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ON THE JACOBSON SEMISIMPLE SEMIRINGS
A. K. BHUNIYA AND PUJA SARKAR

ABSTRACT. Based on the minimal and simple representations, we introduce two
types of Jacobson semisimplicity, m-semisimplicity and s-semisimplicity, of a semir-
ing S. Every m(s)-semisimple semiring is a subdirect product of m(s)-primitive
semirings. It is shown that a commutative s-primitive semiring is either a two
element Boolean algebra or a field. Every s-primitive semiring is isomorphic to a
1-fold transitive subsemiring of the semiring of all endomorphisms of a semimodule
over a division semiring.

1. INTRODUCTION

A semiring is an algebraic structure satisfying all the axioms of a ring, but one
that every element has an additive inverse. The absence of additive inverses forces a
semiring to deviate radically from behaving like a ring. For example, ideals are not
in bijection with the congruences on a semiring. Further, the presence of additively
idempotent semirings makes the class of the semirings abundant. Now semirings have
become a part of mainstream mathematics for their importance in theoretical computer
science [30], graph theory [16] and automata theory [9,11,13]; and for the surprising
‘characteristic one analogy’ of the usual algebra over fields [10,12,25, 26]; and for the
role of additively idempotent semirings in tropical mathematics [1,7,14,19,20,27].

In a recent paper [24], Katsov and Nam considered two Jacobson type semisimple
semirings - J-semisimple semirings and Js-semisimple semirings. They characterized
J-semisimple semirings within the class of all additively cancellative semirings and
additively idempotent Js-semisimple semirings. Besides characterizing the semirings
S such that J(S) = Js(S), a problem stated in [24], Mai and Tuyen [28] extended the
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study of the Js-semisimple semirings to the class of all zerosumfree semirings. They
proved that every J,-semisimple zerosumfree commutative semiring is semiisomorphic
to a subdirect product of its maximal entire quotients.

This article is a continuation of [6] under the project to develop a radical theory
of semirings that can be used to study semiring in general. Based on the minimal
and simple representations of a semiring, the present authors introduced and studied
two Jacobson type radicals - Jacobson m-radical and s-radical of a semiring in [6].
Here, we define and study two types of Jacobson semisimple semirings - Jacobson
m-semisimple and s-semisimple semirings.

Since ideals are not in bijection with the congruences on a semiring, it is not sur-
prising that replacing ideals with the more general notion of congruences on semirings
exhibits many excellent properties and several analogies with classical results on the
rings [3,22,23]. In our approach, the annihilator anng(M) of an S-semimodule M is
considered as a congruence on S. Similarly to the semirings, subsemimodules are not
in bijection with the congruences on a semimodule; which produces three variants of
‘irreducibility’ of semimodules — minimal semimodules, elementary semimodules, and
simple semimodules [8,21]. In [6], the authors of the present article introduced and
characterized two Jacobson type Hoehnke radicals, namely, m-radical and s-radical of
a semiring S as two congruences on S. Here we introduce m-semisimple, s-semisimple,
m-primitive and s-primitive semirings in an obvious way. Considering radical as
a congruence makes it easy to represent these semisimple semirings as a subdirect
product of suitable class of primitive semirings. The two element Boolean algebra
and the fields are the only commutative s-primitive semirings. Hence the study of
commutative s-primitive semirings characterizes the subdirect products of the copies
of the two element Boolean algebra and fields.

This paper is organized as follows. Section 2 briefly recaps the necessary definitions
and associated facts on semirings and semimodules. Section 3 introduces m-primitive
and s-primitive semirings and characterizes Jacobson semisimple semirings as sub-
direct products of primitive semirings. Every commutative (s)m-primitive semiring
is a (congruence simple) semifield. Since every congruence simple semifield S with
|S| > 2 is a field, every commutative s-semisimple semiring is a subdirect product of
a family of semirings, each of which is either the 2-element Boolean algebra or a field.
Finally, every s-primitive semiring is represented as a 1-fold transitive subsemiring of
the semiring of all endomorphisms of a semimodule over a division semiring.

2. PRELIMINARIES
A semiring (S,+,-) is a nonempty set S with two binary operations ‘+’ and **’
satisfying:
e (S,4) is a commutative monoid with identity element 0;
e (S,-) is a semigroup;
e a(b+c¢)=ab+acand (a+b)c=ac+ be for all a,b,c € S.
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Moreover, we assume that the additive identity element 0 is absorbing, i.e., 0s = s0 = 0
for all s € S. There is no consensus whether every semiring contains a multiplicative
unity 1. In this article, we follow the convention of Hebisch and Weinert [17], that a
semiring does not contain 1, in general. Also, there are many articles on semirings
where the existence of unity is not assumed [4,5,18,21,31,32]. On the other hand,
in Golan [15], it is assumed that every semiring contains 1. If a semiring S with
multiplicative identity is such that every nonzero element has a multiplicative inverse,
then S is called a division semiring. A commutative division semiring is called a
semifield. A semiring S is said to be an additively idempotent semiring if a +a = a for
all @ € S. Both the two element Boolean algebra B and the max-plus algebra R, ..
are additively idempotent semifields.

Definition of the ideals, congruences and homomorphisms of semirings are as usual.
Here it is assumed that every semiring homomorphism ¢ : S; — S; satisfies ¢(01) = 0.
The kernel of a semiring homomorphism ¢ : S} — Sy is defined by ker ¢ = {(a,b) €
S1 % Sy | p(a) = ¢(b)}. Then ker ¢ is a congruence on S; and S;/ ker ¢ =~ ¢(5).

A semiring S is said to be congruence-simple if it has no congruences other than the
equality congruence Ag = {(s,s) | s € S} and the universal congruence Vg =S x S.

Let I be a (left, right) ideal of a semiring S and p be a (left, right) congruence
relation on S. Then, [ is said to be a u-saturated (left, right) ideal of S if for every
s€ Sandi €I, (s,i) € pimplies that s € I. Thus, an ideal I is p-saturated if and
only if I = Uges[al,.

A right S-semimodule is a commutative monoid (M, +,0,;) equipped with a right
action M x S — M that satisfies for all m, my,my € M and s, s1,52 € S:

(mq + ma)s = mys + mas;
m(s; + sg) = ms; + msa;
m(s182) = (msy)sa;

Unless stated otherwise, by an S-semimodule M, we mean a right S-semimodule.
The annihilator of an S-semimodule M is defined by

anng(M) = {(s1,82) € S x S | ms; = ms, for allm € M}.

Then anng(M) is a congruence on S. If ¢ : S — Endg(M) is the representation of S
induced by the right action of S on the semimodule M, then ker ¢ = anng(M).

If M is a right S-semimodule then for every congruence p on S with p C anng(M),
the scalar multiplication m[s], = ms makes M an S/p-semimodule.

The following result can be proved easily, and so we omit the proof.

Lemma 2.1. Let S be a semiring and p be a congruence on S.

(a) If M is an S/p-semimodule, then M becomes an S-semimodule under the scalar
multiplication ms = m[s]. Moreover, p C anng(M).

(b) Let M be an S-semimodule and p C anng(M). Then, anng;,(M) = anng(M)/p.

An S-semimodule M is said to be faithful if anng(M) = Ag.
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Following Chen et al. [8] we define the following.

Definition 2.1. Let M be an S-semimodule such that MS # 0. Then M is called

(i) minimal if M has no subsemimodules other than (0) and M;
(ii) simple if it is minimal and the only congruences on M are Ay, and Vj; where
Ay is the equality relation on M and Vy; = M x M.

In [21], simple semimodules have been termed as irreducible semimodules. We
denote the class of all minimal and simple S-semimodules by M(S) and 8(5), respec-
tively. If R is a ring then M(S) = 8(S) [6].

In this paper, we will have many occasions to use the following characterization
[6,21] of the minimal semimodules.

Lemma 2.2. A nonzero S-semimodule M is minimal if and only if M = mS for all
m(# 0) € M.

The classes M(S) and 8(5) of minimal and simple representations of a semiring S
induces the following two notions of Jacobson type radicals of a semiring [6].

Definition 2.2. Let S be a semiring. We define

(a) m-radical of S by rad,,(S) = Nuensyanng(M);

(b) s-radical of S by rads(S) = Nares(syanng(M).

If there are no minimal semimodules over S, then we define rad,,(S) = V. Simi-
larly, we define rads(S) = Vg if there is no simple S-semimodules.

Both the assignments S +— rad,,(S) and S +— rads(S) are Hoehnke radicals on §

6].

A right congruence p on S is said to be a regular right congruence if there exists
e € S such that (es,s) € p for every s € S. If p is a regular right congruence on S,
then M = S/p is a right S-semimodule such that M.S # 0.

The subsequent two results characterize the regular congruences p on S such that
the quotient semimodule S/u is a minimal or a simple semimodule over S.

Lemma 2.3 ([6]). Let M be an S-semimodule. Then, M is minimal if and only
if there exists a regular right congruence p on S such that S/p ~ M and [0], is a
mazimal p-saturated right ideal in S.

Every simple semimodule is congruence-simple. Therefore, for every right con-
gruence g on S, if S/p is simple, then p is maximal. Hence, the following result
follows.

Lemma 2.4 ([6]). Let M be a S-semimodule. Then M is simple if and only if there
ezists a mazimal reqular right congruence p on S such that S/p ~ M and [0], is a
mazimal p-saturated right ideal in S.

A regular right congruence p on S is said to be m-regular if [0], is a maximal -
saturated right ideal in S; and s-regular if it is a maximal regular right congruence such
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that [0],, is a maximal p-saturated right ideal in S. We denote the set of all m-regular
right congruences on S by RC,,(S) and the set of all s-regular right congruences on

S by RC,(S).
The following internal characterization of the m-radical and the s-radical of a
semiring was proved in [6].
Lemma 2.5 ([6]). Let S be a semiring. Then,
(i) rad,(S) = Nuere,n(s)1s
(ii) TadS(S) = MNyere,(s)1-

The following result has useful applications.

Lemma 2.6 ([6]). Let R and S be two semirings. Then, rad,,(R x S) = rad,,(R) x
rad,,(S) and rads(R x S) = rads(R) x rady(S).

The reader is referred to [6] for more details on the m-radical and the s-radical of
a semiring and to [17] for the undefined terms and notions concerning semirings and
semimodules over semirings.

3. JACOBSON SEMISIMPLE SEMIRINGS

In this section, we introduce and study the Jacobson m-semisimple and s-semisimple
semirings.

Definition 3.1. A semiring S is said to be m-semisimple if rad,,(S) = Ag; and
s-semisimple if rads(S) = Ag.

Since RC,(S5) C RC,,(.9), it follows that rad,,(S) C rads(S). Therefore, every s-
semisimple semiring is m-semisimple. The following example shows that the converse
does not hold in general.

Example 3.1. Let H be the ring of all real quaternions. Since H is a division ring,
rad,(H) = rad;(H) = Ag. Also, rad,(Ryu:) = Ag,,,., and p = {(—o0,—00)} U
{(r,s) | r,s € R} is the only s-regular congruence on R, implies that rads(R,,..) = p
(6, Example 3.9]. Consider the semiring S = H X R,,,,. Then, by the Lemma 2.6, we
have

rad,(S) = rad,,(H) x rad,(Rye:) = Ag X Ag,,,. = Ag,

rads(S) = rads(H) X rads(Rpa:) = Ag X p.

Therefore, S is m-semisimple but not s-semisimple.
Now we give an example of an s-semisimple semiring.

Ezxample 3.2. Both the ring H of all real quaternions and the semiring N° of all
nonnegative integers are s-semisimple. Hence, it follows from the Lemma 2.6 that the
semiring S = H x N is both s-semisimple and m-semisimple.
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If S is a Jacobson m-semisimple semiring, then Nyepsyanng(M) = Ag implies
that every m-semisimple semiring is a subdirect product of the family of semirings
{S/anng(M) | M € M(S)}. Also, for every M € M(S), by Lemma 2.1, implies that
M is a minimal and faithful S/anng(M)-semimodule. Similarly, every s-semisimple
semiring S is a subdirect product of the family of semirings {S/anng(M) | M € 8(S)}
where each quotient semiring S/anng(M) has a faithful and simple semimodule M.
Intending to characterize the structure of semisimple semirings, we introduce the
following two notions.

Definition 3.2. Let S be a semiring. Then, S is called

(i) m-primitive if there is a faithful minimal S-semimodule M;
(ii) s-primitive if there is a faithful simple S-semimodule M.

If S'is an m-primitive semiring, then there is a minimal S-semimodule M such that
anng(M) = Ag. Hence rad,,(S) = Nuenmesyanns(M) = Ag and so S is m-semisimple.
Similarly, every s-primitive semiring is s-semisimple.

A congruence o on S is said to be an m-primitive (s-primitive) congruence if
the quotient semiring S/o is an m-primitive (s-primitive) semiring. Thus, o is m-
primitive(s-primitive) if and only if there exists a faithful minimal (simple) S/o-
semimodule M.

If p is a right congruence on S, we define

(p:Vs)=A{(z,y) € Vg | (sz,sy) € p for all s € S}.
Then, (p: Vg) is a congruence on S.

Lemma 3.1. Let o be a congruence on S. Then, the following conditions are equiva-
lent:

(a) o is m-primitive (s-primitive);

(b) o = anng(M) for some minimal (simple) S-semimodule M ;

(c) o= (p: Vsg) for some p € RC,,,(S) (p € RC,(9)).

Proof. We prove the result for m-primitive congruences. The other cases are similar.
(a) = (b) Let 0 be an m-primitive congruence on S. Then there exists a faithful min-
imal S/o-semimodule M. Hence, by Lemma 2.1, M is also a minimal S-semimodule
such that o C anng(M) and Ag/, = anng/,(M) = anng(M)/o, i.e., 0 = anng(M).
(b) = (c) Let M be a minimal S-semimodule and ¢ = anng(M). Then M is a
minimal and faithful right S/o-semimodule. Theorem 2.3 implies that there exists p €
RC,(S) such that M ~ S/p; and hence anng(M) = (p : Vg). Then anng/o) (M) =
anng(M)/o = Ag/s) implies that anng(M) = 0. Hence, (p: Vg) = anng(M) = 0.
(c) = (a) Let p € RC,,(S) and ¢ = (p : Vg). Then S/p is a minimal right S-
semimodule and anng(S/p) = (p: Vg) = 0. Since o is a semiring congruence on S
and o = (p : Vg), it follows that S/p is a minimal right S/o-semimodule. Also, by
Lemma 2.1, we have anng/,(S/p) = anng(S/p)/c = Ag/,. Hence, S/p is a minimal
and faithful right S/o-semimodule, so ¢ is a m-primitive congruence on S. 0J
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From the definition, it follows that a semiring S is an m-primitive (s-primitive)
semiring if and only if Ag is an m-primitive (s-primitive) congruence on S. Thus, we
have the following.

Corollary 3.1. Let S be a semiring. Then, S is

(a) m-primitive if and only if there exists p € RC,,(S) such that (p: Vg) = Ag;
(b) s-primitive if and only if there ezists p € RCs(S) such that (p: Vg) = Ag.

A division semiring is a noncommutative generalization of a semifield. The following
result shows that primitive semirings are another class of noncommutative generaliza-
tions of semifields. The m-primitive semirings generalize the semifields, whereas the
s-primitive semirings generalize the congruence-simple semifields.

Theorem 3.1. Let S be a commutative semiring. Then, S is

(a) m-primitive if and only if it is a semifield;
(b) s-primitive if and only if it is a congruence-simple semifield.

Proof. (a) Let S be a commutative m-primitive semiring. Then, by Corollary 3.1,
there is a regular right congruence p in RC,,(S) such that (p : Vg) = Ag. Since §
is a commutative semiring, p becomes a congruence on S and so p = (p: Vg) = Ag.
Therefore Ag € RC,,(S) and there is an element e € S such that es = s = se for
all s € S. Thus, e is a multiplicative identity in S. Also p = Ag € RC,,(S) implies
that (0) is maximal Ag-saturated ideal in S. Since every ideal in S is Ag-saturated,
it follows that (0) and S are the only two ideals in S. Now for each non-zero element
a € S, aS is a non-zero ideal in S. Hence, aS = S, which implies that there exists an
element b € S such that ab = e = ba. Thus, S is a semifield.

Conversely, let S be a semifield. Then M = S is a minimal S-semimodule and
anng(M) = {(s1,82) € S xS | ss1 = ssy forall s € S} = Ag. Therefore, S is
m-primitive.

(b) Let S be a commutative s-primitive semiring. Then S is m-primitive, and so, by
(a), it is a semifield. Also, by Corollary 3.1, there exists a right congruence p € RC,(.S)
such that (p: Vg) = Ag. Since S is commutative, it follows that (p : V) = p. Hence
Ag = p € RC,(S) which implies that M = S/p ~ S is a simple S-semimodule. Hence,
the semifield S is congruence-simple.

Conversely, if S is a congruence-simple semifield, then S itself is a faithful simple
S-semimodule. Hence, S is s-primitive. O

Theorem 3.1 tells us that the congruence-simple semifields constitute an important
subclass of the semifields. Similarly to the fields, the Krull-dimension of a congruence-
simple semifield is 0, whereas there are semifields, say, for example, R,,,, having the
Krull-dimension 1 [22]. A semiring S is called zerosumfree if for every a,b € S, we
have a+b = 0 implies that a = 0 and b = 0. It is well known that a semifield S'is either
zerosumfiree or is a field [15, Proposition 4.34]. Every field is a congruence-simple
semifield. If S is zerosumfree, then p = {(s,t) € S x S |s# 0# ¢t} U{(0,0)} is a
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congruence on S. So for S to be congruence-simple, we must have |S| = 2. Then S is
the 2-element Boolean algebra B. Thus, a congruence-simple semifield is either the
2-element Boolean algebra B or a field.

However, in the following, we include an independent proof.

Theorem 3.2. Let S be a semiring with |S| > 2. Then, S is a congruence-simple
semifield if and only if it is a field.

Proof. First, assume that S is a congruence-simple semifield. Denote Z(S) = {x €
S |x+y =0 for somey € S}. Then, Z(95) is an ideal of S; and so Z(.5) is either {0}
or S. If Z(S) = {0}, then S is zerosumfree. So, {(0,0)} U{(s,t) € S xS |s#0#t}
induces a nontrivial congruence on .S, which contradicts that S is congruence-simple.
Hence, Z(S) = S which implies that (S,+) is a group. Thus, S is a field.

The converse follows trivially. O

Thus a zerosumfree semifield S with |S| > 2 cannot be congruence-simple. So, in
particular, we have the following example.

Example 3.3. The max-plus algebra R,,,, is a semifield but not congruence-simple.
Hence, R, is an m-primitive semiring but not s-primitive.

The 2-element Boolean algebra B and the field Zs of all integers modulo 2 are the
only semifields of order two up to isomorphism. Hence, it turns out to be the following
specific characterization of the commutative s-primitive semirings.

Corollary 3.2. A commutative semiring S is s-primitive if and only if it is either
the 2-element Boolean algebra B or a field.

A semiring S is called a subdirect product of a family {S,}a of semirings if there
is an one-to-one semiring homomorphism ¢ : S — []A S, such that for each @ € A,
the composition 7, 0 ¢ : S — S, is onto where 7, : [[A So — S, is the projection
mapping.

It is well known that a semiring S is a subdirect product of a family {S,}a of
semirings if and only if there is a family {p,}a of congruences on S such that S/p, ~
S, for every a € A and Nap, = As.

Theorem 3.3. A semiring S is m-semisimple (s-semisimple) if and only if it is a
subdirect product of m-primitive (s-primitive) semirings.

Proof. We prove the result for m-semisimple semirings. The proof for s-semisimple
semirings is similar.

First, assume that S is a m-semisimple semiring. Then rad,,(S) = Nuens)
anng(M) = Ag. Hence, S is a subdirect product of the family {S/anng(M) | M €
M(S)} of semirings. Lemma 3.1 implies that anng(M) is an m-primitive congruence
on S for every minimal S-semimodule M. Therefore, every semiring in the family
{S/anng(M) | M € M(S)} is an m-primitive semiring, and so S is a subdirect
product of m-primitive semirings.
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Conversely, let S be a subdirect product of a family of m-primitive semirings
{S; | for all i € A}. Then there exists a one-to-one homomorphism ¢ : S — I1;c.S;
such that the mapping m; 0 ¢ : S — S; is onto for all i € A. Thus S/ ker(m; o ¢) = S;
for all i € A. Let M; be a faithful minimal S;-semimodule for each i € A. Then, by
the Lemma 2.1, M; is a minimal S-semimodule where ms = mm; o ¢(s) for all s € S
and m € M;. Hence, Nyenm(syanns(M) C Nieaanng(M;). Now (a,b) € anng(M;)
implies that mm; o ¢(a) = mm; o ¢(b) for all m € M;; and so (m; o ¢(a), m; o p(b)) €
anng,(M). Since M; is faithful over S;, it follows that m; o ¢(a) = m; o ¢(b). Hence,
Nieaanns(M;) = Ag which implies that rad,,(S) = Nuensyanng(M) = Ag. Thus,
S is a m-semisimple semiring. 0

Now, taken together the structure of an s-semisimple semiring characterized in
Theorem 3.3 and the characterization of the commutative s-primitive semirings in
Corollary 3.2 turn out to be an characterization of the commutative s-semisimple
semirings.

Corollary 3.3. Let S be a commutative semiring. Then, S is an s-semisimple
semiring if and only if it is a subdirect product of a family of semirings that are either
the 2-element Boolean algebra B or fields.

Mischell and Fenoglio [29] and Basir et al. [2] independently proved that a com-
mutative semiring S with |S| > 2 is congruence-simple if and only if it is either
a field or the 2-element Boolean algebra B. Hence, it follows that a commutative
semiring is s-semisimple if and only if it is a subdirect product of congruence-simple
commutative semirings. A semiring homomorphism f : S; — S5 is said to be semi-
isomorphism if, for every a € Si, we have f(a) = 0 only for a = 0. Katsov and Nam
[24] proved that a commutative semiring S is Brown-McCoy semisimple if and only if
S is semi-isomorphic to a subdirect product of a family of semirings that are either
the 2-element Boolean algebra B or fields. Hence, every commutative s-semisimple
semiring is Brown-McCoy semisimple in the sense of Katsov and Nam.

Example 3.4. Consider the semiring N of all nonnegative integers. Then, for every
prime p, the Bourne congruence o,y is a maximal regular congruence on N with
[0]5,, = pN. If J is a opn-saturated ideal in N with pN & J, then there exists a € J
such that 0 < a < p. By the Fermat’s little theorem, we have a?~! =1 (mod p) which
implies that 1 € J and so J = N. Thus, pN = [0, is a maximal o,y-saturated ideal
in N and it follows that o,y € RCs(N). Hence rads(N) C No,ny = Ay; and so N is an
s-semisimple semiring.

Also, Nop,y = Ay implies that N is a subdirect product of the family of fields
N, = N/o,n, where p is a prime.

We conclude this section with a representation of s-primitive semirings as a semiring
of endomorphisms on a semimodule over a division semiring.
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The opposite semiring S° of a semiring (S, +,-) is defined by (S,+,0), where
aob=>b-aforall a,b € S. Hence, a semiring S is a division semiring if and only if
the opposite semiring S is so.

Definition 3.3. Let M be a semimodule over a division semiring D. Then a sub-
semiring T of the endomorphism semiring Endp(M) is called 1-fold transitive if for
every non-zero m € M and n € M there exists o« € T such that a(m) = n.

In the context of semirings, Schur’s lemma [21] states that if M is a simple S-
semimodule, then the endomorphism semiring Endg(M) is a division semiring.

Let M be a right S-semimodule and E' = Endg(M). Then for the division semiring
D = E°P, M is a right semimodule over D where the scalar multiplication is defined
by m-a = a(m) for all m € M and « € D.

Theorem 3.4. If S is a right s-primitive semiring, then S° is isomorphic to a
1-fold transitive subsemiring of the semiring Endp(M) of all endomorphisms on a
semimodule M over a division semiring D.

Proof. Let M be a faithful simple right S-semimodule. By Schur’s Lemma for semi-
modules [21], the semiring £ = Endg(M) is a division semiring. Hence, D = EP is a
division semiring, and so M as a right D-semimodule where m - a — a(m).

For every a € S, define a mapping ¢, : M — M by 1¢,(m) = ma. Then for every
a € D, we have ¢,(m.a) = ¢, (a(m)) = a(m)a = a(ma) = (ma) - o = Y,(m) - a. In
fact, 1, is an endomorphism on M considered a D-semimodule.

Also, the mapping ¢ : S — Endp(M) defined by ¥(a) = 1, is a semiring
homomorphism. Moreover kerv) = anng(M) = Ag implies that ¢ is an injective
homomorphism; and so S is isomorphic to the subsemiring 7' = {¢, | a € S} of

Since M is a simple right S-semimodule, by Lemma 2.2, for every m(# 0) € M,
mS = M. Then for every n € M there exists a € S such that ma = n and so
ta(m) =n. Thus, T is a 1-fold transitive subsemiring of Endp(M). O

It follows from Corollary 3.2 that the semifield F' = R4, is not an s-primitive
semiring. Since F' contains 1, every F-endomorphism on F' is of the form ¢, : F¥ — F
given by ©,(m) = am. Hence, F' ~ Endp(F) which implies that Endp(F) is not
s-primitive; whereas Endp(F') is a 1-fold transitive subsemiring of itself. Thus, the
converse of the Theorem 3.4 does not hold. However, the converse holds in the
following weaker form.

Theorem 3.5. Let D be a division semiring and M be a right D-semimodule. If T is
a 1-fold transitive subsemiring of Endp(M), then TP is a right m-primitive semiring.

Proof. Define M x T°? — M by m - a +— a(m). Then M is a right T°P-semimodule.
Let m be a non-zero element in M. Then, for every n € M, there exists a € T
such that m - @ = n. Therefore, mT°? = M which implies that M is minimal, by
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Lemma 2.2. Now

{(a, ) €T xT |m-a=m-fforalme M}
={(a,B) €T xT | a(m) = p(m) for all m € M}
{(a

and so M is a faithful minimal 7°P-semimodule. Therefore, T is a m-primitive
semiring. 0

4. CONCLUSION

In [6], based on the notions of minimal semimodule and simple semimodule, the
Jacobson m-radical and s-radical of a semiring S have been considered as a congruence
on S. In Section 3 of this article, we introduce the m-semisimple and s-semisimple
semirings as the semiring that has the trivial Jacobson m-radical and s-radical, re-
spectively. These two notions of semisimplicity effectively characterize the structure
of semirings, including the additively idempotent semirings. The m-semisimple (s-
semisimple) are isomorphic to a subdirect product of m-primitive (s-primitive) semir-
ings. In particular, a commutative semiring is s-primitive if and only if it is a subdirect
product of the fields and copies of the two element Boolean algebra. Finally, every
s-primitive semiring is represented as a suitable subsemiring of the semiring Endp (M)
of all endomorphisms on a semimodule M over a division semiring D.

There is another notion of simplicity of semimodules, namely the congruence simple
semimodules which are known as elementary semimodules [8]. An attempt may be
taken to characterize the e-semisimple semirings which are defined based on the class
of elementary semimodules.
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