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NONLOCAL NEUTRAL FUNCTIONAL SEQUENTIAL
DIFFERENTIAL EQUATIONS WITH CONFORMABLE

FRACTIONAL DERIVATIVE

NAJAT CHEFNAJ1, SAMIRA ZERBIB1, KHALID HILAL1, AND AHMED KAJOUNI1

Abstract. In this paper, we investigate the existence, uniqueness, and stability
results of second-order neutral evolution differential equations within the framework
of sequential conformable derivatives with nonlocal conditions. Utilizing Krasnosel-
skii’s fixed-point theorem, we establish results concerning the existence of at least one
solution, while the uniqueness of the solution is derived using Banach’s fixed-point
theorem. The final section is devoted to an example that illustrates the applicability
of our findings.

1. Introduction

Differential equations with nonlocal conditions are essential in various scientific
fields, including engineering and physics. Numerous researchers have explored the the-
ory of these equations concerning different types of derivatives. Hernández [6] studied
the second-order Cauchy problem with nonlocal conditions for the classical derivative.
Recently, fractional differential equations have gained popularity in modeling various
problems in biology, chemistry, and other applied areas [8, 9, 11–17]. In [18], Shur et
al. treated a fractional Cauchy problem of order α ∈ (1, 2) with non-local conditions
using the Caputo fractional derivative. Their study primarily focused on the results
of the existence and uniqueness of mild solutions. For physical interpretations of the
non-local conditions, we refer to references [2, 3, 10].
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The authors in [4] investigated the existence and regularity of solutions for some
partial differential equations with nonlocal conditions in the α-norm for the following
problem:

d
dt

(y(t) − F (t, y(h1(t)))) = −B (y(t) − F (t, y(h1(t)))) + G (t, y(h2(t))) , t ∈ [0, a],
y(0) = y0 + φ(y),

where B : D(B) ⊂ Y → Y is the infinitesimal generator of an analytic semigroup
(T (t))t≥0 on a Banach space Y . The functions F, G, φ, h1 and h2 are continuous
functions.

In [5], the authors considered the following fractional conformable problem:
dβ

dtβ (y(t) − F (t, y(h1(t)))) = −B (y(t) − F (t, y(h1(t)))) + G (t, y(h2(t))) , t ∈ [0, a],
y(0) = y0 + φ(y),

where dβ

dtβ is the conformable fractional derivative of β ∈ (0, 1). B is a sectorial
operator which generates a strongly analytic semigroup (T (t)) on a Banach space Y .
The functions F, G, φ, h1 and h2 are continuous functions.

Motivated by the previously mentioned publications, we are interested in a related
problem: the second-order sequential Cauchy problem with non-local conditions,
using the conformable derivative. More precisely, we are interested in second-order
sequential conformable differential equations characterized by the following non-local
conditions:
(1.1)

dβ

dtβ

[
dβ

dtβ (y(t) − F (t, y(h1(t))))
]

= B (y(t) − F (t, y(h1(t)))) + G (t, y(h2(t))) , t ∈ [0, a],
y(0) = y0 + φ(y),
dβ

dtβ (y(0) − F (0, y(h1(0)))) = y1 + ψ(y),

where dβ

dtβ is conformable fractional derivative of order β. The operator B is the
infinitesimal generator of a family of cosines {C(t), S(t)}t∈R on a Banach space (Y, ∥·∥).
y0 and y1 are two elements in the Banach Y . The expression C = C ([0, a], Y ) denotes
Banach space of continuous functions y with the norm |y| = sup{∥y(t)∥, t ∈ [0, a]}.
The functions F : [0, a] × C → Y , G : [0, a] × Y → Y , φ : C → Y , ψ : C −→ Y , h1 and
h2 are continuous functions.

This paper is summarized as follows. In Section 2, we review some tools related to
the conformable derivative as well as some needed results. Section 3 will be devoted
to the statements and the proof of the main results. In Section 4, as application, we
investigate a second-order sequential conformal partial differential equation with a
non-local condition.

2. Preliminaries

We begin by recalling some fundamental concepts of conformable calculus [7].
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Definition 2.1. The conformable derivative of order β for a function H is defined as
follows:

dβH(t)
dtβ

= lim
ε→0

H(t+ εt1−β) − H(t)
ε

, t > 0.

If this limit exists, we say that H is (β)-differentiable at t.
If H is (β)-differentiable and limε→0+

dβH(t)
dtβ exists, we define

dβH(0)
dtβ

= lim
ε→0+

dβH(t)
dtβ

.

The (β)-fractional integral of a function H is given by

IβH(t) =
∫ t

0
(t− ϑ)β−1H(ϑ)dϑ.

Theorem 2.1. If H ∈ D(Iβ) is a continuous function, we obtain
dβ(IβH(t))

dtβ
= H(t).

The Laplace transform associated with the conformable derivative is given by the
following definition.

Definition 2.2 ([1]). The conformable fractional Laplace transform of H of order β
is defined by

Lβ (H (t)) (λ) =
∫ +∞

0
tβ−1e−λ tβ

β H(t)dt.

The following proposition shows the effect of the fractional Laplace transform on
the conformal derivative.

Proposition 2.1. If H(t) is differentiable, we obtain

Iβ

(
dβH(t)
dtβ

)
=H(t) − H(0),

Lβ

(
dβH(t)
dtβ

)
(λ) =λLβ(H(t))(λ) − H(0).

So let’s recall certain results related to the theory of the cosine family [19].

Definition 2.3. A family (C(ξ))ξ∈R of bounded linear operators on Y is defined as a
strongly continuous family of cosines if and only if:

(a) C(0) = I;
(b) C(ν + ξ) + C(ν − ξ) = 2C(ν)C(ξ), for all ξ, ν ∈ R;
(c) ξ → C(ξ)y is continuous for each fixed y ∈ Y.

We define also the sine family by

S(ξ)y :=
∫ ξ

0
C(ϑ)ydϑ.



874 N. CHEFNAJ, S. ZERBIB, K. HILAL, AND A. KAJOUNI

Definition 2.4. B is the infinitesimal generator of a strongly continuous cosine family
((C(ξ))ξ∈R, (S(ξ))ξ∈R) on Y defined by:

D(B) ={y ∈ Y, ξ → C(ξ)y is a twice continuously differentiable function},

Ay =d
2C(0)y
dξ2 .

We end this section with the following results.

Proposition 2.2. The following assertions are true.

(a) There exist constants ω ≥ 0 and M ≥ 1 where

|S(ξ) − S(ν)| ≤ M

∣∣∣∣∣
∫ ξ

ν
exp(ω|ϑ|)dϑ

∣∣∣∣∣ , for all ν, ξ ∈ R.

(b) If y ∈ Y and ξ, ν ∈ R, then
∫ ξ

ν S(ϑ)ydϑ ∈ D(B) and

B
∫ ξ

ν
S(ϑ)ydϑ = C(ξ)y − C(ν)y.

(c) If ξ 7→ C(ξ)y is differentiable, hence S(ξ)y ∈ D(B) and dC(ξ)
dξ

y = BS(ξ)y.
(d) For λ such that Re(λ) > ω, we get

• λ2 ∈ ρ(B), (ρ(B): is the resolvent set of B),
• λ(λ2I −B)−1y =

∫+∞
0 e−λξC(ξ)ydξ, y ∈ Y,

• (λ2I −B)−1y =
∫+∞

0 e−λξS(ξ)ydξ, y ∈ Y.

3. Main Results

Before presenting our main results, we introduce the following assumptions.

(H1) The function G(t, ·) : Y → Y is continuous, and for all r > 0, there exists a
function µr ∈ L∞([0, a],R+) such that sup

∥y∥≤r

∥G(t, y)∥ ≤ µr(t) for all t ∈ [0, a].

(H2) The function G(·, y) : [0, a] → Y is continuous for all y ∈ Y .
(H3) There exists a constant l1 > 0 such that ∥F(t, x) − F(t, y)∥ ≤ l1|x− y| for all

x, y ∈ C.
(H4) There exists a constant l2 > 0 such that ∥φ(x) − φ(y)∥ ≤ l2|x − y| for all

x, y ∈ C.
(H5) There exists a constant l3 > 0 such that ∥ψ(x) − ψ(y)∥ ≤ l3|x − y| for all

x, y ∈ C.
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3.1. Existence and uniqueness of the mild solution. Using the fractional Lap-
lace transform in equation (1.1), we get

Lβ

(
dβ

dtβ

[
dβ

dtβ
(y(t) − F (t, y(h1(t))))

])
(λ)

=λ
(
λ2 −B

)−1
(y (0) − F (0, y(h1(0)))) +

(
λ2 −B

)−1 dβ

dtβ
(y(0) − F (0, y(h1(0))))

+
(
λ2 −B

)−1
Lβ(G(t, y(h2(t))))(λ)

=λ
(
λ2 −B

)−1
(y0 + φ(y) − F (0, y(h1(0)))) +

(
λ2 −B

)−1
(y1 + ψ(y))

+
(
λ2 −B

)−1
Lβ(G(t, y(h2(t))))(λ).

According to the inverse fractional Laplace transform, we find the Duhamel’s formula

y(t) =F (t, y(h1(t))) + C

(
tβ

β

)
(y0 + φ(y) − F(0, y(h1(0))))

+ S

(
tβ

β

)
(y1 + ψ(y)) +

∫ t

0
sβ−1S

(
tβ

β
− sβ

β

)
G(s, y(h2(s)))ds.

Definition 3.1. y ∈ C is a mild solution of problem (1.1) if the following assertion is
true:

y(t) =F (t, y(h1(t))) + C

(
tβ

β

)
(y0 + φ(y) − F(0, y(h1(0))))

+ S

(
tβ

β

)
(y1 + ψ(y)) +

∫ t

0
sβ−1S

(
tβ

β
− sβ

β

)
G(s, y(h2(s)))ds, t ∈ [0, a].

Theorem 3.1. If (S(t))t>0 is compact and (H1)-(H5) are satisfied, then, the Cauchy
problem (1.1) has at least one mild solution provided that

l1 + sup
t∈[0,a]

∣∣∣∣∣C
(
tβ

β

)∣∣∣∣∣ (l1 + l2) + sup
t∈[0,a]

∣∣∣∣∣S
(
tβ

β

)∣∣∣∣∣ l3 < 1.

Proof. Choosing

r ≥
∥F(0, 0)∥ + sup

t∈[0,a]

∣∣∣∣∣C
(
tβ

β

)∣∣∣∣∣ (∥y0∥ + ∥φ(0)∥ + ∥F(0, 0)∥)+ sup
t∈[0,a]

∣∣∣∣∣S
(
tβ

β

)∣∣∣∣∣×∆

1 − l1 − sup
t∈[0,a]

∣∣∣∣∣C
(
tβ

β

)∣∣∣∣∣ (l1 + l2) − sup
t∈[0,a]

∣∣∣∣∣S
(
tβ

β

)∣∣∣∣∣ l3
,

with

∆ = ∥y1∥ + ∥ψ(0)∥ + aβ

β
|µ|L∞ .



876 N. CHEFNAJ, S. ZERBIB, K. HILAL, AND A. KAJOUNI

Let Br = {y ∈ C, |y| ≤ r}, for y ∈ Br, we define the operators P1 and P2 as follows

P1(y(t)) =F (t, y(h1(t)))+C
(
tβ

β

)(
y0 + φ(y) − F(0, y(h1(0)))

)
+S

(
tβ

β

)(
y1 + ψ(y)

)
,

P2(y(t)) =
∫ t

0
sβ−1S

(
tβ

β
− sβ

β

)
G(s, y(h2(s)))ds, t ∈ [0, τ ].

By using assumptions (H1)-(H5), we prove that P1(y) + P2(z) ∈ Br for all y, z ∈ Br.
Moreover, the operator P1 is a contraction on Br.

We are going to prove that the operator P2 is compact and continuous.
• Firstly, we show that P2 is continuous.

Let yn ∈ Br such that yn → y in Br. Therefore, by using (H1), we have

∥sβ−1 (G(s, yn((h2(s))) − G(s, y((h2(s))))∥ ≤ 2µr(s)sβ−1

and
G(s, yn((h2(s))) → G(s, y((h2(s))), as n → +∞.

Also, we obtain

P2(yn(t)) − P2(y(t)) =
∫ t

0
sβ−1S

(
tβ − sβ

β

) [
G(s, yn(h2(s))) − G(s, y((h2(s)))

]
ds,

for t ∈ [0, a]. Accordingly, we obtain

|P2(yn) − P2(y)| ≤ sup
t∈[0,a]

∣∣∣∣∣S
(
tβ

β

)∣∣∣∣∣
∫ a

0
sβ−1∥G(s, yn(h2(s))) − G(s, y((h2(s)))∥ds.

By using the Lebesgue dominated convergence theorem, we have
lim

n→+∞
|P2(yn) − P2(y)| = 0.

• Secondly, we prove the compactness of P2.
Claim 1. We show that {P2(y(t)), y ∈ Br} is relatively compact in Y .

For t ∈]0, a[, let ε ∈]0, t[, and we define the operator P ε
2 by

P ε
2 (y(t)) =

∫ (tβ−εβ)
1
β

0
sβ−1S

(
tβ − sβ

β

)
G(s, y(h2(s)))ds, t ∈ [0, τ ], for all y ∈ Br.

The relative compactness of {P ε
2 (y(t)), y ∈ Br} in Y is guaranteed by the compactness

of (S(t))t>0. Using assumption (H1), we have

∥P ε
2 (y(t)) − P2(y(t))∥ ≤ |µr|L∞([0,a],R+) sup

t∈[0,a]

∣∣∣∣∣S
(
tβ

β

)∣∣∣∣∣ εβ

β
.

Then, we conclude that {P2(y(t)), y ∈ Br} is relatively compact in Y . It is clear
that the set {P2(y(0)), y ∈ Br} is compact. Therefore, {P2(y(t)), y ∈ Br} is relatively
compact in Y for all t ∈ [0, a].

Claim 2. We prove that P2(Br) is equicontinuous.
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Let t1, t2 ∈]0, a] such that t1 < t2, we have

P2(y(t2)) − P2(y(t1)) =
∫ t1

0
sβ−1

[
S

(
tβ2 − sβ

β

)
− S

(
tβ1 − sβ

β

)]
G(s, y(h2(s)))ds

+
∫ t2

t1
sβ−1S

(
tβ2 − sβ

β

)
G(s, y(h2(s)))ds.

Therefore, we obtain

∥P2(y(t2)) − P2(y(t1))∥ ≤|µr|L∞([0,a],R+)

[
K

ω2

(
exp

(
ωtβ2
β

)
− exp

(
ωtβ1
β

))]

+ sup
t∈[0,a]

∣∣∣∣∣S
(
tβ

β

)∣∣∣∣∣
(
tβ2 − tβ1
β

)
.

We conclude that the functions P2(y), y ∈ Br, are equicontinuous at t ∈ [0, a].
Applying the Arzelà-Ascoli theorem, we establish that P2 is a compact operator.
Finally, the Krasnoselskii’s fixed point theorem completes the proof. □

To establish the uniqueness of the mild solution, we need the following assumption.
(H6) There exists a constant l4 > 0 such that ∥G(t, z) − G(t, y)∥ ≤ l4∥z − y∥ for all

z, y ∈ Y and t ∈ [0, a].

Theorem 3.2. Assume that (H2)-(H6) hold. Then, the Cauchy problem (1.1) has a
unique mild solution provided that

l1 + sup
t∈[0,a]

∣∣∣∣∣C
(
tβ

β

)∣∣∣∣∣ (l1 + l2) + sup
t∈[0,a]

∣∣∣∣∣S
(
tβ

β

)∣∣∣∣∣
(
l3 + l4

aβ

β

)
< 1.

Proof. We define the operator P : C → C by

P (y(t)) =F (t, y(h1(t))) + C

(
tβ

β

)(
y0 + φ(y) − F(0, y(h1(0)))

)
+ S

(
tβ

β

)(
y1 + ψ(y)

)
+
∫ t

0
sβ−1S

(
tβ − sβ

β

)
G(s, y(h2(s)))ds, t ∈ [0, a].

Next, let y, z ∈ C, we have

P (z(t)) − P (y(t)) =F (t, z(h1(t))) − F (t, y(h1(t))) + C

(
tβ

β

)
(φ (z) − φ (y))

+C
(
tβ

β

)(
F(0, y(h1(0))) − F(0, z(h1(0)))

)
+ S

(
tβ

β

)
(ψ(z) − ψ(y))

+
∫ t

0
sβ−1S

(
tβ − sβ

β

) [
G(s, z(h2(s))) − G(s, y(h2(s)))

]
ds.
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Accordingly, we obtain

∥P (z(t)) − P (y(t))∥

≤
[
l1 + sup

t∈[0,a]

∣∣∣∣∣C
(
tβ

β

)∣∣∣∣∣ (l1 + l2) + sup
t∈[0,a]

∣∣∣∣∣S
(
tβ

β

)∣∣∣∣∣
(
l3 + l4

aβ

β

)]
|z − y|.

Then, we get

|P (z) − P (y)| ≤
[
l1 + sup

t∈[0,a]

∣∣∣∣∣C
(
tβ

β

)∣∣∣∣∣ (l1 + l2) + sup
t∈[0,a]

∣∣∣∣∣S
(
tβ

β

)∣∣∣∣∣
(
l3 + l4

aβ

β

)]
|z − y|.

Therefore, P has a unique fixed point in C. □

3.2. Continuous dependence of the mild solution. Now, we will give some
results concerning the continuous dependence of the mild solution.

Theorem 3.3. Assume that the conditions of Theorem 3.2 are satisfied. Let y0, z0, y1,
z1 ∈ Y and denote by y, z the solutions associated with (y0, y1) and (z0, z1), respectively.
Then, we have

|z − y| ≤ β

β − βl1 − sup
t∈[0,a]

∣∣∣∣∣S
(
tβ

β

)∣∣∣∣∣ (βl3 + l4a
β
)

− β sup
t∈[0,a]

∣∣∣∣∣C
(
tβ

β

)∣∣∣∣∣ (l1 + l2)

×
[

sup
t∈[0,a]

∣∣∣∣∣C
(
tβ

β

)∣∣∣∣∣ ∥z0 − y0∥ + sup
t∈[0,a]

∣∣∣∣∣S
(
tβ

β

)∣∣∣∣∣ ∥z1 − y1∥
]
.

Proof. For t ∈ [0, a], we have

z(t) − y(t) =F (t, z(h1(t))) − F (t, y(h1(t))) + S

(
tβ

β

)
(z1 − y1 + ψ(z) − ψ(y))

+ C

(
tβ

β

)(
z0 − y0 + φ (z) − φ (y) + F (0, y(h1(0))) − F (0, z(h1(0)))

)
+
∫ t

0
sβ−1S

(
tβ − sβ

β

) [
G(s, z(h2(s))) − G(s, y(h2(s)))

]
ds.

Since we obtain

∥z(t) − y(t)∥ ≤l1|z − y| + sup
t∈[0,a]

∣∣∣∣∣S
(
tβ

β

)∣∣∣∣∣
(

∥z1 − y1∥ +
(
l3 + l4

aβ

β

)
|z − y|

)

+ sup
t∈[0,a]

∣∣∣∣∣C
(
tβ

β

)∣∣∣∣∣ (∥z0 − y0∥ + (l1 + l2) |z − y|) .
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Accordingly, we show that

|z − y| ≤l1|z − y| + sup
t∈[0,a]

∣∣∣∣∣S
(
tβ

β

)∣∣∣∣∣
(

∥z1 − y1∥ +
(
l3 + l4

aβ

β

)
|z − y|

)

+ sup
t∈[0,a]

∣∣∣∣∣C
(
tβ

β

)∣∣∣∣∣ (∥z0 − y0∥ + (l1 + l2) |z − y|) .

Finally, we get the following estimation:

|z − y| ≤ β

β − βl1 − sup
t∈[0,a]

∣∣∣∣∣S
(
tβ

β

)∣∣∣∣∣ (βl3 + l4a
β
)

− β sup
t∈[0,a]

∣∣∣∣∣C
(
tβ

β

)∣∣∣∣∣ (l1 + l2)

×
[

sup
t∈[0,a]

∣∣∣∣∣C
(
tβ

β

)∣∣∣∣∣ ∥z0 − y0∥ + sup
t∈[0,a]

∣∣∣∣∣S
(
tβ

β

)∣∣∣∣∣ ∥z1 − y1∥
]
. □

Theorem 3.4. Assume that the conditions of Theorem 3.2 are satisfied. Let y0, z0, y1,
z1 ∈ Y and denote by y, z the solutions associated with (y0, y1) and (z0, z1), respectively.
Then, we have

|z − y| ≤

(
sup

t∈[0,a]

∣∣∣∣S( tβ

β

)∣∣∣∣ ∥z1 − y1∥ + sup
t∈[0,a]

∣∣∣∣C( tβ

β

)∣∣∣∣ ∥z0 − y0∥
)

exp
(

l4
aβ

β
sup

t∈[0,a]

∣∣∣∣S( tβ

β

)∣∣∣∣)
1 −
(

l1 + l3 sup
t∈[0,a]

∣∣∣∣S( tβ

β

)∣∣∣∣+ sup
t∈[0,a]

∣∣∣∣C( tβ

β

)∣∣∣∣ (l1 + l2)
)

exp
(

l4
aβ

β
sup

t∈[0,a]

∣∣∣∣S( tβ

β

)∣∣∣∣) ,

provided that(
l1 + l3 sup

t∈[0,a]

∣∣∣∣∣S
(
tβ

β

)∣∣∣∣∣+ sup
t∈[0,a]

∣∣∣∣∣C
(
tβ

β

)∣∣∣∣∣ (l1 + l2)
)

exp
(
l4
aβ

β
sup

t∈[0,a]

∣∣∣∣∣S
(
tβ

β

)∣∣∣∣∣
)
< 1.

Proof. For t ∈ [0, a], we have

z(t) − y(t) =F (t, z(h1(t))) − F (t, y(h1(t))) + S

(
tβ

β

)
(z1 − y1 + ψ(z) − ψ(y))

+ C

(
tβ

β

)(
z0 − y0 + φ(z) − φ(y) + F (0, y(h1(0))) − F (0, z(h1(0)))

)
+
∫ t

0
sβ−1S

(
tβ − sβ

β

) [
G(s, z(h2(s))) − G(s, y(h2(s)))

]
ds.

Then, we get

∥z(t) − y(t)∥ ≤l1|z − y| + sup
t∈[0,a]

∣∣∣∣∣S
(
tβ

β

)∣∣∣∣∣ (∥z1 − y1∥ + l3|z − y|)

+ sup
t∈[0,a]

∣∣∣∣∣C
(
tβ

β

)∣∣∣∣∣ (∥z0 − y0∥ + (l1 + l2) |z − y|)

+ l4 sup
t∈[0,a]

∣∣∣∣∣S
(
tβ

β

)∣∣∣∣∣
∫ t

0
sβ−1∥z(s) − y(s)∥ds.
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Therefore, we show that

|z − y| ≤
(
l1|z − y| + sup

t∈[0,a]

∣∣∣∣∣S
(
tβ

β

)∣∣∣∣∣ (∥z1 − y1∥ + l3|z − y|)

+ sup
t∈[0,a]

∣∣∣∣∣C
(
tβ

β

)∣∣∣∣∣ (∥z0 − y0∥ + (l1 + l2)|z − y|
)

× exp
(
l4
aβ

β
sup

t∈[0,a]

∣∣∣∣∣S
(
tβ

β

)∣∣∣∣∣
)
.

Finally, we conclude that

|z − y| ≤

(
sup

t∈[0,a]

∣∣∣∣S( tβ

β

)∣∣∣∣ ∥z1 − y1∥ + sup
t∈[0,a]

∣∣∣∣C( tβ

β

)∣∣∣∣ ∥z0 − y0∥
)

exp
(

l4
aβ

β
sup

t∈[0,a]

∣∣∣∣S( tβ

β

)∣∣∣∣)
1 −
(

l1 + l3 sup
t∈[0,a]

∣∣∣∣S( tβ

β

)∣∣∣∣+ sup
t∈[0,a]

∣∣∣∣C( tβ

β

)∣∣∣∣ (l1 + l2)
)

exp
(

l4
aβ

β
sup

t∈[0,a]

∣∣∣∣S( tβ

β

)∣∣∣∣) . □

Remark 3.1. If we take

C1 =
exp

(
l4

aβ

β
sup

t∈[0,a]

∣∣∣∣∣S
(
tβ

β

)∣∣∣∣∣
)

1 −
(
l1 + l3 sup

t∈[0,a]

∣∣∣∣∣S
(
tβ

β

)∣∣∣∣∣+ sup
t∈[0,a]

∣∣∣∣∣C
(
tβ

β

)∣∣∣∣∣ (l1 + l2)
)

exp
(
l4

aβ

β
sup

t∈[0,a]

∣∣∣∣∣S
(
tβ

β

)∣∣∣∣∣
) ,

C2 = β

β − βl1 − sup
t∈[0,a]

∣∣∣∣∣S
(
tβ

β

)∣∣∣∣∣ (βl3 + l4a
β
)

− β sup
t∈[0,a]

∣∣∣∣∣C
(
tβ

β

)∣∣∣∣∣ (l1 + l2)
,

we have that C1 < C2. Then, Theorem 3.4 is better than Theorem 3.3.
3.3. Special case of nonlocal conditions. Here, we study a special case of nonlocal
conditions, this means that the functions ψ and φ are given by:

φ(y) =
n∑

i=1
ciy(ti) and ψ(y) =

n∑
i=1

biy(ti),

where ci, bi, i = 1, 2, . . . , n, are given constants and 0 < t1 < t2 < · · · < tn < a.
Proposition 3.1. Assume that (H2), (H3) and (H6) hold. Then, the fractional
problem (1.1) has a unique mild solution provided that there exists ε0 ∈]0, 1[ such that

l1 + sup
t∈[0,a]

∣∣∣∣∣C
(
tβ

β

)∣∣∣∣∣
(

n∑
i=1

|ci| + l1

)
+ sup

t∈[0,a]

∣∣∣∣∣S
(
tβ

β

)∣∣∣∣∣
n∑

i=1
|di| ≤ ε0.

Proof. Define the operator P : C → C by

P (y(t)) =F (t, y(h1(t))) + C

(
tβ

β

)
(y0 + φ (y) − F (0, y(h1(0))))

+ S

(
tβ

β

)(
y1 + ψ(y)

)
+
∫ t

0
sβ−1S

(
tβ − sβ

β

)
G(s, y(h2(s)))ds, t ∈ [0, a].

Now, we define a new norm | · |β in C by

|y|β =
∣∣∣∣∣ exp

(
−ε(·)β

β

)
y

∣∣∣∣∣,
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where

ε =
l4 sup

t∈[0,a]

∣∣∣∣∣S
(
tβ

β

)∣∣∣∣∣
ε0 − l1 − sup

t∈[0,a]

∣∣∣∣∣C
(
tβ

β

)∣∣∣∣∣
(

n∑
i=1

|ci| + l1

)
− sup

t∈[0,a]

∣∣∣∣∣S
(
tβ

β

)∣∣∣∣∣
n∑

i=1
|di|

.

Let y, z ∈ C, and t ∈ [0, a]. Then,

P (z(t)) − P (y(t)) =F (t, z(h1(t))) − F (t, y(h1(t))) + C

(
tβ

β

)
(φ (z) − φ (y))

+ C

(
tβ

β

)(
F (0, y (h1 (0))) − F(0, z(h1(0)))

)
+ S

(
tβ

β

)
(ψ(z) − ψ(y))

+
∫ t

0
sβ−1S

(
tβ − sβ

β

) [
G(s, z(h2(s))) − G(s, y(h2(s)))

]
ds.

Therefore, we obtain

∥P (z(t)) − P (y(t))∥ ≤
[
l1 exp

(
εtβ

β

)
+ exp

(
εtβ

β

)
sup

t∈[0,a]

∣∣∣∣∣C
(
tβ

β

)∣∣∣∣∣
(

n∑
i=1

|ci| + l1

)

+ exp
(
εtβ

β

)
sup

t∈[0,a]

∣∣∣∣∣S
(
tβ

β

)∣∣∣∣∣
n∑

i=1
|di|

+ l4 sup
t∈[0,a]

∣∣∣∣∣S
(
tβ

β

)∣∣∣∣∣
∫ t

0
sβ−1 exp

(
εsβ

β

)
ds

]
|z − y|β.

Accordingly, we show that

|P (z) − P (y)|β ≤
[
l1 + sup

t∈[0,a]

∣∣∣∣∣C
(
tβ

β

)∣∣∣∣∣
(

n∑
i=1

|ci| + l1

)

+ sup
t∈[0,a]

∣∣∣∣∣S
(
tβ

β

)∣∣∣∣∣
(

n∑
i=1

|di| + l4
ε

)]
|z − y|β.

Hence, we conclude that

|P (z) − P (y)|β ≤ ε0|z − y|β.

By using the contraction principle, we obtain the result. □
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4. Application

Consider the fractional partial differential equation of the following form

∂
1
2

∂t
1
2

· ∂
1
2

∂t
1
2

(
v(t, y) −

∫ π

0
c(t, y, θ)v(sin t, θ)dθ

)

=∂
2(·)
∂y2

(
v(t, y) −

∫ π

0
c(t, y, θ)v(sin t, θ)dθ

)

+ ϕ

(
t,
∂v(t, y)
∂y

)
+ |v(t, y)|

1 + |v(t, y)| +
∫ t

0

|v(s, y)|
1 + |v(s, y)|ds,(4.1)

with the following nonlocal conditions:

(4.2) v(t, 0) = v(t, π) = 0 and v(0, y) = ∂
1
2

∂t
1
2
v(0, y) =

n∑
i=1

civ(ti, y), y ∈ [0, π],

where 0 < t1 < · · · < tn < 1 and c1, . . . , cn are given real constants such that
n∑

i=1
|ci| <

4
10 .

Let Y = L2([0, π]) and define the operator B : Y → Y by

B = ∂2(·)
∂y2 and D(B) = {v ∈ H2(0, π), v(π) = v(0) = 0}.

The operator B is the infinitesimal generator of a family of cosines {C(t), S(t)}t∈R.
Furthermore, we have |C(t)| ≤ 1 and |S(t)| ≤ 1 for all t ∈ [0, 1].

We consider the following functions:

z(t)(y) =v(t, y), F
(
t, z)(·) =

∫ π

0
c(t, ·, θ)z(θ)dθ,

G(t, z(t)) = |z(t)|
1 + |z(t)| +

∫ t

0

|z(s)|
1 + |z(s)|ds, h1(t) = sin(t), h2(t) = t,

and

φ(z) = ψ(z) =
n∑

i=1
ciz(ti).

We assume that the following condition hold: c : [0, 1]×[0, π]×[0, π] → R is continuous
with c(t, ·, 0) = c(t, ·, π) = 0. Then, (4.1) and (4.2) become as follows:
(4.3)

dβ

dtβ

[
dβ

dtβ

(
z(t) − F(t, z(h1(t)))

)]
= B

(
z(t) − F

(
t, z(h1(t))

))
+ G

(
t, z(h2(t))

)
,

z(0) = φ(z),
dβ

dtβ

(
z(0) − F(0, z(h1(0)))

)
= ψ(z).
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Moreover, F : [0, 1] × C → X, we have

∥F(t, z)∥2 ≤
∫ π

0

(∫ π

0
c(t, η, θ)z(θ)dθ

)2
dη

≤
(∫ π

0

∫ π

0
c(t, η, θ)2dθdη

) ∫ π

0
z2(θ)dθ

≤ sup
0≤t≤1

(∫ π

0

∫ π

0
c(t, η, θ)2dθdη

)
|z|2.

Finally, all the hypotheses of Proposition 3.1 are verified.
Therefore, the above fractional problem has a unique mild solution provided that

2
(

sup
0≤t≤1

(∫ π

0

∫ π

0
c(t, η, θ)2dθdη

)) 1
2

+ 4
5 < 1.

5. Conclusion

In this manuscript, we have explored the existence of solutions for second-order
conformal differential equations evolving sequentially with non-local conditions by
utilizing Krasnoselskii’s fixed-point theorem. Additionally, through the application
of the Banach fixed-point theorem, we have established the uniqueness of the mild
solution. Finally, we have presented a relevant example to demonstrate the practical
application of our theoretical findings.
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