hy) +i€(Ha) + E(HY) + i€(Hy) = E(Hy + iH) + E(H] + iHy)
§(A1) +E£(A). O
Lemma 2.14. For any A € A, we have {(1A) = i§(A).

Proof. Let A = H, +1H, € 2 for some H;, Hy, € A*. Invoking Lemmas 2.11 and 2.13,
we obtain

f(iA) :f(iHl - HQ) = f(iHl) - f(Hz) = if(Hl) - f(H2)
=i(§(H1) + i§(H2)) = i(§(Hy + iH3)) = i§(A). O

Lemma 2.15. £ is an additive x-derivation on 2.

Proof. In view of Lemmas 2.12 and 2.13, it is sufficient to show that £(A;A4s) =
E(A1) A + A1€(Ay) for all Ay, Ay € . First, we show that

E§(HH')=&(H)H + HE(H'), forall H H' € AT,
Using Lemmas 2.2, 2.7 and 2.8, we have
2(HH + H H)=¢(2(HH + HH))=¢(HoH') o)
—(E(H)oH)eI+ (Ho&(H')) el
—2(¢(H)H + H'¢(H) + HE(H' ) + S(H)H).
Thus, we have
(2.6) S(HH') + &(H H) =¢(H)H + H §(H) + HE(H') + §(H ) H.
Also, in view of Lemma 2.11, we have
2E(HH—-HH)=£(2i(HH —HH))=¢(Hol)eiH)
=(&(H)oI)eiH + (Hol)e&(iH)
=2i(§(H)H — H'§(H) + HE(H') — &(H

!

)H).
Consequently, we get

(2.7) E(HH') —§(H'H) =¢(H)H — H'¢(H) + HE(H') — €(H
The addition of (2.5) and (2.6) yields

(2.8) §(HH)=&(H)H + HE(H'), forall H H AT,

’

VH.
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Now, let Ay = H; + iHy and Ay = Hi + iHé be any two arbitrary elements of 2,
where Hy, Hy, H,, H, € A", In view of (2.7) and Lemmas 2.13 and 2.14, we find that

§(A1Ag) =¢((Hy Hy — HyHy) +i(Hy Hy + HyH,))
=&(H Hy — HoHy) + i€(H Hy + HoH,)
=C(H\H,) — E(HoHy) + i€(Hy Hy) + i€ (H2 H, )
—C(Hy)Hy + H\E(Hy) = §(Hy) Hy — Hof(Hy) + i€ (Hy) Hy + iHy & (Hy)
+i€(Hy) Hy + iHoE(H,)
and
E(A) Ay + A1€(Ay) =€(Hy + iHy)(Hy + iHy) + (Hy + iHo)S(Hy + i Hy)
=(&(Hh) + i€(Ha))(H, + iH,) + (Hy + iHy)(E(H,) + i€ (Hy))
=¢(Hy)Hy + H\E(Hy) — E(Ho) Hy — Ho€ (Hy) + i€ (Hy) H,
+ iH E(Hy) + i€ (Hy) H, 4 iHyE(H,).
Therefore, we have
E(A1Ay) = (A Ay + AE(Ay), for all Ay, Ay € 2.
Hence, the proof of Theorem 2.1 is complete. O

3. APPLICATIONS

In this section, we apply Theorem 2.1 to certain special classes of x-algebras, namely
prime x-algebras, standard operator algebras, factor von Neumann algebras and von
Neumann algebras with no central summands of type I;. Recall that an algebra 2l is
prime if for any A, B € 2, AAB = {0} implies that either A =0 or B = 0. It is easy
to verify that every prime *-algebra satisfies (2.1). Therefore, as a direct consequence
of Theorem 2.1, we have the following result.

Corollary 3.1. Let 2 be a unital prime x-algebra containing a nontrivial projection.
Then a map & : A — A satisfies

E(AoB)e()=(((A)oB)e(C+ (Ao&(B))eC+ (Ao B)eg(C),
for all A, B,C € A if and only if £ is an additive x-derivation.

Let H be a complex Hilbert space and B(H) be the algebra of all bounded linear
operators on H. Let F(H) C B(H) denote the subalgebra of all bounded finite rank
operators. A subalgebra 20 C B(XH) is called a standard operator algebra if it contains
F(H). Now we have the following result.

Corollary 3.2. Let H be an infinite dimensional complex Hilbert space and 2 be a
standard operator algebra on H containing the identity operator I. Suppose that 2 is
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closed under the adjoint operation. Then, a map & : A — B(H) satisfies
E(AoB)e()=(((A)oB)e(C + (Ao&(B))eC + (Ao B)e&(C),

for all A, B,C € 24 if and only if £ is a linear x-derivation. Moreover, there exists an
operator T' € B(H) satisfying T + T* = 0 such that E(A) = AT — T A for all A € 2,

that is, & is inner.

Proof. Since 2 is a unital prime *-algebra containing nontrivial projections, then by
Corollary 3.1, we see that £ is an additive #-derivation. It follows from [14] that &
is an linear inner derivation, that is, there exists an operator S € B(H) such that
£(A) = AS — SA for all A € 2. Using the fact that £(A*) = £(A)", we have

A*S — SA* = (A7) = £(A)" = STA* — A*S,

for any A € 2, This leads to A*(S + S*) = (S + S*)A*. Hence, S+ S* = A for some
A € R. Letting T'= S — \I, one can check that T+ 7% = 0 and {(A) = AT —TA
for all A € 2. O

A von Neumann algebra 2l is a weakly closed, self adjoint algebra of operators on
a Hilbert space H containing the identity operator I. A von Neumann algebra 2l is
a factor von Neumann algebra if its center contains only the scalar operators. It is
well known that a factor von Neumann algebra is prime, thus, it always satisfies (2.1).
Hence, as an immediate consequence of Corollary 3.1, we get the following.

Corollary 3.3. Let A be a factor von Neumann algebra with dim(2() > 2. Then, a
map & : A — A satisfies

E(AoB)e(C)=(((A)oB)eC+ (Ao&(B))eC+ (Ao B)eg(C),
for all A, B,C' € 2 if and only if € is an additive x-derivation.

Further, it is well-known that every von Neumann algebra with no central summands
of type I satisfies (2.1) (see [3,6] for details). Therefore, applying Theorem 2.1, we
have the following result.

Corollary 3.4. Let A be a von Neumann algebra having no central summands of type
1. Then a map & : A — A satisfies

E(AoB)e(C)=(((A)oB)eC+ (Ao&(B))eC+ (Ao B)eg(C),
for all A, B,C € A if and only if £ is an additive x-derivation.

4. CONCLUSION

In this paper, we have studied the relationship between nonlinear mixed bi-skew
Jordan triple derivations and additive *-derivations on arbitrary *-algebras. In fact,
it is shown that, under certain assumptions, every nonlinear mixed bi-skew Jordan
triple derivation on a unital *-algebra is an additive *-derivation.
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