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GRÖBNER LATTICE-POINT ENUMERATORS AND SIGNED
TILING BY k-IN-LINE POLYOMINOES

MANUELA MUZIKA DIZDAREVIĆ1, MARINKO TIMOTIJEVIĆ2,
AND RADE T. ŽIVALJEVIĆ3

Abstract. Conway and Lagarias observed that a triangular region T2(n) in a
hexagonal lattice admits a signed tiling by 3-in-line polyominoes (tribones) if and
only if n ∈ {32d−1, 32d}d∈N. We apply the theory of Gröbner bases over integers to
show that T3(n), a three dimensional lattice tetrahedron of edge-length n, admits a
signed tiling by tribones if and only if n ∈ {33d−2, 33d−1, 33d}d∈N. More generally
we study Gröbner lattice-point enumerators of lattice polytopes and show that they
are (modular) quasipolynomials in the case of k-in-line polyominoes. As an example
of the “unusual cancelation phenomenon”, arising only in signed tilings, we exhibit
a configuration of 15 tribones in the 3-space such that exactly one lattice point is
covered by an odd number of tiles.

1. Introduction

Following Conway and Lagarias [6], Reid [12], and other authors, we say that a
finite region (polyomino) R, in a (hexagonal) lattice tiling of the plane, has a signed
tiling (Z-tiling), by prototiles from a given set Σ, if there exists a (possibly overlapping)
placement of a finite number of copies of prototiles in the plane such that:

• the total covering multiplicity of elementary cells (hexagons) in R is +1;
• the total covering multiplicity of elementary cells outside of R is 0.

Figures 1 and 2 nicely illustrate these concepts. The set R, depicted in Figure 1 on
the left, is a triangular region in the hexagonal tiling of the plane. The prototiles,
also exhibited in Figure 1 on the left, are 3-in-line polyominoes, called 3-bones. The
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objective is to cover or more precisely to distribute copies of these prototiles over R,
so that they (counted with positive or negative multiplicity) form a covering of R.

Figure 1

Figure 2

Figure 3. A signed tiling of a triangular region by 3-bones

We see (Figure 1) how 3-bones are initially added in an attempt to cover R without
overlaps. We continue (Figure 2) by allowing overlaps, until R is completely covered
with 3-bones. In the rightmost image depicted in Figure 2 we see that each cell
(hexagon) has multiplicity +1 or +2, where precisely three hexagons have multiplicity
+2. Finally, these three cells can be subtracted by adding a 3-bone of multiplicity −1
(the shaded region depicted in Figure 3).

1.1. Algebraic method. In an algebraic reformulation of the problem each cell
(lattice point) is associated a monomial (p, q) = pe1 +qe2 7→ xpyq and the signed tiling
can be interpreted as an algebraic identity in the ring Z[x, y].

More explicitly the basic 3-bones are interpreted as quadratic polynomials b1 =
x2 + x + 1, b2 = y2 + y + 1, b3 = x2 + xy + y2, the region R is represented by the
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polynomial T2(8), where

(1.1) T2(n) =
∑

0≤i,j≤n−1
i+j≤n−1

xiyj ,

the shaded region in Figure 3 is recorded as the polynomial x2y2b1 and the algebraic
equivalent of the signed tiling described in Figures 1, 2, 3 is the identity

T2(8) = (1+y +x5 −x2y2)b1 +(x3 +x4 +y2 +x2y2 +xy3 +y5)b2 +(x5y +x6y +x3y4)b3 .

1.2. Ideal membership problem and Gröbner bases. As demonstrated in the
previous section, the existence of a signed tiling in general can be reduced to the Ideal
membership problem [7, Chapter 2], which can be often successfully treated by the
method of Gröbner basis [7, 8].

The approach to signed polyomino tilings via Gröbner bases was originally proposed
by Bodini and Nouvel [5]. We independently discovered this idea and, inspired by
[12], applied it in [10] to the calculation of tile homology groups (originally introduced
in [12]) and in [9] for the study of Z-tilings with symmetries [9].

Since we apply the general theory to polynomials with integer coefficients, we work
with strong Gröbner bases [1,11] (called a D-Gröbner base in [4]), see also [10, Section
5] or our Section 6 for a brief introduction.

1.3. Summary of new results. Conway and Lagarias proved [6, Theorem 1.4] that
a triangular region T2(n) in a hexagonal lattice admits a signed tiling by 3-in-line
polyominoes (called tribones in [15]) if and only if n ∈ {9d − 1, 9d}d∈N. In particular
the Z-tiling exhibited in Figure 3 is discovered by these authors.

By applying the theory of Gröbner bases over integers, we extended in [10] this
result to k-bones (k-in-line polyominoes) for all k ≥ 2. More explicitly we showed that
the triangular region in the hexagonal tiling of the plane associated to the polynomial
T2(n) admits a signed tiling by k-bones if and only if

n ∈ {k2d − 1, k2d}d∈N .

In this paper we address the general problem of Z-tiling by k-bones in d-dimensional
lattices, with the emphasis on the tiling of three dimensional polytopes with 3-bones.

We proved (Theorem 2.1) that the lattice tetrahedron associated to the polynomial
T3(n) admits a Z-tiling by all six tribones in the 3-dimensional lattice if and only if

n ∈ {33d − 2, 33d − 1, 33d}d∈N .

A new phenomenon, characteristic for Z-tiling with tribones in dimension 3, is the
appearance of a constant polynomial 9 in the associated Gröbner basis. As a conse-
quence we construct in Section 3 a “tribone star”, that is a configuration of tribones
with integer weights such that the total weight is non-zero only at the center of the
star.
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We call this a “cancelation phenomenon” and, as another consequence, we exhibit
(Corollary 3.1) a configuration of 15 tribones in the 3-space where exactly one lattice
point (the center of the star) is covered by an odd number of tiles.

Motivated by the ideas used in the proof of Theorem 2.1, we introduce Gröbner
lattice-point enumerators in Section 4.1, as a proper setting for studying general d-
dimensional, Z-polyomino tilings. We demonstrate how the general theory can be
considerably simplified in the case of k-in-line prototiles (k-bones) by introducing
cyclotomic ideals (Section 4.4).

As a first step in developing the associated “Ehrhart theory”, we show in Section
5 (Theorem 5.2) that Gröbner lattice-point enumerators for k-bones are (modular)
quasipolynomials. In other words they behave similarly as the classical lattice-point
enumerators of rational polytopes, a fact that considerably simplifies their calculation.

2. Signed Tiling of the Lattice Tetrahedron T3(n)

2.1. The tribone ideal I3
3 in variables x, y, z. A three-in-line polyomino or a

tribone, in a cubical integer lattice, is a translate of one of the six types of trominoes,
associated with the following quadratic polynomials:

b1 = x2 + x + 1, b2 = y2 + y + 1, b3 = x2 + xy + y2,

b4 = x2 + xz + z2, b5 = y2 + yz + z2, b6 = z2 + z + 1.

Figure 4. Tribones b1, b2, b3, b4, b5, b6.

Let I3
3 = ⟨b1, b2, b3, b4, b5, b6⟩ be the ideal generated by tribones and GBI the strong

Gröbner bases of the ideal I with respect to the lexicographical term order,

GBI ={x2 + x + 1, xy − y − x − 2, xz − x − z − 2, 3x − 3,

y2 + y + 1, yz − y − z − 2, 3y − y, z2 + z + 1, 3z − 3, 9}.
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Figure 5. The tribone ideal and its Gröbner basis (Wolfram Mathe-
matica 12.3.1).

Denote the polynomials of the Gröbner bases GBI by:
g1 = x2 + x + 1, g2 = xy − x − y − 2,
g3 = xz − x − z − 2, g4 = 3x − 3,
g5 = y2 + y + 1, g6 = yz − y − z − 2,
g7 = 3y − 3, g8 = z2 + z + 1,
g9 = 3z − 3, g10 = 9.

2.2. Signed tiling of the tetrahedron T3(n). The 3-dimensional analogue of (1.1)
is the tetrahedron T3(n) in the 3-dimensional integer lattice, associated with the
polynomial:

T3(n) =
∑

0≤i,j,k≤n−1
i+j+k≤n−1

xiyjzk.

Figure 6. The tetrahedron T3(5).

The goal is to determine for which values of n the tetrahedron T3(n) admits a Z-tiling
by tribones. Following [5] and [10] (see also Section 4) we need to determine when
the remainder, obtained by dividing the polynomial T3(n) by GBI, is equal to zero.
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The polynomials T3(1) = 1 and T3(2) = 1 + x + y + z are already reduced (cannot
be further divided by the basis GBI). It follows that they do not admit a Z-tiling
with tribones.

Figure 7. Tetrahedron T3(n) for n = 1 and n = 2

The remainder on division of the polynomial T (3) by the set GBI is equal to the
remainder on division of the region described by the grey cubes (see Figure 8). It
follows,

T3(3) ≡GBI (1 + z)(x + y).
Indeed, the region determined by grey cubes is formed by subtracting 1 + z + z2

(z-tribone) and x2 + xy + y2 (xy-tribone) from the region T3(3).
If n = 4, then the remainder on division of the polynomial T3(4) is congruent with

y3 + z3. Here, y3 + z3 is a polynomial described by the region of grey cubes formed
after subtracting the region determined by the polynomial

(z2 + z + 1)(1 + x + y) + (x + y)(x2 + xy + y2).
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As a consequence we obtain
T3(4) ≡GBI y3 + z3.

Figure 8. Tetrahedron T3(n) for n = 3 and n = 4.

The same reasoning applies to the cases n = 5 and n = 6, which leads to T3(5) ≡GBI

(1 + x + y + z)(y3 + z3) (Figure 9), T3(6) ≡GBI (x + y)(1 + z)(y3 + z3).
If we proceed with the decomposition of the region T3(n) in the same manner, we

finally conclude

(2.1) T3(n) ≡GBI


(x + y)(1 + z)fk(y, z), n = 3k,
fk(y, z), n = 3k + 1,
(1 + x + y + z)fk(y, z), n = 3k + 2,

where
fk(y, z) = y3k + y3(k−1)z3 + · · · + y3z3(k−1) + z3k =

k∑
i=0

y3(k−i)z3i.
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Figure 9. Decomposition of the tetrahedron T3(5).

Lemma 2.1. For every n ∈ N

(2.2) y3 (f0 + f1 + · · · + fn−1) = f0 + f1 + · · · + fn −
(
z3n + · · · + z3 + 1

)
.

Proof. This is proved by induction on n. The identity is valid for n = 1 since,

y3f0 = y3 = (1 + y3 + z3) − (z3 + 1) = f0 + f1 − (z3 + 1).

Let us assume that (2.2) is true for n = k. Since

y3 (f0 + f1 + · · · + fk−1 + fk)
=y3 (f0 + f1 + · · · + fk−1) + y3fk

=f0 + · · · + fk −
(
z3k + · · · + z3 + 1

)
+ y3

(
y3k + y3(k+1)z3 + · · · + z3k

)
=f0 + · · · + fk −

(
z3k + · · · + z3 + 1

)
+ y3(k+1) + y3kz3 + · · · + y3z3k + z3(k+1)

− z3(k+1)

=f0 + · · · + fk + fk+1 −
(
z3(k+1) + z3k + · · · + z3 + 1

)
,

we conclude that (2.2) holds for n = k+1. It follows, by the Principle of mathematical
induction, that (2.2) is true for all n ∈ N. □

Lemma 2.2. For every n ∈ N
(2.3)
fn = (y3 −1) (f0 + f1 + · · · + fn−1)+(z3 −1)

(
z3(n−1) + · · · + (n − 1)z3 + n

)
+(n+1).

The remainders of the division of polynomial fn by elements of the basis GBI are
periodic, with the period 9.

Proof. If n = 0 then f0 = 1. For n = 1

f1 = y3 + z3 = (y3 − 1)f0 + (z3 − 1) + 2,
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which is in agreement with (2.3). Suppose that the identity (2.3) is valid for some
k ∈ N. Since

fk+1(y, z) = y3(k+1) + y3kz3 + · · · + y3z3k + z3(k+1)

= y3
(
y3k + y3(k−1)z3 + · · · + y3z3(k−1) + z3k

)
+ z3(k+1)

= y3
(
(y3 − 1)(f0 + · · · + fk−1) + (z3 − 1)(z3(k−1) + · · · + (k − 1)z3 + k)

+(k + 1)) + z3(k+1)

= (y3 − 1)
(
y3(f0 + · · · + fk−1)

)
+ y3

(
(z3 − 1)(z3(k−1) + · · · +

+(k − 1)z3 + k)
)

+ y3(k + 1) + z3(k+1) (by Lemma 2.1)

= (y3 − 1)
(
(f0 + · · · + fk−1 + fk) − (z3k + · · · + z3 + 1)

)
+ y3(z3k + · · · + z3 − k) + y3(k + 1) + z3(k+1)

= (y3 − 1) (f0 + · · · + fk−1 + fk) + z3(k+1) + z3k + · · · + z3 + 1

= (y3 − 1) (f0 + · · · + fk−1 + fk) + (z3 − 1)
(
z3k + · · · + (k + 1)

)
+ (k + 2),

we conclude that (2.3) holds for n = k+1. Therefore, by the Principle of mathematical
induction, (2.3) is true for all n ∈ N.

Since y3 − 1 = (y − 1)b2 i z3 − 1 = (z − 1)b6, we see that
(y3−1) (f0 + f1 + · · · + fn−1)+(z3−1)

(
z3(n−1) + 2z3(n−2) + · · · + (n − 1)z3 + n

)
∈ I.

From this and (2.3), we conclude that the remainder of the division of fn by elements
of the set GBI equals the remainder of the division n + 1 by g10. Therefore,

(2.4)

f0
GBI = 1, f1

GBI = 2,

f2
GBI = 3, f3

GBI = 4,

f4
GBI = −4, f5

GBI = −3,

f6
GBI = −2, f7

GBI = −1,

f8
GBI = 0,

and we see that the remainders are periodic, with period of length 9. For this reason,
f9k−1 ≡GBI 0, k ∈ N. □

Theorem 2.1. The tetrahedron T3(n) admits a signed tiling by tribones b1, b2, . . . , b6
if and only if n = 33k − 2, n = 33k − 1 or n = 33k for k ∈ N.
Proof. The tetrahedron T3(n) admits a signed tiling by tribones b1, . . . , b6 if and only
if the remainder of the polynomial T3(n), on division by the Gröbner bases GBI of
the ideal I3

3 , is equal to zero.
Since the remainder on division of the polynomial fn by GBI is periodic with the

period 32, from (2.1), (2.4) and Table 1, follows that the remainder on division of the
polynomial T3(n) by GBI is periodic with the period 33.
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Table 1

k T3(3k − 2)GBI
T3(3k − 1)GBI

T3(3k)GBI

1 1 x+y+z 4-x-y-z
2 2 2-x-y-z -1+x+y+z
3 3 3 3
4 4 4+x+y+z -2-x-y-z
5 -4 -4-x-y-z 2+x+y+z
6 -3 -3 -3
7 -2 -2x+y+z -1-x-y-z
8 -1 -1-x-y-z -4+x+y+z
9 0 0 0

From here we finally conclude that the region T3(n) admits a signed tiling by
tribones if and only if n = 33k − 2, n = 33k − 1 or n = 33k for some k ∈ N. □

3. The Role of Number 9 in Z-tiling by Tribones

Let I3
3 ⊂ Z[x, y, z] be the tribone ideal, generated by polynomials

(3.1) Ax = x2 + x + 1, Ay = y2 + y + 1, Az = z2 + z + 1,
Axy = x2 + xy + y2, Axz = x2 + xz + z2, Ayz = y2 + yz + z2,

renamed to emphasize the symmetry w.r.t. permutations of variables. The Gröbner
basis of I = I3

3 , with respect to the lexicographic order (Lex) of monomials arising
from the order x > y > z, is the following:

(3.2)

Ax = x2 + x + 1, Ay = y2 + y + 1, Az = z2 + y + 1,
Bxy = xy − x − y − 2, Bxz = xz − x − z − 2, Ayz = yz − y − z − 2,
Cx = 3x − 3, Cy = 3y − 3, Cz = 3z − 3,

D = 9.

It follows that there exists a relation
(3.3) 9 = a1Ax + a2Ay + a3Az + b1Axy + b2Axz + b3Ayz,

for some polynomials ai, bj ∈ Z[x, y, z]. In other words the relation (3.3) guarantees
the existence of a signed tiling where the tribones “cancel out” everywhere in the
3-dimensional lattice, except at one point.

Our objective is to make relation (3.3) explicit, for as simple as possible choice of
polynomials ai, bj.

We essentially apply Buchberger’s Algorithm (over integers) by iterating the calcu-
lation of S-polynomials, beginning with the polynomials from the basis (3.1). Note
that, in light of the symmetry of the ideals (3.1) and (3.2), the expression for 3z −3 in
the following proposition can be easily turned in the expression for 3x−3 (respectively
3y − 3).
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Proposition 3.1.
9 =2 [6Az − zRHS(3.9) + 2zRHS(3.6)] − [RHS(3.9) − 2RHS(3.6)] ,

3z − 3 = [RHS(3.9) − 2RHS(3.6)] − [6Az − zRHS(3.9) + 2zRHS(3.6)] .

Proof. The first row of (3.2) coincides with the first row of (3.1). The second row of
(3.2) is obtained by adding and subtracting the polynomials from the first two rows
of (3.1), for example
(3.4) Bxy = Axy − Ax − Ay .

We continue by computing the S-polynomial of Ax and Axy, and its subsequent
reduction

S[Ax, Axy] =y(x2 + x + 1) − x(xy − x − y − 2) = x2 + 2xy + 2x + y,

x2 + 2xy + 2x + y =Ax + 2xy + x + y − 1 = Ax + 2Bxy + 3(x + y + 1).
From here we obtain the relation
(3.5) 3(x + y + 1) = yAx − xBxy − Ax − 2Bxy = (y − 1)Ax − (x + 2)Bxy,

which in light of (3.4) produces the relation
(3.6)
3(x+y+1) = (y−1)Ax−(x+2)(Axy−Ax−Ay) = (x+y+1)Ax+(x+2)Ay−(x+2)Ax,y.

Similarly, we have the relations
3(z + x + 1) =(z + x + 1)Az + (z + 2)Ax − (z + 2)Ax,z,(3.7)
3(y + z + 1) =(y + z + 1)Ay + (y + 2)Az − (y + 2)Ay,z,(3.8)

and by adding up all three of them we have
(3.9)
9+6(x+y +z) = (x+y +z +3)(Ax +Ay +Az)−(x+2)Ax,y −(y +2)Ay,z −(z +2)Ax,z.

Let us multiply both sides of (3.6) by 2 and subtract from (3.9). We obtain
(3.10) 6z + 3 = RHS(3.9) − 2RHS(3.6).
Note that
(3.11) S(Az, 6z + 3) = 6Az − z(6z + 3) = 3z + 6 = 6Az − zRHS(3.9) + 2zRHS(3.6).
From (3.10) and (3.11) we finally have

9 = 2(3z + 6) − (6z + 3)
= 2 [6Az − zRHS(3.9) + 2zRHS(3.6)] − [RHS(3.9) − 2RHS(3.6)] .

Note that in passing we obtain an explicit expression for the third row of (3.2) in
terms of (3.1). For example

3z − 3 = (6z + 3) − (3z + 6)
= [RHS(3.9) − 2RHS(3.6)] − [6Az − zRHS(3.9) + 2zRHS(3.6)] . □
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The following corollary is an immediate consequence of the “cancelation phenome-
non”, exhibited in Proposition 3.1.

Corollary 3.1. There exists a configuration of 15 tribones in the 3-space where exactly
one lattice point (the center of the star) is covered by an odd number of tiles.

Proof. As a consequence of the first relation proved in Proposition 3.1, by reducing
modulo 2 we obtain the identity 1 = RHS(3.9). By further simplification we obtain
the identity

1 = (x + y + z + 1)(Ax + Ay + Az) + xAx,y + yAy,z + zAx,z,

which completes the proof. □

4. Z-Tiling by k-Bones in d Variables

In this section we address the general problem of the existence of Z-tiling by k-bones
in the d-dimensional lattice Zd ⊂ Rd. We use standard abbreviations for monomials
(power products) xa = xa1

1 xa2
2 . . . xad

d and rely on standard concepts and terminology
used in the theory of lattice-point enumeration in polyhedra, see [2] or [3].

In particular each set R ⊂ Rd is associated the integer-point transform σR =∑
a∈R∩Zd xa ∈ Z[[x±1

1 , . . . , x±1
d ]], which is a Laurent polynomial if and only if R is

bounded. Typically R is a convex polytope Q ⊂ Rd
+ with vertices in Nd in which case

σQ ∈ Z[x1, . . . , xd] is simply the sum of all monomials “covered” by Q.

Conversely, for each polynomial p = ∑
a∈Nd caxa ∈ Z[x1, x2, . . . , xd] the associated

Newton polytope is the convex polytope Newton(p) = Conv{a | ca ̸= 0}.

Let ∆ = Conv{ei}d
i=0 be the standard simplex in Rd, where e0 = 0 and {ei}d

i=1 is
the standard orthonormal basis of Rd which generates the lattice Zd.

Given an integer k ≥ 1, the k-bones in the d-dimensional lattice are the prototiles
associated to the edges Eij = [kei, kej] (i ̸= j) of the kth dilate k∆ = Conv{kei}d

i=0 of
the simplex ∆.

More explicitly, the polynomials (integer-point transforms) of the k-bones are

bi =xk−1
i + xk−2

i + · · · + 1, i = 1, . . . , d,

bij =xk−1
i + xk−2

i xj + · · · + xk−2
j , 1 ≤ i < j ≤ d.

The associated ideal
Id

k = ⟨bi, bi,j⟩ ⊆ Z[x1, . . . , xd]

is referred to as the k-bone ideal in d-dimensions, or simply as the k-bone ideal.
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4.1. Gröbner lattice-point enumerators. Our general objective is to study the
geometry and combinatorics of Z-tilings of different shapes (convex polytopes) in Rd

by k-bones (or more general prototiles), by methods of combinatorial commutative
algebra and Gröbner basis.

The Gröbner basis of the ideal Id
k with respect to some term order (usually the

lexicographic order) is denoted by GBId
k (occasionally by GBI or G). We work

with Z-coefficients so the Abelian group of all remainders may have torsion and
its generators are reduced monomials xα /∈ ⟨LM(Id

k )⟩, not contained in the ideal of
leading monomials of Id

k . (The reader is referred to the Appendix (Section 6) for a
brief introduction into Gröbner basis theory and a guide to the literature.)

As in Section 2.2 the remainder on division of f by GBI is f
GBI = ∑

α cαxα, where
xα are reduced monomials. For improved legibility we sometimes write RedG(f)
instead of f

G. The coefficient cα, which takes values in Z or some quotient Z/νZ, is
denoted by

(4.1) [xα]
(
f

GBI
)

.

Table 1 (Section 2.2) provides examples of the calculation and illustrates the impor-
tance of numerical functions (4.1) for the general polyomino tiling problem.

4.2. Motivating example. Here is another point of view which explains why (4.1)
are called Gröbner lattice-point enumerators (Definition 4.1).

Let Q be a convex polytope with vertices in Nd and let σQ(x) = ∑
α∈Q∩Nd xα be its

“Newton polynomial” (integer-point transform). The usual “discrete volume” (lattice-
point enumerator) of Q, defined in [2,3] as the number of integer points inside Q, is
clearly equal to the value of σQ at x = (1, 1, . . . , 1) ∈ Rd.

Moreover, for each polynomial f(x1, . . . , xd) ∈ Z[x1, . . . , xd] there is a relation

(4.2) f(x1, . . . , xd) = f1(x1 − 1) + · · · + fd(xd − 1) + C,

where C = f(1, . . . , 1) is the remainder obtained on division of f by the ideal

I = ⟨x1 − 1, x2 − 1, . . . , xd − 1⟩.

It follows that the number of lattice points in a lattice convex polytope Q can be
interpreted as the remainder of σQ on division by the ideal I.

4.3. General research problem. Division of multivariate polynomials by ideals is
in general not unique and in particular the corresponding remainders (such as C in the
expression (4.2)) are not uniquely defined. However, the division by the Gröbner basis
of an ideal yields a unique remainder (in general a polynomial) which, in agreement
with motivating example from Section 4.2, leads to the following research problem.

Let J ⊂ Z[x1, . . . , xd] be an ideal, say the ideal associated to a set R of prototiles
in Nd. Let G = GJ be the Gröbner basis of J with respect to some term order. It
is interesting to ask (for some carefully chosen ideals J) what is the geometric and
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combinatorial significance of the remainder f
G

Q of the integer-point transform σQ on
division by the Gröbner basis G.

Definition 4.1. The polynomial valued function Q 7→ f
G

Q is referred to as Gröbner
or G-discrete volume of Q with respect to the Gröbner basis G. The coefficients (4.1)
are called Gröbner lattice-point enumerators of Q.

4.4. Cyclotomic ideals. A cyclotomic ideal in the ring Z[x1, x2, . . . , xd] is an ideal
of the following form
(4.3) W d

k = ⟨xk
1 − 1, xk

2 − 1, . . . , xk
d − 1⟩,

where d and k are positive integers. In light of the obvious identities
xk

i −1 = (xi−1)(xk−1
i +xk−2

i +· · ·+1), xk
i −xk

j = (xi−xj)(xk−1
i +xk−2

i xj +· · ·+xk−1
j ),

W d
k is contained in the ideal Id

k generated by k-in-line polyominoes (k-bones) in the
d-dimensional lattice.

Proposition 4.1. The set Sd
k = {xk

1 − 1, xk
2 − 1, . . . , xk

d − 1} is a (strong) Gröbner
basis of the ideal W d

k in the sense of [11].

Proof. Indeed, the S-polynomial
S[xk

i − 1, xk
j − 1] = xk

j (xk
i − 1) − xk

i (xk
j − 1) = (xk

i − 1) − (xk
j − 1)

is trivially reducible by the basis Sd
k . □

The following criterion for the existence Z-tilings is formulated in [10, Proposi-
tion 3.1].

Proposition 4.2. A polyomino P admits a signed tiling by translates of prototiles
P1, P2, . . . , Pk if and only if for some monomial xα = xα1

1 · · · xαn
n with a non-negative

exponent α ∈ Nd the polynomial xασP is in the ideal generated by polynomials
σP1 , . . . , σPk

,
(4.4) xασP ∈ ⟨σP1 , σP2 , . . . , σPk

⟩.

Note that xασP ∈ J implies xα′
σP ∈ J in any ideal J , provided xα′ is divisible by

xα, which allows us to formulate the following simplified criterion for k-bone ideals
Id

k .

Proposition 4.3. A polyomino P admits a signed tiling by translates of k-bones Eij,
0 ≤ i < j ≤ d, if and only if
(4.5) σP ∈ Id

k .

Proof. If σP ∈ Id
k then obviously P admits a signed tiling by translates of k-bones

Eij. Conversely, suppose P admits a signed tiling by translates of k-bones Eij. By
Proposition 4.2 there exists a monomial xα such that xασP ∈ Id

k . Since for some
β ∈ Nd the vector α + β = kγ ∈ kNd is divisible by k we conclude that xkγσP ∈ Id

k .
Since W d

k ⊂ Id
k we know that xkγ ≡ 1 (mod Id

k ), which in turn implies σP ∈ Id
k . □
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4.5. Reduction of monomials xa modulo W d
k and Id

k . Let xa = xa1
1 xa2

2 . . . xad
d

be the monomial with multi-index a ∈ Zd
+. Given z ∈ Z+, let ẑ = r(z) be the

remainder on division of z by k, r(z) ∈ Zk = {0, 1, . . . , k − 1}. The reduced version
of the monomial xa with respect to the ideal W d

k is the monomial RedW d
k
(xa) = xâ =

xâ1
1 xâ2

2 . . . xâd
d .

Note that RedW d
k
(xa) is obtained from xa by successive division (in any order) by

elements of the ideal W d
k .

Our objective is to compute the W d
k -reduced version of the polynomial T d

k (n)

(4.6) RedW d
k
(T d

k (n)) = RedW d
k

 ∑
0≤a

|a|≤n−1

xa

 :=
∑
0≤a

|a|≤n−1

xâ .

Proposition 4.4. Let

(4.7) RedW d
k
(T d

k (n)) = RedW d
k

 ∑
0≤a

|a|≤n−1

xa

 =
∑

r∈(Zk)d

td
k(n, r)xr

be the reduction of the polynomial T d
k (n) with respect to the ideal W d

k . Then

td
k(n, r) =

(
d + (n|r)

d

)
,

where
(n|r) :=

⌊
n − 1 − |r|1

k

⌋
and |r|1 = |(r1, r2, . . . , rd)|1 = r1 + · · · + rd.

Proof. Given a W d
k -reduced monomial xr, where r = (r1, r2, . . . , rd) ∈ (Zk)d, we want

to calculate the number of solutions of the inequality
(4.8) (kx1 + r1) + (kx2 + r2) + · · · + (kxd + rd) ≤ n − 1
in non-negative integer variables x1, . . . , xd. Equivalently, we need to calculate the
number of non-negative integer solutions of

(4.9) x1 + x2 + · · · + xd ≤
⌊

n − 1 − |r|1
k

⌋
,

where ⌊x⌋ is the integer part of x. Recall the lattice point enumerator [3, Theorem 2.2]
of the standard simplex in the positive hyperorthant Rd

+ bounded by the hyperplane
x1 + · · · + xd = m,

L∆(m) =
(

d + m

d

)
.

By substitution m = (n|r) we complete the proof of the proposition. □

As a corollary we obtain the following proposition.
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Proposition 4.5. Let GBI = GBId
k be a Gröbner basis of the ideal Id

k with respect
to some term order. Then the remainder

T d
k (n)

GBI

of the polynomial T d
k (n) on division by GBI = GBId

k , expressed in terms basic mono-
mials xα, admits a decomposition

(4.10) T d
k (n)

GBI
=
∑

α

cαxα,

where cα = [xα](T d
k (n)

GBI
) is some (finite) Z-linear combination of functions td

k(n, r).
More explicitly,

cα = [xα]
(

T d
k (n)

GBI
)

=
∑

r∈(Zk)d

er
αtd

k(n, r),

for some integers er
α.

Proof. As a consequence of (4.7) we obtain

(4.11) T d
k (n)

GBI
= RedId

k
(T d

k (n)) =
∑

r∈(Zk)d

td
k(n, r)xrGBI =

∑
r∈(Zk)d

td
k(n, r)

∑
α

er
αxα.

□

5. Ehrhart Theory and Gröbner Bases

Quasipolynomials play a fundamental role in the Ehrhart theory of lattice-point
enumerators of polytopes with rational vertices. We demonstrate that they play a
similar role in Gröbner lattice-point enumeration with respect to ideals W d

k and Id
k .

5.1. Quasipolynomials. A quasipolynomial [13, Section 4.4] of degree d is a function
f : N → C of the form

f(n) = cd(n)nd + cd−1(n)nn−1 + · · · + c0(n),
where each ci(n) is a periodic function and cd(n) is not identically equal to zero.

It is not difficult to show that f is a quasipolynomial if and only if there exists an
integer N > 1 and polynomials f0, f1, . . . , fN−1 such that

f(n) = fi(n), if n ≡ i (mod N).
Quasipolynomials play an exceptionally important role in enumerative combina-

torics. For example the Ehrhart polynomial LQ(n), defined as the lattice point enu-
merator of the nth dilate nQ of a convex polytope Q with rational vertices, is always
a quasipolynomial.

It is an easy exercise to check that the function td
k(n, r), introduced in Proposition

4.4, is a quasipolynomial in the variable n. In turn, the coefficients cα (that appear
in Proposition 4.5) are also quasipolynomials, being linear combinations of functions
td
k(n, r).
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The functions cα = cα(T d
k (n)), being defined essentially as summands of the re-

mainder on division by the ideal Id
k , are extended in a straightforward way to all

convex rational convex polytopes Q. They are referred to as Gröbner lattice-point
enumerators.

5.2. Quasipolynomials and generalizations of Pick’s theorem. Here we remind
the reader why (quasi)polynomials are important in lattice-point enumeration prob-
lems (Ehrhart theory). In the planar case the Ehrhart polynomial is a polynomial
LQ(n) = a0n

2 + a1n + a2 where a0 = Area(Q) and a2 = LQ(0) = 1. Moreover,
LQ(1) = a0 + a1 + a2 is the number of lattice points in Q and, by Ehrhart-Macdonald
reciprocity (see [3, Theorem 4.1]),

LQ(1) + LQ(−1)

is the number of lattice points on the boundary of Q.
The four quantities a0, LQ(0), LQ(1) and LQ(1)+LQ(−1) can be interpreted as linear

forms on the 3-dimensional vector space of all quadratic polynomials and classical
Pick’s theorem is nothing but a non-trivial linear relation

(5.1) λ1a0 + λ2LQ(0) + λ3LQ(1) + λ4(LQ(1) + LQ(−1)) = 0.

Once we know that such a relation exists, the coefficients λi are easily evaluated by
choosing special polygons Q.

The importance of this proof of Pick’s theorem is that it can be easily generalized.
For example Reeve’s theorem (a 3-dimensional analogue of Pick’s theorem) says that
in addition to linear forms listed in (5.1) it suffices to take one more, the form LQ(2)
evaluating the number of lattice points in the second dilate of Q.

Similar scheme can be applied to quasipolynomials as well and the following sec-
tions should provide a theoretical basis for studying analogues of Pick’s theorem for
Gröbner basis enumerators of lattice polytopes. (This is the subject of a subsequent
publication.)

5.3. Ehrhart quasipolynomial for Gröbner W d
k -enumerators. In this section

we prove that Gröbner lattice-point enumerators of lattice polytopes, with respect
to the ideal W d

k , are quasipolynomials. We have already calculated (Section 4.5) the
W d

k -reduction of the tetrahedron associated to the polynomial T d
k (n) and showed

(Proposition 4.4) that the result is a quasipolynomial in the variable n. Here we
extend this result to the case of a general rational polytope.

Theorem 5.1. Let σQ be the integer-point transform of a rational convex polytope
Q ⊂ (R+)d and c

W d
k

α (Q) = [xα](RedW d
k
(σQ)) the Gröbner lattice-point enumerator with

respect to the ideal W d
k , associated to a W d

k -reduced monomial xα. Then the function

f
W d

k
α (n) = c

W d
k

α (nQ) = [xα](RedW d
k
(σnQ)),
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computing the Gröbner basis enumerator c
W d

k
α of the nth dilate of the convex polytope

Q, is a quasipolynomial in the variable n.

As usual in Ehrhart theory [3, Chapter 3], the case of a general rational polytope is
reduced to the case of a rational simplex. Moreover the case of general rational simplex
(simplicial cone) is treated similarly as the case of a simplex with integral vertices. So
the proof of Theorem 5.1 follows from the proof of the following proposition.

Proposition 5.1. Let ∆ ⊂ (R+)d be a simplex with integral vertices and let r =
(r1, . . . , rd) ∈ (Zk)d. Then a mod-k lattice-point enumerator Lk,r

∆ (n) of ∆, defined as
the number of lattice points a = (a1, . . . , ad) ∈ Zd ∩ n∆ such that ai ≡ ri mod k for
each i ∈ [d], is a quasipolynomial in d.

Proof. Since Lk,r
∆ (n) = Lk,r

v+∆(n) for each v ∈ Zd we assume, without loss of generality,
that − r

k
+ ∆ ⊂ (R+)d. Let ∆ = Conv{vi}d+1

i=1 .
By [3, Theorem 3.5] it is known that the integer-point transform σv+K of a shifted

simplicial cone

(5.2) K = {λ1w1 + λ2w2 + · · · + λdwd | λi ≥ 0} ⊆ Rd

is the rational function

(5.3) σv+K(z) = σv+Π(z)
(1 − zw1)(1 − zw2) · · · (1 − zwd) ,

where
Π = {λ1w1 + λ2w2 + · · · + λdwd | 0 ≤ λi < 1}

is the associated fundamental half-open parallelepiped. Let wi = (vi, 1) ∈ Rd+1,
i ∈ [d + 1], and let K ⊂ Rd+1 be the associated simplicial cone defined by (5.2), with
the associated fundamental parallelepiped Π.

It follows that the integer-point transform σK(z, t) of K is given by the formula
(5.3), where d is replaced by d + 1 and the new (vertical) variable is t. Moreover [3,
Section 3.3], the nth dilate of ∆ is essentially the intersection of K with the horizontal
hyperplane Hn := {(z, t) ∈ Rd+1 | t = n}, and the generating function for the Ehrhart
polynomial L∆(n), calculating the number of lattice points in n∆, is given by the
formula ∑

n≥0
L∆(n) tn = σK(1, t),

where the RHS is evaluated at z = 1 = (1, 1, . . . , 1) ∈ Rd.
We want to describe the generating function calculating the lattice points a ∈ K

such that a = ka′ +r for some a′ ∈ Zd+1. In other words we need a generating function
for the set of lattice points a′ in the shifted cone

K ′ = − r

k
+ 1

k
K.
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Again by (5.3), taking into account that K ′ is scaled down by the factor k, we
obtain ∑

n≥0
Lk,r

∆ (n) tn = σK′(1, t) = g(t)
(1 − tk)d+1 ,

where g(t) = σΠ′(1, t) and Π′ = −r/k + Π is the shifted fundamental parallelepiped
of K ′.

By assumption − r
k

+ ∆ ⊂ (R+)d which implies that

(−r/k + Π) ∩ Zd+1 ⊆ Π ∩ Zd+1 ⊂ Nd+1 .

It follows that deg(g) < k(d + 1) and, as a consequence of Proposition 4.4.1 [13,
Proposition 4.4.1], we conclude that Lk,r

∆ (n) is a quasipolynomial. □

5.4. Ehrhart theory for Gröbner Id
k -enumerators. Here we show that Gröb-

ner lattice-point enumerators of lattice polytopes, with respect to the ideal Id
k , are

(modular reductions of) quasipolynomials. Since quasipolynomials naturally appear
as lattice points enumerators (Ehrhart theory) for convex polytopes with rational
vertices, see [3, Section 3.7], the following result can be interpreted as a first step in
the direction of developing Ehrhart theory for Gröbner basis enumerators of rational
convex polytopes.

We say that a function f : N → Zν (where ν ∈ Z+ ∪ {∞} and by convention
Z∞ = Z) is a modular quasipolynomial, if there exists and integer valued function
f ′ : N → Z such that f(n) is the mod ν reduction of f ′(n) for each n ∈ N.

Theorem 5.2. Let σQ be the integer-point transform of a rational convex polytope
Q in (R+)d and cβ = c

Id
k

β (Q) = [xα](RedId
k
(σQ)) the Gröbner lattice-point enumerator

associated to a Id
k -reduced monomial xβ. Then the function

f
Id

k
β (n) = c

Id
k

β (nQ) = [xβ](RedId
k
(σnQ)),

computing the Gröbner lattice-point enumerator cβ of the nth dilate of the convex
polytope Q, is a modular quasipolynomial in the variable n.

Proof. Since W d
k ⊂ Id

k ,

RedId
k
(σnQ) = RedId

k
(RedW d

k
(σnQ)) = RedId

k

(∑
α

cαxα

)
,

where on the right is an expression involving W d
k -reduced monomials xα. Since for

each Id
k -reduced monomial xβ

[xβ](RedId
k
(σnQ)) = [xβ]

(∑
α

cαRedId
k
(xα)

)
=
∑

α

cα[xβ]
(
RedId

k
(xα)

)
,

the result is an immediate consequence of Theorem 5.1. □
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Remark 5.1. We have shown (Theorems 5.1 and 5.2) that Gröbner lattice-point enu-
merators of ideals W d

k and Id
k are (modular) quasipolynomials. Is this a general

phenomenon? In other words is it true that G-enumerators of (polyomino) ideals are
(modular) quasipolynomials for any choice of prototiles. We suspect that the answer
is negative in general but we don’t have an example at hand.

6. Appendix: Gröbner Bases

The reader not familiar with the fundamental concepts and results of Gröbner bases
theory is encouraged to use it as black box, after consulting a two page introduction in
[14]. Since [14] deals only with polynomials with coefficients in the field here we briefly
outline, following [11], how the theory is modified if we work with integer coefficients.

A term is a product t = cxα where c is the coefficient and xα = xα1
1 · · · xαk

k is the
associated monomial (power product). For a given polynomial f ∈ Z[x1, x2, . . . , xk]
the associated remainder on division by a Gröbner basis G is f

G and f reduces to
zero f

G−→ 0 if f
G = 0. LM(f) and LC(f) are respectively the leading monomial and

the leading coefficient with respect to the chosen term order ⪯. We write lcm(a, b)
and gcd(a, b) respectively for the least common multiple and the greatest common
divisor of a and b.

For other basic notions of Gröbner basis theory (over integers), such as S-polynomial,
standard representation, etc. the reader is referred to [11] (see also [1, 4] for a more
complete exposition of the theory).

6.1. Gröbner bases over principal ideal domains. Let Λ = R[x1, . . . , xk] be the
ring of polynomials with coefficients in a principal ideal domain R. For a given ideal
I ⊂ Λ the associated strong Gröbner basis, called also the D bases in [4], may be
introduced as follows (see [1, p. 251] and [4, p. 455]).

Definition 6.1. A finite set G ⊂ I is a strong Gröbner basis of I (with respect to
the chosen term order ⪯) if for each f ∈ I \ {0} there exists g ∈ G such that the
leading term of f is divisible by the leading term of g, LT (g)|LT (f), meaning that
LT (f) = tLT (g) for some term t.

The following theorem provides a useful criterion for testing whether a finite set
of polynomials is a Gröbner basis of the ideal generated by them, see [4, Chapter 10,
Corollary 10.12].

Theorem 6.1. Let G be a finite collection of non-zero polynomials which generate
an ideal IG. Suppose that,

(1) for each pair g1, g2 ∈ G there exists h ∈ G such that,
LM(h)|lcm(LM(g1), LM(g2)) and LC(h)|gcd(LC(g1), LC(g2));

(2) for each pair g1, g2 ∈ G the associated S-polynomial reduces to zero,

S(g1, g2) G−→ 0.
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Then G is a strong Gröbner basis of IG.

6.2. Gröbner bases over Euclidean domains. The general theory is further sim-
plified if one works with Euclidean domains. Aside from standard references [1, 4] a
self-contained account can be found in [11]. In the case of integers one usually chooses
the linear ordering,
(6.1) · · · < 0 < +1 < −1 < +2 < −2 < +3 < −3 < +4 < −4 < +5 < · · · ,

which allows us to define unambiguously remainders, S-polynomials etc.
Recall that the constant g10 = 9 is an element of the Gröbner basis GBI of the

tribone ideal (Section 2.1). The ordering (6.1) explains why −4 (rather than +5)
appears in reduced expressions fGBI , for example in Table 1.
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