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BEURLING’S THEOREM FOR THE @Q-FOURIER-DUNKL
TRANSFORM

EL MEHDI LOUALID*, AZZEDINE ACHAK!, AND RADOUAN DAHER!

ABSTRACT. The @-Fourier-Dunkl transform satisfies some uncertainty principles
in a similar way to the Euclidean Fourier transform. By using the heat kernel
associated to the Q-Fourier-Dunkl operator, we establish an analogue of Beurling’s
theorem for the Q-Fourier-Dunkl transform Fg on R.

1. INTRODUCTION AND PRELIMINARIES

There are many known theorems which state that a function and its classical Fourier
transform on R cannot both be sharply localized. That is, it is impossible for a nonzero
function and its Fourier transform to be simultaneously small. This principle has
several version which were proved by A. Beurling [3]. The Beurling theorem for the
classical Fourier transform on R which was proved by L. Hérmander [5], says that for
any non trivial function f in L?*(R), the function f(x)F(y) is never integrable on R?
with respect to the measure e/®ldzdy. A far reaching generalization of this result has
been recently proved in [4]. In this paper the author proved that a square integrable
function f on R satisfying for an integer N

// )13 ) e drdy < oo,
1+Ix|+|y\)

has the form f(z) = P(x)e™""", where P is a polynomial of degree strictly lower than
% and r > 0. Many authors have established the analogous of Beurling’s theorem
in other various setting of harmonic analysis (see for instance [1,6]). In this paper
we study an analogue of Beurling’s theorem, in the next we deduce an analogue of

Gelfand-Shilov, for the Q-Fourier-Dunkl transform.
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The outline of the content of this paper is as follows. Section 2 is dedicated to
some properties and results concerning the Q-Fourier-Dunkl transform. In Section
3 we give an analogue of Beurling’s theorem and Gelfand-Shilov theorems for the
Q-Fourier-Dunkl transform. Let us now be more precise and describe our results. To
do so, we need to introduce some notations. Throughout this paper o > —%,

o Q(z) =exp(— [y q(t)dt), x € R, where ¢ is a C*> real-valued odd function on R;
e LP(R) the class of measurable functions f on R for which ||f||,. < oo, where

£l = ([ @) it p < oo,

and || fllso.a = [ fllo = esssup, gl f(z)]-
e L{)(R) the class of measurable functions f on R for which || f||,.q = [|Qf]lp.a < o0,

where @ is given by Q(x) = exp (— [y q(t)dt), z € R.
We consider the first singular differential-difference operator A defined on R

M) = @)+ (o ) TP TIED g ),

where ¢ is a C® real-valued odd function on R. For ¢ = 0 we regain the Dunkl
operator A, associated with reflection group Zs on R given by

Aof(z) = fl(z) + <a + ;) M

x
1.1. Q-Fourier-Dunkl Transform. The following statements are proved in [2].
Lemma 1.1. (a) For each X € C, the differential-difference equation
Au=idu, u(0)=1,
admits a unique C* solution on R, denoted by Wy, given by
Va(z) = Qz)eqalirz),

where e, denotes the one-dimensional Dunkl kernel defined by

ea(z) = ja(iz) + )ja—i-l(z)v KAS (Ca

z
2 +1
and j, being the normalized spherical Bessel function of index o given by

Jo(2) =T(a+1) i (—1)”(;)%

z e C.

n:OTL! F(”"’O{—'—l)’
(b) Forallz € R, A€ C andn =0,1,..., we have
|§An%<w) < Q(z)|z|memNHal,

In particular,
UA(2)] < Q(a)el™MHel,
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(¢) For allz € R, A € C, we have the Laplace type integral representation
1 ) '
\I’)\(l') = aaQ<£L‘>/ (1 _ t2>a*§<1 + t)el)\xtdt’

—1
T'(a+1)

Val(a+3)”

Definition 1.1. The Q-Fourier-Dunkl transform associated with A for a function in

L§(R) is defined by

where a,, =

/ flo ()22 de

Theorem 1.1. (a) Let f € LQ(R) such that Fo(f) € LL(R). Then for almost x € R
we have the inversion fm"mula

F@) (Q(@)* = ma [ Fo(HO)VTA@) AP,

where
1

22(+)(T(a + 1))
(b) For every f € Lé(R), we have the Plancherel formula

INE P [l dr = mq [ |Fo(HPAR A

(¢) The Q-Fourier-Dunkl transform F¢ extends uniquely to an isomorphism from
L4 (R) onto LZ(R).

The heat kernel N(z,s), x € R, s > 0, associated with the Q-Fourier-Dunkl
transform is given by

mey =

22
€ 4s

" (25)°2Q(x)
Some basic properties of N(x,s) are the following:
o N, $)Qx) = ma [ oW, (@)lyl*dy;
R
o Fo(N(.,9))(z) =e*"".
We define the heat functions W, [ € N, as
y2
(1) Q*()Wilas) = [ y'e 5w, () |yl dy,
(1.2) Fo(Wi(.,s)) =ilyleV".

The intertwining operators associated with a Q-Fourier-Dunkl transform on the real
line is given by

N(z,s)=m

o)) = 0.Q(x) [ fle)(1~ ),
its dual is given by

(13) XN =au [ F@)Q)sen(a)(? — v H (x + y)da.

[z]>]y
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Proposition 1.1. If f € L;(R), then 'Xo(f) € L'(R) and ['Xo(f)llx < |1 fll1e-
For every f € Ly(R) we have
(1.4) Fo =F o' Xo(f),

where J is the usual Fourier transform defined by

= /]R fx)e ™ dg.

2. BEURLING’S THEOREM FOR THE Q-FOURIER-DUNKL TRANSFORM

Theorem 2.1. Let N € N and f € Ly (R) satisfy

’f HSTQ )‘Q( ) |z||y| fe%
(2.1) / / 0+ + YN el 2|2 dady < .

If N > 1, then f(y) = |Kz\zlbI/V('r’y)ae where v > 0, by € C and W(r,-) is
given by (1.1). Otherwise, f(y ) =0 a.e.

Proof. We start with the following lemma.
Lemma 2.1. We suppose that f € L) (R) satisfies (2.1). Then f € Ly (R).

Proof. We may suppose that f # 0 in L3 (R). (2.1) and Fubini theorem imply that
for almost every y € R,

’?Q(f) (y)l Q(x)‘f(x)‘ |z||y| 20+1
A+DY Je (Tl © o0 A
Since Fg(f) # 0, there exist yo € R, yo # 0, such that Fo(f)(yo) # 0.
Therefore,

Q)| f(z)] |||

2.2 S elellyol | g [2at g :

( ) R(1+|x|)N6 |:E] T < o0

Since (&78y > 1 for large |a, it follows that [ Q(x)|f (z)||z*** dx < oo, O

This Lemma and Proposition 1.1 imply that *X¢(f) is well-defined almost every-
where on R. We shall prove that we have

Xl NFCEX
. [ et e
+ |z + ly[)¥
Take yo as in Lemma 2.1, we write the above integral as a sum of the following
integrals

| el Wldrdy < oo.

clellyl t t
= /R/y|§|y0| (1+ |z + |y|)zv’ Xof@)|F("Xq(f)(y)|dydx

and

eallsl t
- /R/|y|>yo| A n® e/ @IFC X)) w)ldyde.

We will prove that I and J are finite, which implies (2.3).
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e As the functions |Fo(f)(y)| is continuous in the compact {y € R | |y| < |yo|}, so
we get

jallyol [t X
< C/ el Xof(@)]
R (14 [z))N
Writing the integral of the second member as I; + I, with

jllyol |t
I :/ ezl Xijsw)\dx
el< A (14 |z])

lyol

and

I — / e\xllyo\|tXQf(x)|dx
o> (1+ [z[)N
Therefore, we have the following results.
— As the function z — %
and f € Lb(R), we deduce by using proposition (1.1) that |*Xg(f)| belongs to
L'(R). Hence, I, is finite.

— On the other hand, for t > ‘y—]\&, the function ¢t — (181?1% is increasing, so we

is continuous in the compact {:v eER||z| < | 0‘}

obtain by using Proposition 1.1 that

clélivol
[ IRl

The inequality (2.2) assert that I, is finite. This proves that I is finite.
e We suppose |yo| < N. Then J = J; + Jy + J3, with

Slallyl t
h _/xl <l /i /yo<|y|<N 1+ [z] + |y|)N| Xo(N)(@)|F(f)(y)ldydz,
" _/x|>y0|

el
! :/R/|y>zv Ay e@ITelf)y)ldyds.

2 >

olzllyl t
/yo<|y|<N 1+ || + |y’>N| Xo(N)(@)|Fo(f)(y)ldydz,

. elzllyl
— As the function (z,y) — (+z[+yDN

{:c ER| x| < %}x{& € R | |yo| <& < N} and*Xg(|f])(z) is Lebesgue-integrable
on R, then J; is finite.

— Let A > 0. As the function ¢t — ﬁ
(z,y) € C(&, 90, N) we have the inequality

|Fo(f)(y)| is bounded in the compact

is increasing for ¢ > % Thus, for all

clellyl clelly]

Al + )Y = AT+ )®

with

N
C(E, g0, N) = {(:z,y) eRxR\w < Jol < J€] et Iyol < Iyl SN}-
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Therefore, from Fubini-Tonelli’s theorem and Proposition 1.1 we get

ol€lly] -
B < [ [ Q@O ONT W gy € ey

Taking account of the condition (2.1), we deduce that .J; is finite.

— For |y| > N, the function t — % is increasing. We deduce, by using
Fubini-Tonelli’s theorem and Proposition 1.1, that
i O Falh) )| o dyle e
< / / Y y|&|™ < +o00.
|>N ¢ (L+[€]+ [yh™

This implies that J3 is finite. Finally for |yo| > N, we have J < J3 < oo. This
completes the proof of the relation (2.3).

According to Corollary 3.1, ii) of [4], we conclude that
"Xo(f)(z) = R(z)e™**, for all z € R,

with § > 0 and R a polynomial of degree strictly lower than Y1

2
Using this relation and (1.4), we deduce that

Fo(F)(y) = F o' Xo(f)(y) = F(R(x)e ™™ )(y), forall x€R,
but .
F(P(x)e ") (y) = S(y)es, forall z € R,

with S a polynomial of degree strictly lower than NT_
Thus from (1.2) we obtain

Fo(f)ly) =T, ( Z bW (45 )) (y), forallzeR.

|| < M5
The injectivity of the transform Fg implies
f(x Z bW, <45 ><ZB) a.e, forall z € R,
|s|< M5t

and the theorem is proved. 0

As an application of Beurling’s Theorem, we can deduce a Gelfand-Shilov type
theorem for the Q-Fourier-Dunkl transform.

Theorem 2.2. Let N € N, a,b > 0 and 1 < p,q < oo, with % —1—5 =1 and let
[ e Ly(R) satisfy

Jap

AT
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and

Zlyle

Folf)W)les
2.5 / dy < oo.
(2.5) 1+ PR
If ab > % or (p,q) # (2,2), then f(z) = 0 a.e. If ab = ; and (p,q) = (2,2), then

f(z) = Yjgl< Nzt bsWi(r,))(x), whenever N > 1 and r = 2b*. Otherwise, f(x) =0 a.e.
Proof. Since

2a 2b
tablallyl < EL o+ By
it follows from (2.4) and (2 5) that
Q H?Q( )( )| dab|z||y|| .| 20+1
e* W e [** T dardy < oo.
WA s .

Then (2.1) is satisfied, because 4ab < 1. Especially, according to the proof of Theorem
2.1, we can deduce that

// ' Xo(N)@)|Fo(f) (W)

T e sty < o
T Y

and " Xq(f) and f are of the forms ‘X (f) = R(z)e ¥ and Fo(f)(y) = S(y)e ",
where r > 0 and S, R are polynomials of the same degree strictly lower than 2]\’2_1
Therefore, substituting these we can deduce that

~(VAlul= 57120 g (dab-Dlalvl R ()5

Y) tablallyl
) [[° -
(2.6) 1+\x|+|y|)2N e .

When 4ab > 1, this integral is not finite unless f = 0 almost everywhere. Indeed, as
ab > i, there exists € > 0 such that 4ab — 1 — ¢ > 0. If R is non null, S is also non
null and we have

/ / 2SI (Tl 5 al)? (dab=D)alyl g g
(1+ |:c| + y])?N

20//6 (Vrlyl =57z |2))? el4ab=1-2)allvl g gy,
R JR

where C' is a positive constant. But the function
,( r
e

1 2
~5rle)? L(4ab—1-¢)z]ly

is not integrable, (2.6) does not hold. Hence, f(z) =0 a.e.
Moreover, it follows from (2.4) and (2.5) that

|f (@
(2.7) / 1+\a:|

and

. Amxqu

(1T +lyh»

P 1,2 @a)®  ip
= |{L‘|2a+1d1‘:/ e i e r ||R($)Q($)

20+1
(EAEIE |z|** ™ dr < 0o

“Jyle " :/ %0 21;) ly \qs(y>
R

(1+[y)¥

dy < oo.
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Hence, one of these integrals is not finite unless (p,q) = (2,2). When 4ab = 1 and
(p,q) = (2,2), the finiteness of above integrals implies that r = 2b? and the rest follows
from Theorem 2.1. O
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