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ON THE JACOBSON SEMISIMPLE SEMIRINGS

A. K. BHUNIYA AND PUJA SARKAR

Abstract. Based on the minimal and simple representations, we introduce two
types of Jacobson semisimplicity, m-semisimplicity and s-semisimplicity, of a semir-
ing S. Every m(s)-semisimple semiring is a subdirect product of m(s)-primitive
semirings. It is shown that a commutative s-primitive semiring is either a two
element Boolean algebra or a field. Every s-primitive semiring is isomorphic to a
1-fold transitive subsemiring of the semiring of all endomorphisms of a semimodule
over a division semiring.

1. Introduction

A semiring is an algebraic structure satisfying all the axioms of a ring, but one
that every element has an additive inverse. The absence of additive inverses forces a
semiring to deviate radically from behaving like a ring. For example, ideals are not
in bijection with the congruences on a semiring. Further, the presence of additively
idempotent semirings makes the class of the semirings abundant. Now semirings have
become a part of mainstream mathematics for their importance in theoretical computer
science [30], graph theory [16] and automata theory [9,11,13]; and for the surprising
‘characteristic one analogy’ of the usual algebra over fields [10,12,25,26]; and for the
role of additively idempotent semirings in tropical mathematics [1, 7, 14,19,20,27].

In a recent paper [24], Katsov and Nam considered two Jacobson type semisimple
semirings - J-semisimple semirings and Js-semisimple semirings. They characterized
J-semisimple semirings within the class of all additively cancellative semirings and
additively idempotent Js-semisimple semirings. Besides characterizing the semirings
S such that J(S) = Js(S), a problem stated in [24], Mai and Tuyen [28] extended the
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study of the Js-semisimple semirings to the class of all zerosumfree semirings. They
proved that every Js-semisimple zerosumfree commutative semiring is semiisomorphic
to a subdirect product of its maximal entire quotients.

This article is a continuation of [6] under the project to develop a radical theory
of semirings that can be used to study semiring in general. Based on the minimal
and simple representations of a semiring, the present authors introduced and studied
two Jacobson type radicals - Jacobson m-radical and s-radical of a semiring in [6].
Here, we define and study two types of Jacobson semisimple semirings - Jacobson
m-semisimple and s-semisimple semirings.

Since ideals are not in bijection with the congruences on a semiring, it is not sur-
prising that replacing ideals with the more general notion of congruences on semirings
exhibits many excellent properties and several analogies with classical results on the
rings [3, 22, 23]. In our approach, the annihilator annS(M) of an S-semimodule M is
considered as a congruence on S. Similarly to the semirings, subsemimodules are not
in bijection with the congruences on a semimodule; which produces three variants of
‘irreducibility’ of semimodules – minimal semimodules, elementary semimodules, and
simple semimodules [8, 21]. In [6], the authors of the present article introduced and
characterized two Jacobson type Hoehnke radicals, namely, m-radical and s-radical of
a semiring S as two congruences on S. Here we introduce m-semisimple, s-semisimple,
m-primitive and s-primitive semirings in an obvious way. Considering radical as
a congruence makes it easy to represent these semisimple semirings as a subdirect
product of suitable class of primitive semirings. The two element Boolean algebra
and the fields are the only commutative s-primitive semirings. Hence the study of
commutative s-primitive semirings characterizes the subdirect products of the copies
of the two element Boolean algebra and fields.

This paper is organized as follows. Section 2 briefly recaps the necessary definitions
and associated facts on semirings and semimodules. Section 3 introduces m-primitive
and s-primitive semirings and characterizes Jacobson semisimple semirings as sub-
direct products of primitive semirings. Every commutative (s)m-primitive semiring
is a (congruence simple) semifield. Since every congruence simple semifield S with
|S| > 2 is a field, every commutative s-semisimple semiring is a subdirect product of
a family of semirings, each of which is either the 2-element Boolean algebra or a field.
Finally, every s-primitive semiring is represented as a 1-fold transitive subsemiring of
the semiring of all endomorphisms of a semimodule over a division semiring.

2. Preliminaries

A semiring (S,+, ·) is a nonempty set S with two binary operations ‘+’ and ‘·’
satisfying:

• (S,+) is a commutative monoid with identity element 0;
• (S, ·) is a semigroup;
• a(b+ c) = ab+ ac and (a+ b)c = ac+ bc for all a, b, c ∈ S.
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Moreover, we assume that the additive identity element 0 is absorbing, i.e., 0s = s0 = 0
for all s ∈ S. There is no consensus whether every semiring contains a multiplicative
unity 1. In this article, we follow the convention of Hebisch and Weinert [17], that a
semiring does not contain 1, in general. Also, there are many articles on semirings
where the existence of unity is not assumed [4, 5, 18, 21, 31, 32]. On the other hand,
in Golan [15], it is assumed that every semiring contains 1. If a semiring S with
multiplicative identity is such that every nonzero element has a multiplicative inverse,
then S is called a division semiring. A commutative division semiring is called a
semifield. A semiring S is said to be an additively idempotent semiring if a+a = a for
all a ∈ S. Both the two element Boolean algebra B and the max-plus algebra Rmax

are additively idempotent semifields.
Definition of the ideals, congruences and homomorphisms of semirings are as usual.

Here it is assumed that every semiring homomorphism ϕ : S1 → S2 satisfies ϕ(01) = 02.
The kernel of a semiring homomorphism ϕ : S1 → S2 is defined by kerϕ = {(a, b) ∈
S1 × S2 | ϕ(a) = ϕ(b)}. Then kerϕ is a congruence on S1 and S1/ kerϕ ≃ ϕ(S1).

A semiring S is said to be congruence-simple if it has no congruences other than the
equality congruence ∆S = {(s, s) | s ∈ S} and the universal congruence ∇S = S × S.

Let I be a (left, right) ideal of a semiring S and µ be a (left, right) congruence
relation on S. Then, I is said to be a µ-saturated (left, right) ideal of S if for every
s ∈ S and i ∈ I, (s, i) ∈ µ implies that s ∈ I. Thus, an ideal I is µ-saturated if and
only if I = ∪a∈I [a]µ.

A right S-semimodule is a commutative monoid (M,+, 0M) equipped with a right
action M × S → M that satisfies for all m,m1,m2 ∈ M and s, s1, s2 ∈ S:

• (m1 +m2)s = m1s+m2s;
• m(s1 + s2) = ms1 +ms2;
• m(s1s2) = (ms1)s2;
• m0 = 0M = 0Ms.

Unless stated otherwise, by an S-semimodule M , we mean a right S-semimodule.
The annihilator of an S-semimodule M is defined by

annS(M) = {(s1, s2) ∈ S × S | ms1 = ms2 for all m ∈ M}.
Then annS(M) is a congruence on S. If ψ : S → EndS(M) is the representation of S
induced by the right action of S on the semimodule M , then kerψ = annS(M).

If M is a right S-semimodule then for every congruence ρ on S with ρ ⊆ annS(M),
the scalar multiplication m[s]ρ = ms makes M an S/ρ-semimodule.

The following result can be proved easily, and so we omit the proof.

Lemma 2.1. Let S be a semiring and ρ be a congruence on S.
(a) If M is an S/ρ-semimodule, then M becomes an S-semimodule under the scalar

multiplication ms = m[s]. Moreover, ρ ⊆ annS(M).
(b) Let M be an S-semimodule and ρ ⊆ annS(M). Then, annS/ρ(M) = annS(M)/ρ.

An S-semimodule M is said to be faithful if annS(M) = ∆S.
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Following Chen et al. [8] we define the following.

Definition 2.1. Let M be an S-semimodule such that MS ̸= 0. Then M is called
(i) minimal if M has no subsemimodules other than (0) and M ;
(ii) simple if it is minimal and the only congruences on M are ∆M and ∇M where

∆M is the equality relation on M and ∇M = M ×M .

In [21], simple semimodules have been termed as irreducible semimodules. We
denote the class of all minimal and simple S-semimodules by M(S) and S(S), respec-
tively. If R is a ring then M(S) = S(S) [6].

In this paper, we will have many occasions to use the following characterization
[6, 21] of the minimal semimodules.

Lemma 2.2. A nonzero S-semimodule M is minimal if and only if M = mS for all
m( ̸= 0) ∈ M .

The classes M(S) and S(S) of minimal and simple representations of a semiring S
induces the following two notions of Jacobson type radicals of a semiring [6].

Definition 2.2. Let S be a semiring. We define
(a) m-radical of S by radm(S) = ∩M∈M(S)annS(M);
(b) s-radical of S by rads(S) = ∩M∈S(S)annS(M).
If there are no minimal semimodules over S, then we define radm(S) = ∇S. Simi-

larly, we define rads(S) = ∇S if there is no simple S-semimodules.

Both the assignments S 7→ radm(S) and S 7→ rads(S) are Hoehnke radicals on S
[6].

A right congruence µ on S is said to be a regular right congruence if there exists
e ∈ S such that (es, s) ∈ µ for every s ∈ S. If µ is a regular right congruence on S,
then M = S/µ is a right S-semimodule such that MS ̸= 0.

The subsequent two results characterize the regular congruences µ on S such that
the quotient semimodule S/µ is a minimal or a simple semimodule over S.

Lemma 2.3 ([6]). Let M be an S-semimodule. Then, M is minimal if and only
if there exists a regular right congruence µ on S such that S/µ ≃ M and [0]µ is a
maximal µ-saturated right ideal in S.

Every simple semimodule is congruence-simple. Therefore, for every right con-
gruence µ on S, if S/µ is simple, then µ is maximal. Hence, the following result
follows.

Lemma 2.4 ([6]). Let M be a S-semimodule. Then M is simple if and only if there
exists a maximal regular right congruence µ on S such that S/µ ≃ M and [0]µ is a
maximal µ-saturated right ideal in S.

A regular right congruence µ on S is said to be m-regular if [0]µ is a maximal µ-
saturated right ideal in S; and s-regular if it is a maximal regular right congruence such
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that [0]µ is a maximal µ-saturated right ideal in S. We denote the set of all m-regular
right congruences on S by RCm(S) and the set of all s-regular right congruences on
S by RCs(S).

The following internal characterization of the m-radical and the s-radical of a
semiring was proved in [6].

Lemma 2.5 ([6]). Let S be a semiring. Then,
(i) radm(S) = ∩µ∈RCm(S)µ;
(ii) rads(S) = ∩µ∈RCs(S)µ.

The following result has useful applications.

Lemma 2.6 ([6]). Let R and S be two semirings. Then, radm(R × S) = radm(R) ×
radm(S) and rads(R × S) = rads(R) × rads(S).

The reader is referred to [6] for more details on the m-radical and the s-radical of
a semiring and to [17] for the undefined terms and notions concerning semirings and
semimodules over semirings.

3. Jacobson Semisimple Semirings

In this section, we introduce and study the Jacobson m-semisimple and s-semisimple
semirings.

Definition 3.1. A semiring S is said to be m-semisimple if radm(S) = ∆S; and
s-semisimple if rads(S) = ∆S.

Since RCs(S) ⊆ RCm(S), it follows that radm(S) ⊆ rads(S). Therefore, every s-
semisimple semiring is m-semisimple. The following example shows that the converse
does not hold in general.

Example 3.1. Let H be the ring of all real quaternions. Since H is a division ring,
radm(H) = rads(H) = ∆H. Also, radm(Rmax) = ∆Rmax and ρ = {(−∞,−∞)} ∪
{(r, s) | r, s ∈ R} is the only s-regular congruence on Rmax implies that rads(Rmax) = ρ
[6, Example 3.9]. Consider the semiring S = H×Rmax. Then, by the Lemma 2.6, we
have

radm(S) = radm(H) × radm(Rmax) = ∆H × ∆Rmax = ∆S,

rads(S) = rads(H) × rads(Rmax) = ∆H × ρ.

Therefore, S is m-semisimple but not s-semisimple.

Now we give an example of an s-semisimple semiring.

Example 3.2. Both the ring H of all real quaternions and the semiring N0 of all
nonnegative integers are s-semisimple. Hence, it follows from the Lemma 2.6 that the
semiring S = H× N0 is both s-semisimple and m-semisimple.
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If S is a Jacobson m-semisimple semiring, then ∩M∈M(S)annS(M) = ∆S implies
that every m-semisimple semiring is a subdirect product of the family of semirings
{S/annS(M) | M ∈ M(S)}. Also, for every M ∈ M(S), by Lemma 2.1, implies that
M is a minimal and faithful S/annS(M)-semimodule. Similarly, every s-semisimple
semiring S is a subdirect product of the family of semirings {S/annS(M) | M ∈ S(S)}
where each quotient semiring S/annS(M) has a faithful and simple semimodule M .
Intending to characterize the structure of semisimple semirings, we introduce the
following two notions.

Definition 3.2. Let S be a semiring. Then, S is called
(i) m-primitive if there is a faithful minimal S-semimodule M ;
(ii) s-primitive if there is a faithful simple S-semimodule M .

If S is an m-primitive semiring, then there is a minimal S-semimodule M such that
annS(M) = ∆S. Hence radm(S) = ∩M∈M(S)annS(M) = ∆S and so S is m-semisimple.
Similarly, every s-primitive semiring is s-semisimple.

A congruence σ on S is said to be an m-primitive (s-primitive) congruence if
the quotient semiring S/σ is an m-primitive (s-primitive) semiring. Thus, σ is m-
primitive(s-primitive) if and only if there exists a faithful minimal (simple) S/σ-
semimodule M .

If ρ is a right congruence on S, we define
(ρ : ∇S) = {(x, y) ∈ ∇S | (sx, sy) ∈ ρ for all s ∈ S}.

Then, (ρ : ∇S) is a congruence on S.

Lemma 3.1. Let σ be a congruence on S. Then, the following conditions are equiva-
lent:

(a) σ is m-primitive (s-primitive);
(b) σ = annS(M) for some minimal (simple) S-semimodule M ;
(c) σ = (ρ : ∇S) for some ρ ∈ RCm(S) (ρ ∈ RCs(S)).

Proof. We prove the result for m-primitive congruences. The other cases are similar.
(a) ⇒ (b) Let σ be an m-primitive congruence on S. Then there exists a faithful min-

imal S/σ-semimodule M . Hence, by Lemma 2.1, M is also a minimal S-semimodule
such that σ ⊆ annS(M) and ∆S/σ = annS/σ(M) = annS(M)/σ, i.e., σ = annS(M).

(b) ⇒ (c) Let M be a minimal S-semimodule and σ = annS(M). Then M is a
minimal and faithful right S/σ-semimodule. Theorem 2.3 implies that there exists ρ ∈
RCm(S) such that M ≃ S/ρ; and hence annS(M) = (ρ : ∇S). Then ann(S/σ)(M) =
annS(M)/σ = ∆(S/σ) implies that annS(M) = σ. Hence, (ρ : ∇S) = annS(M) = σ.

(c) ⇒ (a) Let ρ ∈ RCm(S) and σ = (ρ : ∇S). Then S/ρ is a minimal right S-
semimodule and annS(S/ρ) = (ρ : ∇S) = σ. Since σ is a semiring congruence on S
and σ = (ρ : ∇S), it follows that S/ρ is a minimal right S/σ-semimodule. Also, by
Lemma 2.1, we have annS/σ(S/ρ) = annS(S/ρ)/σ = ∆S/σ. Hence, S/ρ is a minimal
and faithful right S/σ-semimodule, so σ is a m-primitive congruence on S. □



ON THE JACOBSON SEMISIMPLE SEMIRINGS 1111

From the definition, it follows that a semiring S is an m-primitive (s-primitive)
semiring if and only if ∆S is an m-primitive (s-primitive) congruence on S. Thus, we
have the following.

Corollary 3.1. Let S be a semiring. Then, S is
(a) m-primitive if and only if there exists ρ ∈ RCm(S) such that (ρ : ∇S) = ∆S;
(b) s-primitive if and only if there exists ρ ∈ RCs(S) such that (ρ : ∇S) = ∆S.

A division semiring is a noncommutative generalization of a semifield. The following
result shows that primitive semirings are another class of noncommutative generaliza-
tions of semifields. The m-primitive semirings generalize the semifields, whereas the
s-primitive semirings generalize the congruence-simple semifields.

Theorem 3.1. Let S be a commutative semiring. Then, S is
(a) m-primitive if and only if it is a semifield;
(b) s-primitive if and only if it is a congruence-simple semifield.

Proof. (a) Let S be a commutative m-primitive semiring. Then, by Corollary 3.1,
there is a regular right congruence ρ in RCm(S) such that (ρ : ∇S) = ∆S. Since S
is a commutative semiring, ρ becomes a congruence on S and so ρ = (ρ : ∇S) = ∆S.
Therefore ∆S ∈ RCm(S) and there is an element e ∈ S such that es = s = se for
all s ∈ S. Thus, e is a multiplicative identity in S. Also ρ = ∆S ∈ RCm(S) implies
that (0) is maximal ∆S-saturated ideal in S. Since every ideal in S is ∆S-saturated,
it follows that (0) and S are the only two ideals in S. Now for each non-zero element
a ∈ S, aS is a non-zero ideal in S. Hence, aS = S, which implies that there exists an
element b ∈ S such that ab = e = ba. Thus, S is a semifield.

Conversely, let S be a semifield. Then M = S is a minimal S-semimodule and
annS(M) = {(s1, s2) ∈ S × S | ss1 = ss2 for all s ∈ S} = ∆S. Therefore, S is
m-primitive.

(b) Let S be a commutative s-primitive semiring. Then S is m-primitive, and so, by
(a), it is a semifield. Also, by Corollary 3.1, there exists a right congruence ρ ∈ RCs(S)
such that (ρ : ∇S) = ∆S. Since S is commutative, it follows that (ρ : ∇S) = ρ. Hence
∆S = ρ ∈ RCs(S) which implies that M = S/ρ ≃ S is a simple S-semimodule. Hence,
the semifield S is congruence-simple.

Conversely, if S is a congruence-simple semifield, then S itself is a faithful simple
S-semimodule. Hence, S is s-primitive. □

Theorem 3.1 tells us that the congruence-simple semifields constitute an important
subclass of the semifields. Similarly to the fields, the Krull-dimension of a congruence-
simple semifield is 0, whereas there are semifields, say, for example, Rmax having the
Krull-dimension 1 [22]. A semiring S is called zerosumfree if for every a, b ∈ S, we
have a+b = 0 implies that a = 0 and b = 0. It is well known that a semifield S is either
zerosumfree or is a field [15, Proposition 4.34]. Every field is a congruence-simple
semifield. If S is zerosumfree, then ρ = {(s, t) ∈ S × S | s ̸= 0 ̸= t} ∪ {(0, 0)} is a
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congruence on S. So for S to be congruence-simple, we must have |S| = 2. Then S is
the 2-element Boolean algebra B. Thus, a congruence-simple semifield is either the
2-element Boolean algebra B or a field.

However, in the following, we include an independent proof.

Theorem 3.2. Let S be a semiring with |S| > 2. Then, S is a congruence-simple
semifield if and only if it is a field.

Proof. First, assume that S is a congruence-simple semifield. Denote Z(S) = {x ∈
S | x+ y = 0 for some y ∈ S}. Then, Z(S) is an ideal of S; and so Z(S) is either {0}
or S. If Z(S) = {0}, then S is zerosumfree. So, {(0, 0)} ∪ {(s, t) ∈ S × S | s ̸= 0 ̸= t}
induces a nontrivial congruence on S, which contradicts that S is congruence-simple.
Hence, Z(S) = S which implies that (S,+) is a group. Thus, S is a field.

The converse follows trivially. □

Thus a zerosumfree semifield S with |S| > 2 cannot be congruence-simple. So, in
particular, we have the following example.

Example 3.3. The max-plus algebra Rmax is a semifield but not congruence-simple.
Hence, Rmax is an m-primitive semiring but not s-primitive.

The 2-element Boolean algebra B and the field Z2 of all integers modulo 2 are the
only semifields of order two up to isomorphism. Hence, it turns out to be the following
specific characterization of the commutative s-primitive semirings.

Corollary 3.2. A commutative semiring S is s-primitive if and only if it is either
the 2-element Boolean algebra B or a field.

A semiring S is called a subdirect product of a family {Sα}∆ of semirings if there
is an one-to-one semiring homomorphism ϕ : S → ∏

∆ Sα such that for each α ∈ ∆,
the composition πα ◦ ϕ : S → Sα is onto where πα : ∏

∆ Sα → Sα is the projection
mapping.

It is well known that a semiring S is a subdirect product of a family {Sα}∆ of
semirings if and only if there is a family {ρα}∆ of congruences on S such that S/ρα ≃
Sα for every α ∈ ∆ and ∩∆ρα = ∆S.

Theorem 3.3. A semiring S is m-semisimple (s-semisimple) if and only if it is a
subdirect product of m-primitive (s-primitive) semirings.

Proof. We prove the result for m-semisimple semirings. The proof for s-semisimple
semirings is similar.

First, assume that S is a m-semisimple semiring. Then radm(S) = ∩M∈M(S)
annS(M) = ∆S. Hence, S is a subdirect product of the family {S/annS(M) | M ∈
M(S)} of semirings. Lemma 3.1 implies that annS(M) is an m-primitive congruence
on S for every minimal S-semimodule M . Therefore, every semiring in the family
{S/annS(M) | M ∈ M(S)} is an m-primitive semiring, and so S is a subdirect
product of m-primitive semirings.
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Conversely, let S be a subdirect product of a family of m-primitive semirings
{Si | for all i ∈ Λ}. Then there exists a one-to-one homomorphism ϕ : S → Πi∈ΛSi

such that the mapping πi ◦ ϕ : S → Si is onto for all i ∈ Λ. Thus S/ ker(πi ◦ ϕ) ∼= Si

for all i ∈ Λ. Let Mi be a faithful minimal Si-semimodule for each i ∈ Λ. Then, by
the Lemma 2.1, Mi is a minimal S-semimodule where ms = mπi ◦ ϕ(s) for all s ∈ S
and m ∈ Mi. Hence, ∩M∈M(S)annS(M) ⊆ ∩i∈ΛannS(Mi). Now (a, b) ∈ annS(Mi)
implies that mπi ◦ ϕ(a) = mπi ◦ ϕ(b) for all m ∈ Mi; and so (πi ◦ ϕ(a), πi ◦ ϕ(b)) ∈
annSi

(M). Since Mi is faithful over Si, it follows that πi ◦ ϕ(a) = πi ◦ ϕ(b). Hence,
∩i∈ΛannS(Mi) = ∆S which implies that radm(S) = ∩M∈M(S)annS(M) = ∆S. Thus,
S is a m-semisimple semiring. □

Now, taken together the structure of an s-semisimple semiring characterized in
Theorem 3.3 and the characterization of the commutative s-primitive semirings in
Corollary 3.2 turn out to be an characterization of the commutative s-semisimple
semirings.

Corollary 3.3. Let S be a commutative semiring. Then, S is an s-semisimple
semiring if and only if it is a subdirect product of a family of semirings that are either
the 2-element Boolean algebra B or fields.

Mischell and Fenoglio [29] and Basir et al. [2] independently proved that a com-
mutative semiring S with |S| ⩾ 2 is congruence-simple if and only if it is either
a field or the 2-element Boolean algebra B. Hence, it follows that a commutative
semiring is s-semisimple if and only if it is a subdirect product of congruence-simple
commutative semirings. A semiring homomorphism f : S1 → S2 is said to be semi-
isomorphism if, for every a ∈ S1, we have f(a) = 0 only for a = 0. Katsov and Nam
[24] proved that a commutative semiring S is Brown-McCoy semisimple if and only if
S is semi-isomorphic to a subdirect product of a family of semirings that are either
the 2-element Boolean algebra B or fields. Hence, every commutative s-semisimple
semiring is Brown-McCoy semisimple in the sense of Katsov and Nam.

Example 3.4. Consider the semiring N of all nonnegative integers. Then, for every
prime p, the Bourne congruence σpN is a maximal regular congruence on N with
[0]σpN = pN. If J is a σpN-saturated ideal in N with pN ⊊ J , then there exists a ∈ J
such that 0 < a < p. By the Fermat’s little theorem, we have ap−1 ≡ 1 (mod p) which
implies that 1 ∈ J and so J = N. Thus, pN = [0]σpN is a maximal σpN-saturated ideal
in N and it follows that σpN ∈ RCs(N). Hence rads(N) ⊆ ∩σpN = ∆N; and so N is an
s-semisimple semiring.

Also, ∩σpN = ∆N implies that N is a subdirect product of the family of fields
Np = N/σpN, where p is a prime.

We conclude this section with a representation of s-primitive semirings as a semiring
of endomorphisms on a semimodule over a division semiring.
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The opposite semiring Sop of a semiring (S,+, ·) is defined by (S,+, ◦), where
a ◦ b = b · a for all a, b ∈ S. Hence, a semiring S is a division semiring if and only if
the opposite semiring Sop is so.

Definition 3.3. Let M be a semimodule over a division semiring D. Then a sub-
semiring T of the endomorphism semiring EndD(M) is called 1-fold transitive if for
every non-zero m ∈ M and n ∈ M there exists α ∈ T such that α(m) = n.

In the context of semirings, Schur’s lemma [21] states that if M is a simple S-
semimodule, then the endomorphism semiring EndS(M) is a division semiring.

Let M be a right S-semimodule and E = EndS(M). Then for the division semiring
D = Eop, M is a right semimodule over D where the scalar multiplication is defined
by m · α = α(m) for all m ∈ M and α ∈ D.

Theorem 3.4. If S is a right s-primitive semiring, then Sop is isomorphic to a
1-fold transitive subsemiring of the semiring EndD(M) of all endomorphisms on a
semimodule M over a division semiring D.

Proof. Let M be a faithful simple right S-semimodule. By Schur’s Lemma for semi-
modules [21], the semiring E = EndS(M) is a division semiring. Hence, D = Eop is a
division semiring, and so M as a right D-semimodule where m · α 7→ α(m).

For every a ∈ S, define a mapping ψa : M → M by ψa(m) = ma. Then for every
α ∈ D, we have ψa(m.α) = ψa(α(m)) = α(m)a = α(ma) = (ma) · α = ψa(m) · α. In
fact, ψa is an endomorphism on M considered a D-semimodule.

Also, the mapping ψ : Sop → EndD(M) defined by ψ(a) = ψa is a semiring
homomorphism. Moreover kerψ = annS(M) = ∆S implies that ψ is an injective
homomorphism; and so Sop is isomorphic to the subsemiring T = {ψa | a ∈ S} of
EndD(M).

Since M is a simple right S-semimodule, by Lemma 2.2, for every m(̸= 0) ∈ M ,
mS = M . Then for every n ∈ M there exists a ∈ S such that ma = n and so
ψa(m) = n. Thus, T is a 1-fold transitive subsemiring of EndD(M). □

It follows from Corollary 3.2 that the semifield F = Rmax is not an s-primitive
semiring. Since F contains 1, every F -endomorphism on F is of the form ψa : F → F
given by ψa(m) = am. Hence, F ≃ EndF (F ) which implies that EndF (F ) is not
s-primitive; whereas EndF (F ) is a 1-fold transitive subsemiring of itself. Thus, the
converse of the Theorem 3.4 does not hold. However, the converse holds in the
following weaker form.

Theorem 3.5. Let D be a division semiring and M be a right D-semimodule. If T is
a 1-fold transitive subsemiring of EndD(M), then T op is a right m-primitive semiring.

Proof. Define M × T op → M by m · α 7→ α(m). Then M is a right T op-semimodule.
Let m be a non-zero element in M . Then, for every n ∈ M , there exists α ∈ T
such that m · α = n. Therefore, mT op = M which implies that M is minimal, by
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Lemma 2.2. Now

annT op(M) = {(α, β) ∈ T × T | m · α = m · β for all m ∈ M}
= {(α, β) ∈ T × T | α(m) = β(m) for all m ∈ M}
= {(α, β) ∈ T × T | α = β}
= ∆S

and so M is a faithful minimal T op-semimodule. Therefore, T op is a m-primitive
semiring. □

4. Conclusion

In [6], based on the notions of minimal semimodule and simple semimodule, the
Jacobson m-radical and s-radical of a semiring S have been considered as a congruence
on S. In Section 3 of this article, we introduce the m-semisimple and s-semisimple
semirings as the semiring that has the trivial Jacobson m-radical and s-radical, re-
spectively. These two notions of semisimplicity effectively characterize the structure
of semirings, including the additively idempotent semirings. The m-semisimple (s-
semisimple) are isomorphic to a subdirect product of m-primitive (s-primitive) semir-
ings. In particular, a commutative semiring is s-primitive if and only if it is a subdirect
product of the fields and copies of the two element Boolean algebra. Finally, every
s-primitive semiring is represented as a suitable subsemiring of the semiring EndD(M)
of all endomorphisms on a semimodule M over a division semiring D.

There is another notion of simplicity of semimodules, namely the congruence simple
semimodules which are known as elementary semimodules [8]. An attempt may be
taken to characterize the e-semisimple semirings which are defined based on the class
of elementary semimodules.
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