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A COUPLED SYSTEM OF NONLINEAR LANGEVIN
FRACTIONAL q-DIFFERENCE EQUATIONS ASSOCIATED WITH
TWO DIFFERENT FRACTIONAL ORDERS IN BANACH SPACE

ABDELLATIF BOUTIARA1

Abstract. In this research article, we study the coupled system of nonlinear
Langevin fractional q-difference equations associated with two different fractional
orders in Banach Space. The existence, uniqueness, and stability in the sense of
Ulam are established for the proposed system. Our approach is based on the tech-
nique of measure of noncompactness combined with Mönch fixed point theorem, the
implementation Banach contraction principle fixed point theorem, and the employ-
ment of Urs’s stability approach. Two examples illustrating the effectiveness of the
theoretical results are presented.

1. Introduction

In understanding and developing a large class of systems, it is apparent that re-
searchers and scientists have resorted to nature. Natural phenomena can be well
understood both quantitatively and qualitatively. Mathematics plays a fundamental
role in this respect because it is the science of patterns and relationships. Attempting
to understand the quantitative and qualitative behavior of nature, mathematicians
find out that evolution revolves from integer to fraction. Number theory, starting
from integer and reaching to fractional as a result of division operation and eventu-
ally converging to real numbers, is well used to account for Quantitative behavior.
Calculus which describes how things change offers a background for simulating struc-
tures undergoing change, and a means to infer the predictions of such structures.
All these indicated that integer order calculus is a subcategory of fractional calculus
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which is defined as the generalization of classical calculus to orders of integration
and differentiation not necessarily integer. New and many derivatives and fractional
integrals theories have arisen since the end of the 17 century to the present day. The
theory of derivation and fractional integration has long been regarded as a branch of
mathematics without any real or practical explanation; it was considered as an ab-
stract containing only little useful mathematical manipulations. During the past three
decades, considerable interest was carried to fractional calculus by the application of
these concepts in various fields of physics, engineering, biology, and mechanics, etc.
in a much better form as compared to ordinary differential operators, which are local.
To get a couple of developments about the theory of fractional differential equations,
one can allude to the monographs of Hilfer [33], Kilbas et al. [36], Miller and Ross
[39], Oldham [40], Pudlubny [41], Tarasov [45], Abbas et al. [1] and the references
therein.

Fractional q-difference equations started toward the start of the nineteenth century
[4, 30] and got big interested consideration lately and have attracted a large number
of scientists and researchers [6, 14, 31]. Some fascinating insights concerning initial
and boundary value problem of q-difference and Fractional q-difference equations can
be found in [2, 7–11,18,24,31] and the references cited therein.

The Langevin equation (first formulated by Langevin in 1908 to give an elaborate
description of Brownian motion) is found to be an effective tool to describe the
evolution of physical phenomena in fluctuating environments [37]. Although the
existing literature on solutions of fractional Langevin equations is quite wide (see,
for example, [12, 13, 21, 46]). But, to the best of the author’s knowledge, there is no
literature to research the existence of weak solutions for fractional Langevin equations
involving two fractional orders in Banach Spaces, so the research of this paper is new.

At the present day, there are numerous results on the existence and uniqueness
of solutions for fractional differential equations. For greater details, the readers are
cited the previous research [22,23,29, 36] and the references therein. However, due to
the fact that in lots of conditions, which include nonlinear analysis and optimization,
locating the exact solution of differential equations is almost tough or impossible,
we don’t forget approximate solutions. It is essential to observe that only stable
approximate solutions are proper. various approaches of stability analysis are adopted
for this reason. The HU-type stability concept has been taken into consideration
in the severa literature. The said stability analysis is an clean and easy manner on
this regard. This type idea of stability become formulated for the primary time by
means of Ulam [47], and then the next year it become elaborated with the aid of
Hyers [34, 48]. Impressive considerations have been provided to the investigation of
the Ulam-Hyers (UH) stability of a wide range of FDEs, see [3, 16,28,43].
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In this paper deals with the existence, uniqueness and Urs’s stability of solutions
for the following Langevin fractional q-difference system:

(1.1)



Dβi
q

(
Dαi
q + λi

)
$(ς) = fi(ς,$1(ς), $2(ς)), ς ∈ J = [0, T ],

$i(0) = 0,
$i(T ) + λiI

αi
q $i(T ) = 0,

Dαi
q $i(ξi) + λi$i(ξi) = 0, ξi ∈ ] 0, T ] ,

where Dε
q is the fractional q-derivative of the Reimann-Liouville type of order ε ∈

{αi, βi} such that αi ∈ (0, 1], βi ∈ (1, 2] and Iαi
q is the fractional q-integral of the

Reimann-Liouville type, fi : J×E2 → E are continuous functions, λi are real constants.
In this paper, we present existence results for the problem (1.1) using a method

involving a measure of noncompactness and a fixed point theorem of Mönch type.
That technique turns out to be a very useful tool in existence for several types of
integral equations, details are found in Akhmerov et al. [15], Alvàrez [19], Banas̀ et
al. [20], Benchohra et al. [22, 23], Boutiara et al. [25–27], Mönch [38], Szufla [44] and
the references therein.

Here is a brief outline of the paper. The Section 2 provides the definitions and
preliminary results that we will need to prove our main results and present an auxiliary
lemma that provides solution representation for the solutions of system (1.1). In
Section 3, we establish existence and uniqueness for stability in the sense of Ulam for
system (1.1). In Section 4, we give some examples to illustrate the obtained results.

2. Preliminaries and Lemmas

We start this section by introducing some necessary definitions and basic results
required for further developments.

In what follows, we recall some elementary definitions and properties related to
fractional q-calculus. For a ∈ R, we put

[a]q = 1− qa
1− q .

The q-analogue of the power (a− b)n is expressed by

(a− b)(0) = 1, (a− b)(n) =
n−1∏
k=0

(
a− bqk

)
, a, b ∈ R, n ∈ N.

In general,

(a− b)(α) = aα
∞∏
k=0

(
a− bqk

a− bqk+α

)
, a, b, α ∈ R.

Definition 2.1 ([35]). The q-gamma function is given by

Γq(α) = (1− q)(α−1)

(1− q)α−1 , α ∈ R \ {0,−1,−2, . . .}.
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The q-gamma function satisfies the classical recurrence relationship

Γq(1 + α) = [α]qΓq(α).

Definition 2.2 ([35]). For any α, β > 0, the q-beta function is defined by

Bq(α, β) =
∫ 1

0
f (α−1)(1− qf)(β−1)dqf, q ∈ (0, 1),

where the expression of q-beta function in terms of the q-gamma function is

Bq(α, β) = Γq(α)Γq(β)
Γq(α + β) .

Definition 2.3 ([35]). Let f : J → R be a suitable function. We define the q-
derivative of order n ∈ N of the function by D0

qf(ς) = f(ς),

Dqf(ς) := D1
qf(ς) = f(ς)− f(qς)

(1− q)ς , ς 6= 0, Dqf(0) = lim
ς→0

Dqf(ς),

and
Dn
q f(ς) = DqD

n−1
q f(ς), ς ∈ I, n ∈ {1, 2, . . .}.

Set Iς := {ςqn : n ∈ N} ∪ {0}.

Definition 2.4 ([35]). For a given function f : Iς → R, the expression defined by

Iqf(ς) =
∫ ς

0
f(s) dqs =

∞∑
n=0

ς(1− q)qnf(tqn),

is called q-integral, provided that the series converges.
We note that DqIqf(ς) = f(ς), while if f is continuous at 0, then

IqDqf(ς) = f(ς)− f(0).

Definition 2.5 ([6]). The integral of a function f : J → R defined by

I0
qf(ς) = f(ς),

and

Iαq f(ς) =
∫ ς

0

(ς − qs)(α−1)

Γq(α) f(s) dqs, ς ∈ J,

is called Riemann-Liouville-fractional q-integral of order α ∈ R+.

Lemma 2.1 ([42]). Let α ∈ R+ and β ∈ (−1,∞). One has

Iαq ς
β = Γq(β + 1)

Γq(α + β + 1)ς
α+β, β ∈ (−1,∞), α ≥ 0, ς > 0.

In particular, if f ≡ 1, then

Iαq 1(ς) = 1
Γq(1 + α)ς

(α), for all ς > 0.
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Definition 2.6 ([14]). The Riemann-Liouville fractional q-derivative of order α ∈ R+
of a function f : J → R is defined by D0

qf(ς) = f(ς) and

Dα
q f(ς) = D[α]

q I[α]−α
q f(ς) = 1

Γq(n− α)

∫ ς

0

f(s)
(ς − qs)α−n+1dqs,

where [α] is the integer part of α.

Lemma 2.2 ([32]). Let α > 0 and n ∈ N where [α] denotes the integer part of α.
Then, the following fundamental identity holds

IαqD
n
q f(ς) = Dn

q I
α
q f(ς)−

α−1∑
k=0

ςα−n+k

Γq(α + k − n+ 1)(Dk
qh)(0).

Lemma 2.3 ([17]). Let $ be a function defined on J and suppose that α, β are two
real nonegative numbers. Then the following hold:

Iαq I
β
q f(ς) =Iα+β

q f(ς) = Iβq I
α
q f(ς),

Dα
q I

α
q f(ς) =f(ς).

Now let us recall some fundamental facts of the notion of Kuratowski measure of
noncompactness.

Definition 2.7 ([15,20]). The mapping κ : MU → [0,∞) for Kuratowski measure of
non-compactness is defined as:

κ(B) = inf
{
ε > 0 : B can be covered by finitely many sets with diameter ≤ ε

}
.

Proposition 2.1. The Kuratowski measure of noncompactness satisfies some proper-
ties [15, 20]:

(a) A ⊂ B⇒ κ(A) ≤ κ(B);
(b) κ(A) = 0 if and only if A is relatively compact;
(c) κ(A) = κ(A) = κ(conv(A)), where A and conv(A) represent the closure and

the convex hull of A, respectively;
(d) κ(A + B) ≤ κ(A) + κ(B);
(e) κ(λA) = |λ|κ(A), λ ∈ R.

Definition 2.8. A map f : J × E → E is said to be Caratheodory if
(i) ς 7→ f(ς,$) is measurable for each $ ∈ E;
(ii) $ 7→ F (ς,$) is continuous for almost all ς ∈ J .

Proposition 2.2. For a given set V of functions ω : J → E, let us denote by
V (ς) = {ω(ς) : ω ∈ V }, ς ∈ J,

and
V (J) = {ω(ς) : ω ∈ V, ς ∈ J}.

Let us now recall Mönch’s fixed point theorem and an important lemma.
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Theorem 2.1 ([5,38,44]). Let D be a bounded, closed and convex subset of a Banach
space such that 0 ∈ D, and let N be a continuous mapping of D into itself. If the
implication

(2.1) V = convN(V ) or V = N(V ) ∪ {0} ⇒ κ(V ) = 0,
holds for every subset V of D, then N has a fixed point.

Lemma 2.4 ([44]). Let D be a bounded, closed and convex subset of the Banach space
U, G a continuous function on J × J and f a function from J × E −→ E which
satisfies the Caratheodory conditions, and suppose there exists p ∈ L1(J,R+) such
that, for each ς ∈ J and each bounded set B ⊂ E, we have

lim
h→0+

κ(f(Jς,h ×B)) ≤ p(ς)κ(B),

where Jς,h = [ς − h, ς] ∩ J.
If V is an equicontinuous subset of D, then

κ
({∫

J
G(s, ς)f(s,$(s))ds : $ ∈ V

})
≤
∫
J
‖G(ς, s)‖p(s)κ(V (s))ds.

3. Main Results

Before starting and proving our main result we introduce the following auxiliary
lemma.

Lemma 3.1. Let σi ∈ C, αi ∈ (0, 1], βi ∈ (1, 2], i = 1, 2. Then the boundary value
problem

(3.1)



Dβi
q

(
Dαi
q + λi

)
$i(ς) = σi(ς), ς ∈ (0, T ),

$i(0) = 0,
$i(T ) + λiI

αi
q $i(T ) = 0,

Dαi
q $i(ξi) + λi$i(ξi) = 0, ξi ∈ ] 0, T ] ,

has a unique solution defined by

(3.2) $i(ς) + λiI
αi
q $i(ς) = Iαi+βi

q σi(ς) + µi(ς)Iβi
q σi(ξi) + νi(ς)Iαi+βi

q σi(T ), i = 1, 2,

where

(3.3) µ(ς) = Γq(β − 1)
Γq(β + α− 1)

[
(β − 1)|ω4|ςα+β−1

(β + α− 1)|∆| −
|ω3|ςα+β−2

|∆|

]
and

(3.4) ν(ς) = Γq(β − 1)
Γq(β + α− 1)

[
|ω1|ςα+β−2

|∆| − (β − 1)|ω2|ςα+β−1

(β + α− 1)|∆|

]
,

with

∆ =ω2ω3 − ω1ω4 6= 0,(3.5)
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ω1 = Γ(β)
Γ(β + α)T

β+α−1, ω3 = ξβ−1,

ω2 = Γ(β − 1)
Γ(β + α− 1)T

β+α−2, ω4 = ξβ−2.

Proof. Applying the integrator operator Iβ to (3.1) and using the Lemma 2.1 we get

(3.6) (Dα + λ)$(ς) = c1ς
β−1 + c2ς

β−2 + Iβσ(ς), ς ∈ (0, T ].

We apply again the operator Iα and use the results of Lemmas 2.1 to get the general
solution representation of problem (3.1)
(3.7)

$(ς) =Iα+βσ(ς)− λIα$(ς) + c0ς
α−1 + c1

Γ(β)
Γ(β + α)ς

β+α−1 + c2
Γ(β − 1)

Γ(β + α− 1)ς
β+α−2,

where c0, c1, c2 ∈ R. By using the boundary conditions in problem (3.1) and the above
equation, we observe that c0 = 0 and

(3.8) c1
Γ(β)

Γ(β + α)T
β+α−1 + c2

Γ(β − 1)
Γ(β + α− 1)T

β+α−2 + Iα+βσ(T ) = 0.

Moreover, we obtain

(3.9) c1ξ
β−1 + c2ξ

β−2 + Iβσ(ξ) = 0.

Also, by using (3.5), (3.8) and (3.9) can be written as

c1ω1 + c2ω2 =0,
c1ω3 + c2ω4 =0.

Solving the last two in c1 and c2, we end up with

c1 =ω4

∆ Iα+βσ(T )− ω4

∆ Iβσ(ξ),

c2 =ω1

∆ Iβσ(ξ)− ω3

∆ Iα+βσ(T ).

Substituting c1 and c2 in (3.7), we get the desired solution representation (3.2). Besides
and by the help of the results in Lemmas 2.1 one can easily figure out that (3.2) solves
problem (3.1). This finishes the proof. �

We will need the following properties for the functions µ and ν defined in next
lemma.

Lemma 3.2. The functions µ and ν are continuous functions on J and satisfy the
following properties:

(1) µmax,i = max0≤ς≤T |µi(ς)|;
(2) νmax,i = max0<ς<T |ω(ς)|;
(3) µmax,i = max0≤ς≤T |µ′i(ς)|;
(4) νmax,i = max0<ς<T |ν ′i(ς)|.
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3.1. Existance result. In the following subsections, we establish the existence of
solutions for the (1.1) by applying Mönch fixed point theorems.

Consider the space of real and continuous functions U = C(J,E) space with the
norm

‖$‖∞ = sup{‖$(ς)‖ : ς ∈ J}.

Then the product space C := U×V defined by C = {($,ω) : $ ∈ U, ω ∈ V} is Banach
space under the norm

‖($,ω)‖C = ‖$‖∞ + ‖ω‖∞,

and MU represents the class of all bounded mappings in U.
Let L1(J,E) be the Banach space of measurable functions $ : J → E which are

Bochner integrable, equipped with the norm

‖$‖L1 =
∫
J
|$(ς)| dς.

In what follows, we are concerned with the existence of solutions of (1.1).

Definition 3.1. By a solution of the coupled system (1.1) we mean a coupled
measurable functions ($1, $2) ∈ C such that $i(0) = 0, $i(T ) + λiI

αi
q $i(T ) =

0 and Dαi
q $i(ξi) + λi$i(ξi) = 0, i = 1, 2, and the equations Dβi

q

(
Dαi
q + λi

)
$i(ς) =

fi(ς,$1(ς), $2(ς)) are satisfied on J .

In what follows, we present the solution representation associated with System
(1.1).

Lemma 3.3. Let σi ∈ U, i = 1, 2, be two given functions. Then, the following system
of fractional differential equations

(3.10)



Dβi
q

(
Dαi
q + λi

)
$i(ς) = σi(ς), ς ∈ (0, T ),

$i(1) = 0,
$i(T ) + λiI

αi
q $i(T ) = 0,

Dαi
q $i(ξi) + λi$i(ξi) = 0, ξi ∈ ] 0, T ] ,

is equivalent to the integral equation
(3.11)

$i(ς) + λiI
αi
q $i(ς) = Iαi+βi

q σi(ς) + µi(ς)Iβi
q σi(ξi) + νi(ς)Iαi+βi

q σi(T ), i = 1, 2.

Lemma 3.4. Assume that fi : J ×E2 → E is continuous. A function $(ς) solves the
system (1.1) if and only if it is a fixed-point of the operator G : C→ C defined by
(3.12)
Gi$i(ς) =Iαi+βi

q σi(ς)− λiIαi
q $i(ς) + µi(ς)Iβi

q σi(ξi) + νi(ς)Iαi+βi
q σi(T ), i = 1, 2.



A COUPLED SYSTEM OF NONLINEAR LANGEVIN FRACTIONAL q-DIFFERENCE EQUATIONS563

3.1.1. Existance result via Mönch fixed point theorem. We further will use the following
hypotheses.

(A1) For any i = 1, 2, fi : J × E2 → E satisfies the Caratheodory conditions.
(A2) There exists pi, qi ∈ L1(J,R+) ∩ C(J,R+), such that
‖f(ς,$1, $2)‖ ≤ pi(ς)‖$1‖+ qi(ς)‖$2‖, for ς ∈ J and each $i ∈ E, i = 1, 2.
(A3) For any ς ∈ J and each bounded measurable sets Bi ⊂ E, i=1,2, we have

lim
h→0+

κ(f(Jς,h ×B1, B2), 0) ≤ p1(ς)κ(B1) + q1(ς)κ(B2)

and
lim
h→0+

κ(0, f(Jς,h ×B1, B2)) ≤ p2(ς)κ(B1) + q2(ς)κ(B2),

where κ is the Kuratowski measure of compactness and Jς,h = [ς − h, ς] ∩ J .
Set

p∗i = sup
ς∈J

pi(ς), q∗i = sup
ς∈J

qi(ς), i = 1, 2.

Theorem 3.1. Assume that conditions (A1)-(A3) hold. If
(3.13) Λ < 1,
with

Λ :=
2∑
i=1

(Mi(p∗i + q∗i ) +Ni) ,

where

Mi =
{

(1 + νmax,i)Tαi+βi

Γq(αi + βi + 1) + (µmax,i) ξβi
i

Γq(αi + βi + 1)

}
, Ni = |λi|Tαi

Γq(αi + 1) , i = 1, 2,

then (1.1) has at least one solution on J .

Proof. We consider the operators Gi : C→ C defined by
G$ = G($1, $2) = (G1$1,G2$2),

where the operators Gi, i = 1, 2 are given by the formula (3.12). Clearly, the fixed
points of the operators Gi are solutions of the system (1.1). Let we take

Dr = {$i ∈ C, i = 1, 2 : ‖($1, $2)‖ ≤ r}.
Clearly, the subset Dr is closed, bounded and convex. We shall show that G satisfies
the assumptions of Mönch’s fixed point theorem. The proof will be given in three
steps.
Step 1. First we show that G is sequentially continuous.
Let {$1,n, $2,n}n be a sequence such that ($1,n, $2,n) → ($1, $2) in C. Then for

any ς ∈ J
‖ (G$i,n − G$i) (ς)‖ ≤Iαi+βi

q ‖fi,n(s,$1,n(s), $2,n(s))− fi(s,$1(s), $2(s))‖(ς)
− λiIαi

q ‖$i,n −$i‖ (ς)
+ µi(ς)Iβi

q ‖fi,n(s,$1,n(s), $2,n(s))− fi(s,$1(s), $2(s))‖(ξi)
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+ νi(ς)Iαi+βi
q ‖fi,n(s,$1,n(s), $2,n(s))− fi(s,$1(s), $2(s))‖(T )

≤
{
Iαi+βi
q (1)(ς) + µi(ς)Iβi

q (1)(ξi) + νi(ς)Iαi+βi
q (1)(T )

}
× ‖fi,n(s,$1,n(s), $2,n(s))− fi(s,$1(s), $2(s))‖
+ λiI

αi
q (1)(ς) ‖$i,n −$i‖ , i = 1, 2.

Since, for any i = 1, 2, the function fi satisfies assumptions (A1), then we have
fi(ς,$1,n(ς), $2,n(ς)) converges uniformly to fi(ς,$1(ς), $2(ς)). Hence, the Lebesgue
dominated convergence theorem implies that (G($1,n, $2,n))(ς) converges uniformly
to (G($1, $2,))(ς). Thus, (G($1,n, $2,n)) → (G($1, $2,)). Hence, G : Dr → Dr is
sequentially continuous.
Step 2. Second we show that G maps Dr into itself.
Take $i ∈ Dr, i = 1, 2, by (A2), we have, for each ς ∈ J and assume that

(G($i))(ς) 6= 0, i = 1, 2,

|Giui(ς)| ≤
∣∣∣Iαi+βi
q fi (s,$1(s), $2(s)) (ς)

∣∣∣+ ∣∣∣λiIαi
q $i(s)(ς)

∣∣∣
+
∣∣∣µi(ς)Iβi

q fi (s,$1(s), $2(s)) (ξi)
∣∣∣+ ∣∣∣νi(ς)Iαi+βi

q fi (s,$1(s), $2(s)) (T )
∣∣∣

≤(p∗i + q∗i )rIαi+βi
q (1)(ς) + r |λi| Iαi

q (1)(ς)
+ (p∗i + q∗i )rµmax,iI

βi
q (1)(ξi) + (p∗i + q∗i )rνmax,iI

αi+βi
q (1)(T )

≤(p∗i + q∗i )r
{
Iαi+βi
q (1)(ς) + µmax,iI

βi
q (1)(ξi) + νmax,iI

αi+βi
q (1)(T )

}
+ rIαi

q (1)(ς) |λi|

≤(p∗i + q∗i )r
{

(1 + νmax,i)Tαi+βi

Γq(αi + βi + 1) + (µmax,i) ξβi
i

Γq(αi + βi + 1)

}
+ r |λi|Tαi

Γq(αi + 1)
= r(Mi(p∗i + q∗i ) +Ni), i = 1, 2.

Hence we get

‖(G($1, $2))‖C ≤
2∑
i=1

r (Mi(p∗i + q∗i ) +Ni) ≤ r.

Step 3. We show that G(Dr) is equicontinuous.
By Step 2, it is obvious that G(Dr) ⊂ C(J,E) is bounded. For the equicontinuity

of G(Dr), let ς1, ς2 ∈ J , ς1 < ς2 and $ ∈ Dr, so G$(ς2)− G$(ς1) 6= 0. Then

‖G$i(ς2)− G$i(ς1)‖ ≤Iαi+βi
q |f(s,$1(s), $2(s))(ς2)− f(s,$1(s), $2(s))(ς1)|
+ |λi| Iαi

q |$i(s)(ς2)−$i(s)(ς1)|
+ |µi(ς2)− µi(ς1)| Iβi

q fi (s,$1(s), $2(s)) (ξi)
+ |νi(ς2)− νi(ς1)| Iαi+βi

q fi (s,$1(s), $2(s)) (T ),

≤(p∗i + q∗i )r
∣∣∣Iαi+βi
q (1)(ς2)− Iαi+βi

q (1)(ς1)
∣∣∣

+ r |λi|
∣∣∣Iαi
q (1)(ς2)− Iαi

q (1)(ς1)
∣∣∣
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+ (p∗i + q∗i )r |µi(ς2)− µi(ς1)|
∣∣∣Iβi
q (1)(ς2)− Iβi

q (1)(ς1)
∣∣∣ (ξi)

+ (p∗i + q∗i )r |νi(ς2)− νi(ς1)|
∣∣∣Iαi+βi
q (1)(ς2)− Iαi+βi

q (1)(ς1)
∣∣∣ (T )

≤ (p∗i + q∗i )r
Γq(αi + βi + 1)

{
(ςαi+βi

2 − ςαi+βi
1 ) + 2(ς2 − ς1)αi+βi

}

+ r |λi|
Γq(αi + 1) {(ς

αi
2 − ςαi

1 ) + 2(ς2 − ς1)αi}+ (p∗i + q∗i )rξ
βi
i

Γq (βi + 1)

× |µi(ς2)− µi(ς1)|+ (p∗i + q∗i )RTαi+βi

Γ (αi + βi + 1) |νi(ς2)− νi(ς1)| .

As ς1 → ς2, the right hand side of the above inequality tends to zero. This means that
G(Dr) ⊂ Dr.

Finally we show that the implication (2.1) holds. Let V ⊂ Dr such that V =
conv(G(V ) ∪ {(0, 0)}). Since V is bounded and equicontinuous, and therefore the
function ω 7→ ω(ς) = κ(V (ς)) is continuous on J . By hypothesis (A2), and the
properties of the measure κ, for any ς ∈ J , we get

ω(ς) ≤κ(G(V )(ς) ∪ {(0, 0)})) ≤ κ((GV )(ς))
≤κ ({((G1ω1) (ς), (G2ω2) (ς) : (ω1, ω2) ∈ V })
≤Iα1+β1

q κ ({((f1 (s, ω1(s), ω2(s)) (ς)) ; 0) : (ω1, ω2) ∈ V })
+ |λ1| Iα1

q κ ({(ω1(s), 0) : (ω1, 0) ∈ V })
+ |µ1| (ς)Iβ1

q κ ({((f1 (s, ω1(s), ω2(s)) (ς)) ; 0) : (ω1, ω2) ∈ V })
+ |ν1| (ς)Iα1+β1

q κ ({((f1 (s, ω1(s), ω2(s)) (ς)) ; 0) : (ω1, ω2) ∈ V })
+ Iα2+β2

q κ ({(0, f2 (s, ω1(s), ω2(s))) : (ω1, ω2) ∈ V })
+ |λ2| Iα2

q κ ({(0, ω2(s)) : (0, ω2) ∈ V })
+ |µ2| (ς)Iβ2

q κ ({(0, f2 (s, ω1(s), ω2(s))) : (ω1, ω2) ∈ V })
+ |ν2| (ς)Iα2+β2

q κ ({(0, f2 (s, ω1(s), ω2(s))) : (ω1, ω2) ∈ V })
≤Iα1+β1

q [p1(s)κ ({(ω1(s), 0) : (ω1, 0) ∈ V })
+q1(s)κ ({(0, ω2(s)) : (0, ω2) ∈ V })]
+ |λ1| Iα1

q κ ({(ω1(s), 0) : (ω1, 0) ∈ V })
+ |µ1| (ς)Iβ1

q [p1(s)κ ({(ω1(s), 0) : (ω1, 0) ∈ V })
+q1(s)κ ({(0, ω2(s)) : (0, ω2) ∈ V })]
+ |ν1| (ς)Iα1+β1

q [p1(s)κ ({(ω1(s), 0) : (ω1, 0) ∈ V })
+q1(s)κ ({(0, ω2(s)) : (0, ω2) ∈ V })]
+ Iα2+β2

q [p2(s)κ ({(ω1(s), 0) : (ω1, 0) ∈ V })
+q2(s)κ ({(0, ω2(s)) : (0, ω2) ∈ V })]
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+ |λ2| Iα2
q κ ({(0, ω2(s)) : (0, ω2) ∈ V })

+ |µ2| (ς)Iβ2
q [p2(s)κ ({(ω1(s), 0) : (ω1, 0) ∈ V })

+q2(s)κ ({(0, ω2(s)) : (0, ω2) ∈ V })]
+ |ν2| (ς)
× Iα2+β2

q [p2(s)κ ({(ω1(s), 0) : (ω1, 0) ∈ V })
+q2(s)κ ({(0, ω2(s)) : (0, ω2) ∈ V })] .

Thus,

µ (V (ς)) ≤Iα1+β1
q (p1(s) + q1(s))× κ (V (s))
+ |λ1| Iα1

q ((1)(s))× κ (V (s))
+ |µ1| (ς)Iβ1

q (p1(s) + q1(s))× κ (V (s))
+ |ν1| (ς)Iα1+β1

q (p1(s) + q1(s))× κ (V (s))
+ Iα2+β2

q (p2(s) + q2(s))× κ (V (s))
+ |λ2| Iα2

q ((1)(s))× κ (V (s))
+ |µ2| (ς)Iβ2

q (p2(s) + q2(s))× κ (V (s))
+ |ν2| (ς)Iα2+β2

q (p2(s) + q2(s))× κ (V (s)) .

Hence,

µ (V (ς)) ≤
n=2∑
i=1

({
(p∗i + q∗i )Tαi+βi

Γq(αi + βi + 1) (1 + νmax,i) + (p∗i + q∗i )Tαi+1

Γq(αi + 1) |µmax,i|
}

+
{
|λi| ξβi

i

Γq(βi + 1)

})
sup
ς∈I

κ (V (ς)) .

This means that
sup
ς∈I

κ (V (ς)) ≤ Λ sup
ς∈I

κ (V (ς)) .

By (3.13) it follows that supς∈J κ((V (ς)) = 0, that is κ(V (ς)) = 0 for each ς ∈ J ,
and then V (ς) is relatively compact in E. In view of the Ascoli-Arzela theorem, V is
relatively compact in Dr. Applying now Theorem 2.4, we conclude that G has a fixed
point, which is a solution of (1.1). �

3.2. Uniqueness Result. Let X = {$ : $ ∈ C ′(J)} be the Banach space of func-
tions whose first derivatives are continuous on J, endowed with the ‖$‖X = ‖$‖ +
‖$′‖ = maxς∈J |$(ς)|+ maxς∈J |$′(ς)| . Obviously, the product space (X ×X, ‖ · ‖X)
is also a Banach space with the norm ‖($1, $2)‖X×X = ‖$1‖X+‖$2‖X . A closed ball
with radius R centered on the zero function in X ×X is defined by BR(0, 0) = BR ={

($1, $2) ∈ X ×X : ‖($1, $2)‖X×X ≤ R
}
Define the operator G : X ×X → X ×X
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by

G ($1, $2) (ς) =
(
G1 ($1, $2) (ς)
G2 ($1, $2) (ς)

)
, ς ∈ J,

where

Gi$i(ς) = Iαi+βi
q σi(ς)− λiIαi

q $i(ς) + µi(ς)Iβi
q σi(ξi) + νi(ς)Iαi+βi

q σi(T ).

Clearly, ($1, $2) is a fixed point of G if and only if ($1, $2) is a solution of system
(1.1). Furthermore, we have

G
′

i$i(ς) = Iαi+βi−1
q σi(ς)− λiIαi−1

q $i(ς) + µ′i(ς)Iβi
q σi(ξi) + ν ′i(ς)Iαi+βi

q σi(T ).

Throughout the remaining part of the paper, we make use of the following assumptions
and notations:

(H1) f1, f2 : [0, T ]× R2 → R are continuous;
(H2) there exist constants Li and Ki such that

|fi (ς,$1, $2)− fi (ς, ω1, ω2)| ≤ Li |$1 − ω1|+Ki |$2 − ω2| ,

for all (ς,$1, $2) , (ς, ω1, ω2) ∈ [0, T ]× R2;
(H3) Ai = max0≤ς≤T |fi(ς, 0, 0)|.
Further, we use the following notations:

Θi =
[
Tαi+βi (1 + νmax,i)

Γq(αi + βi + 1) + ξβi
i µmax,i

Γq(βi + 1)

]
,

Ωi = |λi|Tαi
i

Γq(αi + 1) ,

Θi =
 Tαi+βi−1

Γq(αi + βi)
+ νmax,iT

αi+βi

Γq(αi + βi + 1) +
µmax,iξ

βi
i

Γq(βi + 1)

 ,
Ωi = |λi|T

αi−1
i

Γq(αi)
,

L =
2∑
i=1

[
(Li +Ki)

(
Θi + Θi

)
+
(
Ωi + Ωi

)]
,

A =
2∑
i=1

Ai
(
Θi + Θi

)
.

To this end, we also use this assumption:
(H4) (L+ A) ≤ 1.

3.2.1. Uniqueness via Banach fixed point theorem.

Theorem 3.2. Assume (H1)-(H4) holds. Then, (1.1) has a unique solution ($1, $2) ∈
BR.
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Proof. Clearly, G : BR → X ×X. First, we show that G is a contraction mapping. To
see this, let ($1, $2) , (ω1, ω2) ∈ BR ς ∈ J, and consider

|Giui(ς)− Givi(ς)|
≤Iαi+βi

q |fi(ς,$1(ς), $2(ς))− fi(ς, ω1(ς), ω2(ς))| (ς) + |λi| Iαi
q |$i − ωi| (ς)

+ µmax,iI
βi
q |fi(ς,$1(ς), $2(ς))− fi(ς, ω1(ς), ω2(ς))| (ξi)

+ νmax,iI
αi+βi
q |fi(ς,$1(ς), $2(ς))− fi(ς, ω1(ς), ω2(ς))| (T )

≤
[
LiI

αi+βi
q ‖$1 − ω1‖ (ς) +KiI

αi+βi
q ‖$2 − ω2‖ (ς)

]
+ |λi| Iαi

q |$i − ωi| (ς)

+ µmax,i
[
LiI

βi
q ‖$1 − ω1‖ (ξi) +KiI

βi
q ‖$2 − ω2‖ (ξi)

]
+ νmax,i

[
LiI

βi
q ‖$1 − ω1‖ (T ) +KiI

βi
q ‖$2 − ω2‖ (T )

]
≤
[
Li ‖$1 − ω1‖

Γq(αi + βi + 1)T
αi+βi + Ki ‖$2 − ω2‖

Γq(αi + βi + 1)T
αi+βi

]
+ |λi|

‖$1 − ω1‖
Γq(αi + 1)T

αi
i

+ µmax,i

[
Li ‖$1 − ω1‖

Γq(βi + 1) ξβi
i + Ki ‖$2 − ω2‖

Γq(βi + 1) ξβi
i

]

+ νmax,i

[
Li ‖$1 − ω1‖

Γq(αi + βi + 1)T
αi+βi + Ki ‖$2 − ω2‖

Γq(αi + βi + 1)T
αi+βi

]

= (Li +Ki)
[
Tαi+βi (1 + νmax,i)

Γq(αi + βi + 1) + ξβi
i µmax,i

Γq(βi + 1)

]
[|$1 − ω1|+ |$2 − ω2|]

+ |λi|Tαi
i

Γq(αi + 1) ‖$1 − ω1‖

= [(Li +Ki) Θi + Ωi] |$1 − ω1|+ Θi |$2 − ω2| ,
implying that
(3.14) ‖Giui(ς)− Givi(ς)‖ ≤ [(Li +Ki) Θi + Ωi] ‖$1 − ω1‖X + Θi ‖$2 − ω2‖X .
Likewise, and by using the precedent technique, we have

(3.15)
∥∥∥G′

iui(ς)− G
′

ivi(ς)
∥∥∥ ≤ [(Li +Ki) Θi + Ωi

]
‖$1 − ω1‖X + Θi ‖$2 − ω2‖X .

Then, from (3.14) and (3.15), we have

(3.16)
‖Giui(ς)− Givi(ς)‖ ≤

[
(Li +Ki)

(
Θi + Θi

)
+
(
Ωi + Ωi

)]
‖$1 − ω1‖X

+
(
Θi + Θi

)
‖$2 − ω2‖X .

Consequently,
‖G ($1, $2)− G (ω1, ω2)‖X×X ≤ L ‖($1, $2)− (ω1, ω2)‖X×X .

Because L < 1, G is a contraction mapping with contraction constant L.
Next, we show that

(3.17) G (∂BR) ⊆ BR.
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To see this, let ($1, $2) ∈ ∂BR, ς ∈ J, and consider

|Giui(ς)| ≤Iαi+βi
q |fi(ς,$1(ς), $2(ς))| (ς) + |λi| Iαi

q |$i| (ς)
+ µmax,iI

βi
q |fi(ς,$1(ς), $2(ς))| (ξi) + νmax,iI

αi+βi
q |fi(ς,$1(ς), $2(ς))| (T )

≤
[
Iαi+βi
q |fi (s,$1(s), $2(s))− fi(s, 0, 0)| (ς) + Iαi+βi

q |fi(s, 0, 0)| (ς)
]

+ |λi|
[
Iαi
q |$i| (ς)

]
+ µmax,i

[
Iβi
q |fi (s,$1(s), $2(s))− fi(s, 0, 0)| (ξi) + Iβi

q |fi(s, 0, 0)| (ξi)
]

+ νmax,i
[
Iαi+βi
q |fi (s,$1(s), $2(s))− fi(s, 0, 0)| (T )

+Iαi+βi
q |fi(s, 0, 0)| (T )

]
≤
[
LiI

αi+βi
q |$1| (ς) +KiI

αi+βi
q |$2| (ς) + Tαi+βiAi

Γq(αi + βi + 1)

]
+
[
|λi|TαiR

Γq(αi + 1)

]

+ µmax,i

[
LiI

βi
q |$1| (ξi) +KiI

βi
q |$2| (ξi) + ξβi

i Ai
Γq(βi + 1)

]

+ νmax,i

[
LiI

αi+βi
q |$1| (ς) +KiI

αi+βi
q |$2| (ς) + Tαi+βiAi

Γq(αi + βi + 1)

]

≤
[

Tαi+βiLiR

Γq(αi + βi + 1) + Tαi+βiKiR

Γq(αi + βi + 1) + Tαi+βiAi
Γq(αi + βi + 1)

]

+ |λi|
[

TαiR

Γq(αi + 1)

]
+ µmax,i

[
ξβi
i LiR

Γq(βi + 1) + ξβi
i KiR

Γq(βi + 1) + Tαi+βiAi
Γq(βi + 1)

]

+ νmax,i

[
Tαi+βiLiR

Γq(αi + βi + 1) + Tαi+βiKiR

Γq(αi + βi + 1) + Tαi+βiAi
Γq(αi + βi + 1)

]

= [R (Li +Ki + Ai)]
[

[νmax,i + 1]Tαi+βi

Γq(αi + βi + 1) + µmax,iξ
βi
i

Γq(βi + 1)

]
+
[
R |λi|Tαi

Γq(αi + 1)

]
= [(Li +Ki + Ai) Θi + Ωi]R,

implying that

(3.18) ‖Giui(ς)‖ ≤ [(Li +Ki + Ai) Θi + Ωi]R.

Likewise, and by using the precedent technique, we have

(3.19) ‖G′i$i(ς)‖ ≤
[
(Li +Ki + Ai) Θi + Ωi

]
R.

Then, from (3.18) and (3.19), we have

(3.20) ‖Gi$i(ς)‖ ≤
[
(Li +Ki + Ai)

(
Θi + Θi

)
+
(
Ωi + Ωi

)]
R.

Consequently,

‖G ($1, $2)− G (ω1, ω2)‖X×X ≤ (L+ A)R ≤ R,
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implying that (3.17) holds. Therefore, by the Banach fixed-point theorem, G has a
unique fixed-point ($1, $2) ∈ BR. The proof is complete. �

3.3. Stability of the solutions of (1.1). We use Urs’s [48] approach to establish
the Ulam-Hyers stability of the solutions of (1.1).

Theorem 3.3 ([48]). Let X be a Banach space and T1, T2 : X × X → X be two
operators. Then, the operational equations system{

$1 = T1 ($1, $2) ,
$2 = T2 ($1, $2) ,

is said to be Ulam-Hyers stable if there exist C1, C2, C3, C4 > 0 such that for each
ε1, ε2 > 0 and each solution-pair ($∗1, $∗2) ∈ X ×X of the in-equations:{‖$1 − T1 ($1, $2)‖X ≤ ε1,

‖$2 − T2 ($1, $2)‖X ≤ ε2,

there exists a solution (ω∗1, ω∗2) ∈ X ×X of (1.1) such that{‖$∗1 − ω∗1‖X ≤ C1ε1 + C2ε2,

‖$∗2 − ω∗2‖X ≤ C3ε1 + C4ε2.

Theorem 3.4 ([48]). Let X be a Banach space, T1, T2 : X×X → X be two operators
such that {‖T1 ($1, $2)− T1 (ω1, ω2)‖X ≤ k1 ‖$1 − ω1‖x + k2 ‖$2 − ω2‖X ,

‖T2 ($1, $2)− T2 (ω1, ω2)‖X ≤ k3 ‖$1 − ω1‖x + k4 ‖$2 − ω2‖X ,
for all ($1, $2) , (ω1, ω2) ∈ X ×X. Suppose

H =
(
k1 k2

k3 k4

)
,

converges to zer0. Then, the operational equations (1.1) is Ulam-Hyers stable.

Set
C1 =

[
(L1 +K1)

(
Θ1 + Θ1

)
+
(
Ω1 + Ω1

)]
,

C2 = (L1 +K1)
(
Θ1 + Θ1

)
,

C3 =
[
(L2 +K2)

(
Θ2 + Θ2

)
+
(
Ω2 + Ω2

)]
,

C4 = (L2 +K2)
(
Θ2 + Θ2

)
.

Theorem 3.5. Assume (H1)-(H4) hold. Further, assume the spectral radius of H is
less than one. Then, the solution of (1.1) is Ulam-Hyers stable.

Proof. In view of Theorem 3.2 we have{ ‖A1 ($1, $2)− A1 (ω1, ω2)‖X ≤ C1 ‖$1 − ω1‖X + C2 ‖$2 − ω2‖X ,
‖A2 ($1, $2)− A2 (ω1, ω2)‖X ≤ C3 ‖$2 − ω1‖X + C4 ‖$2 − ω2‖X ,
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which implies that

(3.21) ‖A ($1, $2)− A (ω1, ω2)‖X×X ≤ A

( ‖$1 − ω1‖X
‖$2 − ω2‖X

)
.

Because the spectral radius of H is less than one, the solution of (1.1) is Ulam-Hyers
stable. �

4. Example

This section is devoted to the illustration of the results derived in the last section.

Example 4.1. In this section, we present some examples to illustrate our results.
Let E = l1 = {$ = ($1, $2, . . . , $n, . . . ) : ∑∞n=1 |$n| <∞} with the norm

‖$‖E =
∞∑
n=1
|$n|.

Consider the following nonlinear Langevin 1
4 -fractional equation:

(4.1)

D
1/4
1/4

(
D

4/3
1/4 −

1
10

)
$(ς) =

√
3|$| cos2(2πς)

3(27− ς) +
√

2π|y|
(7π − ς)2

(
|y|
|y|+ 3 + 1

)
, ς ∈ J,

D
1/2
1/4

(
D

5/3
1/4 −

2
5

)
y(ς) =

√
2π|$|

4(4π − ς)2

(
|$|
|$|+ 3 + 1

)
+ |y| sin

2(2πς)
(10− ς)2 , ς ∈ J,

$(0) = 0, $(1) + 1
10I

1/4
q $(1) = 0, D1/4

q $(1/2) + 1
10$(1/2) = 0,

y(0) = 0, $1(1) + 2
5I

1/2
q y(1) = 0, D1/2

q y(3/4) + 2
5y(3/4) = 0.

Here J = [0, 1], α1 = 1/4, α2 = 1/2, β1 = 4/3, β2 = 5/3, ξ1 = 3/4, ξ2 = 1/2,
λ1 = 1/10, λ2 = 2/5, with

f(ς,$) = (((sin ς + 1)e−ς)/24)($2/(1 + |$|)).
Clearly, the function f is continuous. For each $ ∈ E and ς ∈ [0, 1], we have

|f (ς,$1, $2)| ≤
√

3
81 |$1|+

√
2

49π |$2|

and

|g (ς,$1, $2)| ≤
√

2
64π |$1|+

1
100 |$2| .

Hence, the hypothesis (H2) is satisfied with p∗1 =
√

3
81 , q

∗
1 =

√
2

49π , p
∗
2 =

√
2

64π and q∗2 = 1
100 .

We shall show that condition (3.13) holds with J = [0, 1]. Indeed,
Λ1 = 0.1687 Λ2 = 0.1985, Λ ' 0.3672 < 1.

Simple computations show that all conditions of Theorem 3.1 are satisfied. It follows
that the coupled (4.1) has at least one solution defined on J .
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Example 4.2. Consider the following coupled system:

D1/4
(
D4/3 + 1

237

)
$1(ς) = 1

100 + ς

10eς
|$1|

10 + |$1|
+ ς |$2|

(9 + eς)2 (|$2|+ 1) , ς ∈ [0, 1],

D1/2
(
D5/3 + 1

100

)
$2(ς) = ς

100eς + sin |$1| ς + sin |$2|
eς + 99 , ς ∈ [0, 1],

$1(0) = 0, $1(1) + 1
10I

1/4
q $1(1) = 0, D1/4

q $1(1/2) + 1
10$1(1/2) = 0,

$2(0) = 0, $2(1) + 2
5I

1/2
q $2(1) = 0, D1/2

q $2(3/4) + 2
5$1(3/4) = 0.

Using the given data, we find that

|η1 (ς,$1, $2)− f1 (ς, ω1, ω2)| ≤ 1
100 |$1 −$2|+

1
100 |ω1 − ω2| ,

|f2 (ς,$1, $2)− f2 (ς, ω1, ω2)| ≤ 1
100 |$1 −$2|+

1
100 |ω1 − ω2| ,

|η1(ς, 0, 0)| ≤ 1
10 , |η1 (ς,$1, $2)| ≤ 1

10 + ς

5eς + ς

(1 + eς)2 ,

|η2(ς, 0, 0)| ≤ ς

10eς , |η2 (ς,$1, $2)| ≤ ς

10eς + ς + 1
eς + 10 ,

for any ς ∈ [0, 1]. Then ηi, i = 1, 2 satisfying (H1)-(H4), with Li = 1
100 , Ki = 1

100 ,
i = 1, 2, Ai = 1

100 , i = 1, 2, We find that
Θ1 = 1.3850, Θ2 = 1.1300, Ω1 = 0.0207, Ω2 = 0.0354,
Θ1 = 6.0050, Θ2 = 2.3900, Ω1 = 0.2048, Ω2 = 0.1992.

Hence, L ' 0.6783, and A ' 0.1091. Therefore, L + A < 1, and then all conditions
of Theorem (3.2) are satisfied, which implies the existence of a unique solution for
system ( 3.21 ) in [0, 1]. On the other hand, we find that

C1 = 0.3733, C2 = 0.3050, C3 = 0.1478, C4 = 0.0704.
The spectral radius of the matrix

H =
(0.3733 0.3050

0.1478 0.0704

)
is 0.48. Hence, by Theorem 3.5, the solution of (3.21) is Ulam-Hyers stable.
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