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POSITIVE SOLUTIONS FOR A FRACTIONAL BOUNDARY
VALUE PROBLEM WITH LIDSTONE LIKE BOUNDARY

CONDITIONS

JEFFREY T. NEUGEBAUER1 AND AARON G. WINGO2

Abstract. We consider a higher order fractional boundary value problem with
Lidstone like boundary conditions, where the nonlinearity is an L1-Carathèodory
function. We first consider the lower order problem. Then, by using a convolution to
construct the Green’s function for the higher order problem, we are able to apply a
recent fixed point theorem to show the existence of positive solutions of the boundary
value problem.

1. Introduction

Let n ∈ N, n ≥ 3, n − 1 < α ≤ n and 1 ≤ β ≤ n − 1. We study existence and
nonexistence of solutions of the fractional differential equation

(1.1) Dα
0+u+ f(t, u) = 0, t ∈ (0, 1),

satisfying the boundary conditions

(1.2) u(i)(0) = 0, i = 0, 1, . . . , n− 2, Dβ
0+u(1) = 0,

where Dα
0+ and Dβ

0+ are the standard Riemann-Liouville derivatives. Here f : (0, 1)×
[0,∞)→ [0,∞) is an L1-Carathèodory function, i.e., f satisfies the following proper-
ties:

(a) f(·, u) is a measurable function for all u ≥ 0;
(b) f(t, ·) is continuous for a.e. t ∈ (0, 1) and
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(c) for all r > 0 there exists a ψr ∈ L1[0, 1] such that |f(t, u)| ≤ ψr(t) for a.e. t ∈
(0, 1) and for all |u| ≤ r.

We then consider a higher order problem with boundary conditions inspired by
Lidstone boundary conditions. Let m ∈ N, m ≥ 3, n ∈ N, 2n− 1 +m < γ ≤ 2n+m,
1 ≤ β ≤ n− 1 and consider the boundary value problem

(1.3) Dγ
0+u(t) + (−1)ng(t, u) = 0, 0 < t < 1,

satisfying the boundary conditions

u(i)(0) = 0, i = 0, 1, . . . ,m− 2, Dβ
0+u(1) = 0,(1.4)

Dγ−2l
0+ u(0) = Dγ−2l

0+ u(1) = 0, l = 1, . . . , n− 1,

where g : (0, 1) × [0,∞) → [0,∞) is an L1-Carathèodory function. To construct
the Green’s function for this problem, we use a convolution. The Green’s function
for the higher order problem therefore inherits properties of the Green’s function
corresponding to (1.1), (1.2) and similar arguments can be made to show the existence
of positive solutions of the boundary value problem.

Fixed point theory has been used extensively to study the existence of positive
solutions of fractional boundary value problems [2, 7, 8, 10–12,20,23,25] and singular
fractional boundary value problems [1,9,14,16,18,21,22,24,26] where the nonlinearity
may be singular at t = 0 or t = 1. Of particular interest to this work is the recent
paper by Benmezaï, Chentout and Henderson [3], where the authors prove a new fixed
point theorem using strongly positive-like operators and then apply their fixed point
theorem to a fractional boundary value problem. The use of convolution to construct
Green’s functions for higher order problems can be found first in [6]. In [15], the
authors used convolution to study positive solutions of some different higher order
fractional boundary value problems.

2. Preliminaries

We start with the definition of the Riemann-Liouville fractional integral and frac-
tional derivative.

Definition 2.1. Let ν > 0. The Riemann-Liouville fractional integral of a function
u of order ν, denoted Iν0+u, is defined as

Iν0+u(t) = 1
Γ(ν)

∫ t

0
(t− s)ν−1u(s)ds,

provided the right-hand side exists. Moreover, let n denote a positive integer and
assume n− 1 < α ≤ n. The Riemann-Liouville fractional derivative of order α of the
function u : [0, 1]→ R, denoted Dα

0+u, is defined as

Dα
0+u(t) = 1

Γ(n− α)
dn

dtn

∫ t

0
(t− s)n−α−1u(s)ds = DnIn−α0+ u(t),
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provided the right-hand side exists. We refer to [4,13,17,19] for a more in depth study
of fractional calculus and fractional differential equations.

Let B be a Banach space over R. A closed nonempty subset P of B is said to be a
cone provided

(i) αu+ βv ∈ P for all u, v ∈ P and all α, β ≥ 0 and
(ii) u ∈ P and −u ∈ P implies u = 0.
Cones generate a natural partial ordering on a Banach space. Let P be a cone in a

real Banach space B. If u, v ∈ B, u � v if v − u ∈ P, u ≺ v if v − u ∈ P, u 6= v, and
u 6� v if v − u /∈ P. If both M,N : B → B are continuous mappings, M � N if for
all u ∈ P, Mu � Nu. The relations N ≺ M and N 6� M are defined similarly. The
notation �, � and 6� define the reverse situations.

Definition 2.2. An operator L ∈ LC(B), where LC(B) is the set of all linear compact
self-mappings of B, is said to be positive if L : P→ P and strongly positive if P◦ 6= ∅
and L : P \ {0} → P◦.

Definition 2.3. Let L ∈ LC(B) be positive. L is said to be lower bounded if
inf{‖Lu‖ : u ∈ P ∩ ∂B(0, 1)} > 0.

For all positive operators L ∈ LC(B), define the subsets
ΛL = {λ ≥ 0 : there exists u � 0B such that Lu � λu}

and
ΓL = {λ ≥ 0 : there exists u � 0B such that Lu � λu}.

The proof of the following lemma can be found in [3].

Lemma 2.1. Let L ∈ LC(B) be strongly positive. Then
r(L) = sup ΛL = inf ΓL.

Definition 2.4. A positive operator L ∈ LC(B) is said to be a strong positive-like
operator if r(L) = sup ΛL = inf ΓL > 0.

The following two theorems are the model for which our main result is based. The
proofs can be found in the work of Benmezai, Chentout, and Henderson [3]. The
first deals with nonexistence of positive fixed points and the second with existence of
positive fixed points.

Theorem 2.1. Let T : P → P be a continuous mapping and let L ∈ LC(B) be a
strongly positive-like operator. If either

r(L) > 1 and Tu � Lu, for all u ∈ P,

or
r(L) < 1 and Tu � Lu, for all u ∈ P,

then T has no fixed points in P.
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Theorem 2.2. Let T : P → P be a completely continuous mapping and assume
that there exist two strongly positive-like operators L1, L2 ∈ Lc(B) and two functions
F1, F2 : P → P such that L1 is lower bounded on P, r(L2) < 1 < r(L1), and for all
u ∈ P

L1u− F1u � Tu � L2u+ F2u.

If either

F1u = o(‖u‖) as u→∞ and F2u = o(‖u‖) as u→ 0,

or
F1u = o(‖u‖) as u→ 0 and F2u = o(‖u‖) as u→∞,

then T has a fixed point in P.

3. Eigenvalue Criteria

Let E = C[0, 1] be the Banach space of continuous functions with the usual supre-
mum norm ‖u‖ = maxt∈[0,1] |u(t)|. Define the Banach space X as

X =
{
u ∈ C[0, 1] : lim

t→0

u(t)
tα−1 exists

}
endowed with the norm

‖u‖X = sup
t∈[0,1]

∣∣∣∣∣u(t)
tα−1

∣∣∣∣∣ .
Fix δ ∈ (0, 1). Define the cones

E+ ={u ∈ E : u(t) ≥ 0 for all t ∈ [0, 1]},
P ={u ∈ E+ : u(t) ≥ δα−1‖u‖0 for all t ∈ [δ, 1]}

and
X+ = {u ∈ X : u(t) ≥ 0 for all t ∈ [0, 1]}.

Define the sets
L1

+ = {m ∈ L1(0, 1) : m(t) ≥ 0 a.e. t ∈ [0, 1]}
and

L1
++ = {m ∈ L1

+ : m > 0 on a subset of positive measure}.
We also introduce the subset S ⊂ X by

S =
{
u ∈ X : u(t) > 0 for all t ∈ (0, 1] and lim

t→0

u(t)
tα−1 > 0

}
.

The following theorem is given in [3].

Lemma 3.1. S is open in X.
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The Green’s function for −Dα
0+u = 0 satisfying the boundary conditions (1.2) is

given by (see, for example, [5])

(3.1) G(t, s) =


tα−1(1−s)α−1−β

Γ(α) − (t−s)α−1

Γ(α) , 0 ≤ s < t ≤ 1,
tα−1(1−s)α−1−β

Γ(α) , 0 ≤ t ≤ s < 1.

Therefore, u is a solution of (1.1), (1.2) if and only if

u(t) =
∫ 1

0
G(t, s)f(s, u(s))ds, 0 ≤ t ≤ 1.

Define v(t, s) by

v(t, s) =


(1−s)α−1−β

Γ(α) − (1− s
t )
α−1

Γ(α) , 0 ≤ s < t ≤ 1,
(1−s)α−1−β

Γ(α) , 0 ≤ t ≤ s < 1.

Notice G(t, s) = tα−1v(t, s). The following lemma gives sign properties of G and v.
The proof of (1)–(3) of the following lemma can be found in [15]. The proof of (4)

is trivial.

Lemma 3.2. Let G be defined as in (3.1).
(1) G(t, s) ∈ C ([0, 1]× [0, 1)) with G(t, s) > 0 for (t, s) ∈ (0, 1]× (0, 1).
(2) tα−1G(1, s) ≤ G(t, s) ≤ G(1, s) for (t, s) ∈ [0, 1]× [0, 1).
(3) G(t, s) ≥ δα−1G(1, s) for all t ∈ [δ, 1] and all s ∈ [0, 1).
(4) v(0, s) > 0 for all s ∈ [0, 1).

Let m ∈ L1
++. Define Lm : E → E by

Lmu(t) =
∫ 1

0
G(t, s)m(s)u(s)ds.

For u ∈ X, define LXx : X → E by LXmu = Lmu.

Lemma 3.3. For m ∈ L1
++, the operator Lm is compact and positive. Moreover,

Lm : E+ → P.

Proof. The proof that Lm is compact is standard. Let u ∈ E+. Then u(t) ≥ 0 for
t ∈ [0, 1]. Since m > 0 for a.e. t ∈ [0, 1], then by Lemma 3.2 (1),

Lmu(t) =
∫ 1

0
G(t, s)m(s)u(s)ds ≥ 0.

So Lmu ∈ E+ and Lm : E+ → E+. Furthermore, Lemma 3.2 (3) gives that
‖Lmu‖ = |Lmu(1)|0

and

Lmu(t) =
∫ 1

0
G(t, s)m(s)u(s)ds ≥ δα−1

∫ 1

0
G(1, s)m(s)u(s)ds = δα−1‖Lmu‖.

So Lmu ∈ P and Lm : E+ → P. �
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Lemma 3.4. For m ∈ L1
++, Lm is a strongly positive-like operator which is lower

bounded on the cone P.

Proof. We start by proving that for m ∈ L1
+[0, 1] ∩ C[0, 1], LXm is a strongly positive

operator. Using the Arzelà-Ascoli theorem, similar to the argument in [3], we have
that LXm compact. Next, let u ∈ X+ \ {0}. For all t ∈ (0, 1], by Lemma 3.2,

LXmu(t) =
∫ 1

0
G(t, s)m(s)u(s)ds > 0.

Also,

lim
t→0

LXmu(t)
tα−1 =

∫ 1

0
v(0, s)m(s)u(s)ds > 0.

So LXm : X \ {0} → S ⊂ X+◦. So LXm is strongly positive, and by Lemma 2.1,
r(LXm) = sup ΛLXm

= inf ΓLXm .
Since LXm is an embedding of the operator Lm into X, ΛLXm

⊂ ΛLm and ΓLXm ⊂ ΓLm .
Next, let λ ≥ 0 and u ∈ E+ \ {0} be such that Lmu � λu. Then, from an argument
similar to that above, U = Lmu ∈ X+ \ {0}. Now

LXmU = LXm (Lmu) = Lm (Lmu) � λLmU.

So, λ ∈ ΛLXm
, and ΛLXm

= ΛLm . Similarly, ΓLXm = ΓLm . So,
r(Lm) = sup ΛLm = inf ΓLm .

So, Lm is a strongly positive-like operator.
Finally, for u ∈ P,

‖Lmu‖ = Lmu(1) =
∫ 1

0
G(1, s)m(s)u(s)ds ≥ δα−1

∫ 1

0
G(1, s)m(s)δα−1ds‖u‖.

So Lm is lower bounded on the cone P.
�

4. Existence and Nonexistence Results

Define the operator T : E+ → E by

Tu(t) =
∫ 1

0
G(t, s)f(s, u(s))ds.

Notice that u is a solution of the boundary value problem (1.1), (1.2) if and only if u
is a fixed point of T .

We have the following lemma.

Lemma 4.1. T : E+ → E is compact and T : E+ → P.

Proof. The fact that T is compact is a standard application of the Arzela-Ascoli
theorem. Next, let u ∈ E+. Then by Lemmma 3.2 (1) and (3),

Tu(t) =
∫ 1

0
G(t, s)f(s, u(s))ds ≥ 0,
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and, since ‖Tu‖ = Tu(1),

Tu(t) =
∫ 1

0
G(t, s)f(s, u(s))ds ≥ δα−1

∫ 1

0
G(1, s)f(s, u(s))ds = δα−1‖u‖.

So, T : E+ → P. �

Let m ∈ L1
++. Consider the linear boundary value problem

(4.1) Dα
0+u(t) + µm(t)u(t) = 0, a.e. t ∈ (0, 1),

satisfying the boundary conditions (1.2), where µ is a real parameter.

Lemma 4.2. For all m ∈ L1
++, (4.1), (1.2) admit a unique positive eigenvalue µα(m).

Proof. Now (µ, u) is a solution of (4.1), (1.2) if and only if Lmu = µ−1u. Lemma
3.4 gives that µ−1 = r(Lm) is the unique positive eigenvalue of Lm. Thus, µα(m) =
1/r(Lm) is the unique positive eigenvalue of (4.1), (1.2). �

Theorem 4.1. Assume that there exists m ∈ L1
+ such that one of the following

hypotheses is satisfied:
(4.2) µα(m) < 1 and f(t, u) ≥ m(t)u, for all u ≥ 0 and a.e. t ∈ (0, 1),

(4.3) µα(m) > 1 and f(t, u) ≤ m(t)u, for all u ≥ 0 and a.e. t ∈ (0, 1),
Then (1.1), (1.2) has no positive solutions.

Proof. Let u ∈ P, and suppose (4.2) holds. Then f(t, u) ≥ m(t)u, which implies
Tu � Lmu. But Lm is a strongly positive-like operator with r(Lm) = 1/µα(m) > 1.
Theorem 2.1 is therefore satisfied and T has no positive fixed points. A similar
argument can be made if (4.3) holds. �

Theorem 4.2. Assume that there exist m1,m2 ∈ L1
++, q1, q2 ∈ L1

+, and two functions
φ1, φ2 : [0,∞) → [0,∞) such that µα(m1) < 1 < µα(m2) and for all u ≥ 0 and a.e.
t ∈ (0, 1),
(4.4) m1(t)u− q1(t)φ1(u) ≤ f(t, u) ≤ m2(t)u+ q2(t)φ2(u).
If either
(H1) φ1(u) = o(‖u‖) as u→∞, φ2(u) = o(‖u‖) as u→ 0, φ1 is nondecreasing, and

φ2 is nondecreasing near 0 or
(H2) φ1(u) = o(‖u‖) as u→ 0, φ2(u) = o(‖u‖) as u→∞, φ1 is nondecreasing near

0, and φ2 is nondecreasing,
then (1.1), (1.2) has at least one positive solution.

Proof. For i = 1, 2, let Fi : P→ P be defined by

Fiu(t) =
∫ 1

0
G(t, s)φi(u(s))ds.

From (4.4), we have that for all u ∈ P,
Lm1u− F1u � Tu � Lm2u+ F2u,
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with
r(Lm2) = 1

µα(m2) < 1 < r(Lm1) = 1
µα(m1) .

Suppose (H1) holds. Then, we have,
‖Fiu‖∞
‖u‖∞

= sup
t∈[0,1]

Fiu(t)
‖u‖∞

≤
∫ 1

0
G(1, s)qi(s)

φi(u(s))
‖u‖∞

ds ≤
∫ 1

0
G(1, s)qi(s)ds,

which progresses to our conclusion,
F1u = o(‖u‖) as u→∞ and F2u = o(‖u‖) as u→ 0.

We therefore have from Theorem 2.2 that T has a fixed point, which finally is a
positive solution to (1.1), (1.2). The case for (H2) is similar. �

5. An Extension to a Higher Order Problem

In this section, we consider the fractional boundary value problem (1.3), (1.4),
motivated by the two-point Lidstone boundary value problem for ordinary differential
equations. Define G0(t, s) = G(t, s) from (3.1) to be the Green’s function for −Dα

0+u =
0, u(i)(0) = 0, i = 0, 1, . . . ,m − 2, Dβ

0+u(1) = 0. Denote by Gn(t, s) the Green’s
function for the BVP −Dγ

0+u = 0, (1.4).
The construction for Gn(t, s) is similar to the construction in [6] and is given here

for completeness. Define Gk(t, s) by

(5.1) Gk(t, s) = −
∫ 1

0
Gk−1(t, r)Gconj(r, s)dr,

k = 2, . . . , n− 1, where

(5.2) Gconj(t, s) =
{
t(1− s), 0 ≤ t < s ≤ 1,
s(1− t), 0 ≤ s < t ≤ 1,

is the Green’s function for −u′′ = 0, u(0) = u(1) = 0. Thus the Green’s function
Gn(t, s) for (1.3), (1.4) is of the form

Gn(t, s) = −
∫ 1

0
Gn−1(t, r)Gconj(r, s)dr,

where Gn−1(t, s) is the Green’s function for
Dγ−2

0+ u(t) + h(t) = 0, 0 < t < 1,
u(i)(0) = 0, i = 0, 1, . . . ,m− 2, Dβ

0+u(1) = 0,
Dγ−2l

0+ u(0) = Dγ−2l
0+ u(1) = 0, l = 1, . . . , n− 2.

To see this, for the base case, first consider the linear differential equation
Dα+2

0+ u(t) + h(t) = 0,
satisfying the boundary conditions

u(i)(0) = 0, i = 0, 1, . . . ,m− 2, Dβ
0+u(1) = 0,
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D
γ−2(n−1)
0+ u(0) = 0, D

γ−2(n−1)
0+ u(1) = 0.

Make the change of variable v(t) = Dα+2−2
0+ u(t). Then D2v(t) = D2Dα+2

0+ u(t) =
Dα

0+u(t) = −h(t). Since α = γ−2n+ 2, v(0) = Dα
0+u(0) = 0 and v(1) = Dα

0+u(1) = 0.
Thus v satisfies the Dirichlet boundary value problem

v′′ + h(t) = 0, 0 < t < 1,
v(0) = 0, v(1) = 0.

Also, u now satisfies a lower order boundary value problem,

Dα
0+u(t) = v(t), 0 < t < 1,

u(i)(0) = 0, i = 0, 1, . . . ,m− 2, Dβ
0+u(1) = 0,

and so,

u(t) =
∫ 1

0
G0(t, s)(−v(s))ds

=
∫ 1

0

(
−
∫ 1

0
G0(t, s)Gconj(s, r)ds

)
h(r)dr

=
∫ 1

0
G1(t, s)h(s)ds,

where G1(t, s) = −
∫ 1

0 G0(t, r)Gconj(r, s)dr.
For the inductive step, consider

Dγ
0+u(t) + k(t) = 0,

satisfying (1.4). The argument here is similar to above. Make the change of variable
v(t) = Dγ−2

0+ u(t). Thus D2v(t) = D2Dγ−2
0+ u(t) = Dγ

0+u(t) = −k(t). Since v(0) =
Dγ−2

0+ u(0) = 0 and v(1) = Dγ−2
0+ u(1) = 0, then v satisfies the Dirichlet boundary value

problem

v′′ + k(t) = 0, 0 < t < 1,
v(0) = 0, v(1) = 0.

Here u now satisfies a lower order boundary value problem,

Dγ−2
0+ u(t) = v(t), 0 < t < 1,

u(i)(0) = 0, i = 0, 1, . . . ,m− 2, Dβ
0+u(1) = 0,

Dγ−2l
0+ u(0) = 0, Dγ−2l

0+ u(1) = 0, l = 2, . . . , k,

and by the induction hypothesis,

u(t) =
∫ 1

0
Gn−1(t, s)(−v(s))ds

=
∫ 1

0

(
−
∫ 1

0
Gn−1(t, s)Gconj(s, r)ds

)
k(r)dr
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=
∫ 1

0
Gn(t, s)k(s)ds,

where Gn(t, s) = −
∫ 1

0 Gn−1(t, r)Gconj(r, s)dr.
Define vn(t, s) so that tα−1vn(t, s) = Gn(t, s). The following lemma follows from

Lemma 3.2.

Lemma 5.1. Let Gn be defined inductively as above.
(1) Gn(t, s) ∈ C ([0, 1]× [0, 1)) with (−1)nGn(t, s) > 0 for (t, s) ∈ (0, 1]× (0, 1).
(2) tα−1(−1)nG(1, s) ≤ (−1)nG(t, s) ≤ (−1)nG(1, s) for (t, s) ∈ [0, 1]× [0, 1).
(3) (−1)nG(t, s) ≥ (−1)nδα−1G(1, s) for all t ∈ [δ, 1] and all s ∈ [0, 1).
(4) (−1)nv(0, s) ≥ 0 for all s ∈ [0, 1).

Proof. We start by showing (1) holds. For the base case, consider that G0(t, s) =
G(t, s) from Lemma 3.2 which does belong to C ([0, 1]× [0, 1]) and is positive. Since

G1(t, s) = −
∫ 1

0
G0(t, r)Gconj(r, s)ds,

and Gconj(r, s) ∈ C([0, 1] × [0, 1]) and Gconj(t, s) > 0, it follows that G1(t, s) ∈
C([0, 1] × [0, 1]) and −G1(t, s) > 0. For the inductive step, assume Gn−1(t, s) ∈
C([0, 1] × [0, 1)) and (−1)n−1Gn−1(t, s) > 0 for (t, s) ∈ (0, 1] × (0, 1). Then by
definition

(−1)nGn(t, s) = −
∫ 1

0
(−1)n−1Gn−1(t, r)Gconj(r, s)dr,

we see that since Gconj(t, s) ∈ C([0, 1]× [0, 1]) and Gconj(t, s) > 0 for (t, s) ∈ (0, 1)×
(0, 1), then (−1)nGn(t, s) > 0 for (t, s) ∈ (0, 1]× (0, 1) and Gn(t, s) ∈ C([0, 1]× [0, 1)).

For (2), similar to the first item, the base case follows from Lemma 3.2. Since for
G0(t, s) = G(t, s), we have

tα−1G0(1, s) ≤ G0(t, s) ≤ G0(1, s),

and by the definition of G1(t, s) we have

−tα−1G1(1, s) =
∫ 1

0
tα−1G0(1, r)Gconj(r, s)dr

≤
∫ 1

0
G0(t, r)Gconj(r, s)dr

= −G1(t, s)

≤
∫ 1

0
G0(1, r)Gconj(r, s)dr

= −G1(1, s).

For the inductive step, in a similar fashion, assume

tα−1(−1)n−1Gn−1(1, s) ≤ (−1)n−1Gn−1(t, s) ≤ (−1)n−1Gn−1(1, s).
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Then by the definition of Gn(t, s), we have

tα−1(−1)nGn(1, s) = (−1)n+1tα−1
∫ 1

0
Gn−1(1, r)Gconj(r, s)dr

≤ (−1)n+1
∫ 1

0
Gn−1(t, r)Gconj(r, s)dr

= (−1)nGn(t, s)

≤ (−1)n+1
∫ 1

0
Gn−1(1, r)Gconj(r, s)dr

= (−1)nGn(1, s).

Notice that (3) is a direct result of (2), and a proof of (4) can similarly be obtained
using induction. �

Define the sets

Ln1
+ = {m ∈ L1(0, 1) : (−1)nm(t) ≥ 0 a.e. t ∈ [0, 1]}

and

Ln1
++ = {m ∈ Ln1

+ : (−1)nm(t) > 0 on a subset of positive measure}.

Let m ∈ Ln1
++. Define Lnm : E → E by

Lnmu(t) =
∫ 1

0
Gn(t, s)m(s)u(s)ds.

Define LnXm : X → E by, for u ∈ X, LnXmu = Lnmu.

Lemma 5.2. For m ∈ Ln1
+, the operator Lnm is compact and positive. Moreover,

Lnm : E+ → P.

Proof. Let u ∈ E+. Then

Lnmu(t) =
∫ 1

0
Gn(t, s)m(s)u(s)ds

=
∫ 1

0
(−1)nGn(t, s)|m(s)|u(s)ds > 0,

and, since ‖Lnmu‖ = |Lnmu(1)|0,

Lnmu(t) =
∫ 1

0
Gn(t, s)m(s)u(s)ds

=
∫ 1

0
(−1)nGn(t, s)|m(s)|u(s)ds

≥ δα−1
∫ 1

0
(−1)nGn(1, s)|m(s)|u(s)ds

= δα−1‖Lnmu‖,

concluding the proof. �
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Lemma 5.3. For m ∈ Ln1
++, Lnm is a strongly positive-like operator which is lower

bounded on the cone P.

Proof. As in the proof of Lemma 3.4, if we can show Ln
X
m : X+ \ {0} → S ⊂ X+◦, the

result follows. Let u ∈ X+. First, notice for t ∈ (0, 1],

Ln
X
mu(t) =

∫ 1

0
(−1)nGn(t, s)|m(s)|u(s)ds > 0.

Again, since m and vn(0, s) have the same sign,

lim
t→0

Lm
X
n u(t)
tα−1 =

∫ 1

0
(−1)nvn(0, s)|m(s)|u(s)ds > 0.

So LXm : X \ {0} → S ⊂ X+◦, and the result follows. �

Define the operator Tn : E+ → E by

Tnu(t) =
∫ 1

0
Gn(t, s)(−1)ng(s, u(s))ds.

Notice that u is a solution of the boundary value problem (1.3), (1.4) if and only if u
is a fixed point of Tn.

The following lemma is a direct result of the Arzelà-Ascoli theorem and Lemma
5.1.

Lemma 5.4. Tn : E+ → E is compact and Tn : E+ → P.

The proofs of the main results are similar to the proofs from Section 4 and are
therefore omitted.

Let m ∈ Ln1
++. Consider the linear boundary value problem

(5.3) Dγ
0+u(t) + µm(t)u(t) = 0, a.e. t ∈ (0, 1),

satisfying the boundary conditions (1.4), where µ is a real parameter.

Lemma 5.5. For all m ∈ Ln1
++, (5.3), (1.4) admits a unique positive eigenvalue

µα(m).

Theorem 5.1. Assume that there exists m ∈ Ln1
+ such that one of the following

hypotheses is satisfied.
µα(m) < 1 and (−1)ng(t, u) ≥ m(t)u, for all u ≥ 0 and a.e. t ∈ (0, 1),(5.4)
µα(m) > 1 and (−1)ng(t, u) ≤ m(t)u, for all u ≥ 0 and a.e. t ∈ (0, 1),(5.5)

then (1.3), (1.4) has no positive solutions.

Theorem 5.2. Assume that there exist m1,m2 ∈ Ln1
++, q1, q2 ∈ Ln1

+, and two func-
tions φ1, φ2 : [0,∞)→ [0,∞) such that µα(m1) < 1 < µα(m2) and, for all u ≥ 0 and
a.e. t ∈ (0, 1)
(5.6) m1(t)u− q1(t)φ1(u) ≤ (−1)ng(t, u) ≤ m2(t)u+ q2(t)φ2(u).
If either
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(H1) φ1(u) = o(‖u‖) as u→∞, φ2(u) = o(‖u‖) as u→ 0, φ1 is nondecreasing, and
φ2 is nondecreasing near 0 or

(H2) φ1(u) = o(‖u‖) as u→ 0, φ2(u) = o(‖u‖) as u→∞, φ1 is nondecreasing near
0, and φ2 is nondecreasing,

then (1.3), (1.4) has at least one positive solution.

We conclude the paper by remarking that the hypotheses of Theorems 4.2 and 5.2
are similar to the hypotheses of the main theorem in [3]. Therefore, the examples of
nonlinearities provided in that work could be easily modified for the problems given
in this paper.
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