KRAGUJEVAC JOURNAL OF MATHEMATICS
VoOLUME 50(10) (2026), PAGES 1641-1661.

ERROR ANALYSIS OF THE SEMI-DISCRETIZED DOUBLY
NONLINEAR NON-LOCAL THERMISTOR PROBLEM

IBRAHIM DAHI! AND MOULAY RCHID SIDI AMMI*

ABSTRACT. In this paper, we study a doubly nonlinear parabolic equation obtained
from the reduction of the wellknown nonlocal thermistor problem. Therefore, we
focus our study on proving the existence of the solution to the semi-discrete problem.
We also establish the stability and error estimates for a family of time discretization
schemes. We investigate a time discretization of the continuous problem by the
backward Euler scheme.

1. INTORDUCTION

Thermistors are a type of resistor that can be found in a variety of goods and
applications in our modern society. They have been around since the 1830s, when
the industrial revolution came to an end. Back then, they were used to measure
temperature sensing, as self-resetting over current protection and to limit inrush
current, among other things. Thermistors were first discovered by Michael Faraday, a
British scientist and chemist, who is credited with inventing the first NTC thermistor.
Faraday is also known for his contributions to electrochemistry and electromagnetic
induction. In 1833, Faraday wrote a treatise on the behavior ( semiconducting ) of
Ag2S (silver sulfide), which is said to be the first thermistor ever.

There are two types of thermistors PTC and NTC, which have Positive and Nega-
tive Temperature Coefficient, respectively. In the former, the electrical conductivity
decreases with increasing temperature, while in the latter it increases with increasing
temperature. PTC thermistors can be found in a variety of applications, including
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switches and electric surge protection devices. The PTC electric surge device operates
in the following manner: upon a sudden increase in current in the circuit, there is a
rise in temperature that leads to a significant reduction in the electrical conductivity
of the device. As a result, the circuit is effectively switched off. Once the current
surge subsides, the device cools down, its electrical conductivity increases and the
circuit resumes normal operation, as stated by Bartosz in [3]. However, it has been
found that the rapid rise in temperature can generate large thermal stresses that can
compromise the integrity of the device [19,23] which can lead to breakage and failure
of the device. Since the nonlinearities of the system were in the electrical conductivity,
Joule heating and viscous heating terms, it was assumed that the constitutive behavior
of the material was linear. The "Thermistor Problem* can be roughly defined as a non-
linear parabolic equation describing the temperature coupled with an elliptic equation
describing the quasi-static evolution of the electric potential. The non-linearity of the
problem is primarily due to the coupling between these equations, which is partly due
to the significant influence of temperature on electrical conductivity. Mathematically,
the problem can be expressed as follows:

vy =V (k(v)Vv) + p(v)| V|2,
(L) V- () V) = 0.

In the above model, x denotes the thermal conductivity and p(v) the electrical con-
ductivity, which is normally a positive function of real values. Furthermore, the
temperature of the conductor is represented by v, while the electric potential is rep-
resented by . The first equation describes heat diffusion, while the second governs
charge conservation. Here, x(v) and o represent the thermal and electrical conduc-
tivity respectively, with their specific functional forms determined by the physical
properties of the system. Under suitable conditions, this coupled system can be re-
formulated as a parabolic problem if it is supplemented by suitable boundary and
initial conditions. For detailed treatments of such systems we refer to[7,20,26]. In
this paper, we will deal with the following non-local model

b(v) Ag(v)

—Av=—"— inQ,
' v(x,0) = vy, in Q,
v =0, on I'x]0, M|,

which is considered as a generalization of the problem from the work of A. A. Lacey
23], where g(v) is the electrical resistance of the conductor and —2—; represents

(f g(v)dw)
the non-local term of (1.2). Whereas( is defined as follows @) := Q) x 0, M] where

is an open bounded subset of R™, m > 2, and T is a positive constant. The literature
on the problems (1.1) and (1.2) is extensive (see [1,5,9-12,15-18,21,24,25,27,30,32]).
Our motivation is stimulated by various applications. A thermistor has been widely
used in electronic circuits to protect, control and compensate temperature. On the
other hand, b is a nonlinear function that can grow faster than any function at infinity
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b(v) = e for example). Furthermore, it does not have to be strictly growing on
any part of R. Thus, the evolution equation can become stationary in a subdomain of
Qx]0, M|, where ]0, M| denotes the time horizon. Our aim is to prove the existence of
a solution to the problem (1.2). We will also prove some stability results and provide
error estimates.

The rest of the paper is organised as follows. Section 2 starts with a brief reminder
of some notations and hypotheses that we need in this paper. In Section 3 we show
the existence and uniqueness of a solution to a semi-discrete problem. In Section 4
we prove some stability results. Section 5 is dedicated to error analysis. Finally, in
Section 6 we present conclusions and perspectives for future research.

2. NOTATIONS AND HYPOTHESES

Throughout this paper, we assume the following.
(H1) g : R — R is a Ly-Lipschitzian function.
(H2) There exists a positive constant o such that for all s € R, we have

(2.1) o < g(s).

(H3) b is an increasing Lipchitz function with b(0) = 0.
(H4) We assume that exists C, € }0, M{ such that

(2.2) l9(x) = 9(y)| < Colb(x) — b(y)|.
Throughout this paper, we will choose \ large enough to get that
(0 - meas(Q))?
TA
(H5) vp € L>(£2). We define for r € R

< 1.

Then, the Legendre transform U* of W is defined by
U*(r) = sup{rs — ¥(s)}.

seR

Note that U*(b(r)) + ¥(r) = rb(r). © will denote an open bounded set of R™, m > 2
with smooth boundary and (-,-) denotes the duality between H{(2) and H~'(Q).
Throughout this paper, C; and C' will denote various positive constants.

Remark 2.1. Under hypotheses (H1), we can see that g(s) < Cy|s| + Cs. Indeed,
(2.3) g9(s) < lg(s) — g(0)] + g(0) < Li|s| + g(0) < Cils| + Cs,
where L; = C and ¢(0) = Cs.
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3. EXISTENCE OF SOLUTION FOR A SEMI-DISCRETE PROBLEM

For the time discretization of the problem (3.1) we will use the following notations.
We denote the time step 7 = T/N,t" = n7, and J, := (t"" 1, t") forn=1,...,N. We
consider the corresponding discrete scheme (backward Euler scheme) related to (1.2),
which is represented by

TAG(vn) )
b(v,) — TAv, =b(vp_1) + ———————, in Q,
: Un(2,0) = Vg p, in €,
vy = 0, on I'x]0, M].

Theorem 3.1. Suppose that hypotheses (H1)-(H4) hold. Then, for each integer n,
there exists a solution v, to (3.1).

Proof. To show the existence of a solution, Schauder fixed point theorem will be
applied. For simplicity, putting v = v,, substituting in the first equation of the system
(3.1), we get that for a fixed w in H}(Q)

TAg(w)

b(v) —TAv =b(v,_1) + — .

) )+ glw)do
Taking the inner product with the function v to get
(3.2) (b(v),v) = 7(Av,v) = p(h(w),v),
where ()

TAg(w
h(w) =b(v,—1) + —————— and € |0,1].

Let us consider the operator A(u,w) = v, for all u € [0, 1], being the solution to the
following problem

b(v) — TAv = ph(w), in Q,

(3.3) v(x,0) = vy, in Q,
v =0, on I'x]0, M.
If v > b(v), by using (3.2), we obtain that
(3.4) /Q(b(v))2 do +T/Q IVol? da < plh(w), ).

Using hypothesis (H2) and Young’s inequality, we get the following estimates
lo(o) I3 + 7 [IVol; < /Q (Cs + Cylwl) [v|dx
< Ca[[wlly [[olly + Cs [lv]l,

< Co llwll g0y N0l 3y + Cs vl

T 2 1 2
< 2 0l + 5-C8 ol ey + Cs vl



SEMI DISCRETIZED NONLOCAL THERMISTOR PROBLEM 1645

Then,
T 1
()5 + 3 Vo5 < 5062 Hwa{g(m + Cs [Jv]], -
It follows that

2 2 1 2
2[[b()lz + 7 [IVolly < ~Cg lwlligy o) +2Cs [0l -
Hence,
b(v)|/ 2 Loz )2 2C;
o)z + 7 Vol < —Co l[wliy ) +2Cs llvll, -

Using again Poincaré’s inequality, we obtain
1
2 2 2
o)1 + 7 IVolly < ~C5 [[wlligy o) +2C5C7 [Vell,

By using Young’s inequality, we get that

(2C5C7)?

1 T
2 2 2 2
[b(v)l5 + 7 [[ Vo3 < ;062 [0l 1) + + 3 Vel

Then,

2 T 9 1 2 (20507)2
IIb(v)Ilz+§IIWIIQS;CEIIwIIHg(QﬁiT ;

2 2(205C5)?
1b()|I5 + 7 Voll; <2[[b(w)]5 + 7 IVvll; < e w380 + 2(2C5C7)°

-
Then, there exist positive constants Cy and Cy, such that

(3.5) o)z + 7 Vull; < Cs l[wllz ) + Co.

Then,

(3.6) lo()1l3 < Cs llwllz q) + Co-

Since w is bounded in Hj(£2), then there exists a positive constant Cjq such that
(37) Jol? < Cuo

Recall from (3.5), that

(3.8) 7Vl < )15 + 7 [Voll; < Cs llwllz q) + Co-

Combining (3.7) and (3.8), we get

(3.9) oll3 + 7 IVoll; < Cs llwllzq) + Cu.

Else we have v < b(v), then from (3.2), we get
loll + 7 [[Voll; < /Q (Cs + Cylw]) [v]dz

< Cullwlly [[oll, + Cs [vll,

3.10
(3.10) < G llwll gy o 10l a0y + Cs llvll;

T 2 1 2
< 2 Iolga + 52C8 Il + Cs 1ol
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Then,
2 T 2 1 2
llly + 5 Voll; < 503 [wl[ g0 + Cs vl -

Hence,
1
2 2 2 2 2
[olly + 7 IVolly < 2{olly + 7 ([Voll; < ;C@? [0l ) +2C5 vl -

Using together Poincaré’s inequality with Young’s inequality, we obtain

2(C5Cr)?

1 T
2 2 2 2
vl + 7 [[Voll; < ;CGQHU)”H&(Q)_’_ + 5 Vel

It follows that
2(C5 6’7)2

2 T 2 1 2
lolly + 5 1915 < ~GF llwllip o + =

Then,

2 2 2 2 2 2 (0507)2
[olly + 7 [IVolly < 2{jvlly + 7 [[Voll; < ;062 1ol @) + 4——

Then, there exist positive constants Ci5 and Ci3, such that

(3.11) ol + 7 [Voll; < Cuz l[wlz ) + Ca.

From (3.9) and (3.11), there exist positive constants C4 and C}5 such that
(3.12) loll + 7 Vol < Cua llwlzs ) + Chs.

We can see that p+— A(u,v) is a continuous function and we have that A(0,v) =V
for any v if and only if V = 0. By using the theory of degree topology, we get that
v € Hy () and satisfies Problem (3.1). O

The following lemmas play a key role in the proof of Theorem 4.1.
Lemma 3.1. Ifvy € L*™(Q)), then v, € L*(Q) for alln=1,2,3,...,N.

The proof of Lemma 3.1, is similar to the one used by de Thelin in [6] in a different
problem; we shall give here only a sketch. Suppose m > 2 and define

2m o ifm > 2,
’}/:
4, if m = 2.

Let p; = v and let
V! gl
=<(= -2 k> 2.

Dr1 = pk%, for all k£ € N*.

Then, we have

Lemma 3.2. For k in N*, v, € LP*(Q2) and

(3.13) vnll = kgrfoo sup [[v,l[,, < +oo.
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Proof. For simplicity, we write V' = v, K(z) = b(v,—1). From (3.1), we have

TAg(V)
— = H(V).
(g(vyany 1)
Multiplying the above identity by |V|P*=2V| to obtain

(3.14) /Q b(V)|V[P2V dfl?—T/ AV|V [P 2de—/H VP2V da,

b(V)—17AV = K(x) +

In view of the fact that
- T/QAV|V|”‘“_2V d = r/ﬂvv YV da

:T/Q IVVR[VIP2 de + T/Q(pk VPV da

= [ (= DIVV PV 2 da,

and from (3.14), we get that

1647

(315) 7 [ = DIVVEVIP do < = [oV)VPV o+ [ HO)VIPY do.
Q

Keeping (3.15) in mind and using the fact that H(V) < Cy|V| 4+ C}, we obtain that

m [ e = DIVVEV 2 d
(3.16)
<= [ VPRV do+ [ (ColVI+ Co)VIP d.

Let us deal with the first term on the right side of the inequality (3.16).
If (V) <V then we get

- /Q bV)IVIP?V de < - /ﬂ (b(V))*|V["~2 da < 0,
else we have b(V') >
—/ V)IVIP=2V da < — /V2|V\pk 2 dx < 0.
In both cases, we have
— [V e <o,
This implies that
T/Q(pk = D[VVPVP da < /Q(OO|V| + OV da

(3.17) < OO/Q VP do + C /Q Vi da

< Co/Q VP de + Cy /Q VP dg.

Using Young’s inequality, we get that

(31 G




1648 I. DAHI AND M. R. SIDI AMMI

Combining (3.17) with (3.18), we get

—1
T/Q(pk — DIVV[ - [V de < Cig + pkp IVI[pr + CO/Q \V|PE dx
k

< Cig + Che|[V |

(3.19)

On the other hand, by using Poincaré’s inequality, we have for all V € H,(Q) the
following inequality
V5 < Cusl[VV][ 2@

Hence,

Pk

2
HVH§: = (/ Hv||pk+1 dx) Phtl (/ HVH% dx)w
+ Q Q
2
Pr.—2 Y ; P
(3.20) =(J (M) ) <t

2 P |2
< ClS/Q‘V (|V’ ? )
< (BY oz [ |wvEved
> 5 18 0 Z.
From (3.19) and (3.20), it follows that
VI, < i (Cro + CoolVIEE) -

Pk+1

2
v

By induction on k, we get that V' € LP*(Q2), 1 < k < m + 1. Then, we have the
following

(3.21) (Iv] pm“)% < (Cho+ Coo [V[[27) 12,

Pm+1

The rest of the proof follows the same lines as in [29]. As follows: for ¢ =: py, we

remark that
5 m—1
< — .

Setting a =: 2, b =: $logmax {1,Ci9 + Cao}, Ey = pim log max{1,||V]|,.} and r,, =
b+ 6(m — 1) log a. We obtain that

Bt <rm+aBy <rp+arm+--+a" vy +a"Ey,

m b dloga "
E.i1 <a {E1+a—1+ (a_1)2}::da .

From which we conclude that

. Em . dam—l d
Voo < limsupexp | —= | < limsupexp <exp ().

m——+o0o m m——+oo m

This concludes the proof of (3.13). O
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4. STABILITY RESULTS

In this section, we focus on the stability analysis for the semi-discretized problem.
For this purpose, we consider Vj in L*(€2).

Theorem 4.1. Under hypotheses (H1)-(H3) there exists positive constants C' (M, Vy)
and C; (M, Vy), i = 1,2, such that

(4.1 IValloo <C (M V),
(42) IR da:wzuw <Cy (M, Vp),
(4.3) Z [6(Vi) = b (Vien)l5 <Co (M, Vo).

Proof. From Lemma 3.2, we have that V,, € L*(€2). Multiplying the first equation of
(3.1) by [6(V,)|"b(V},), we get

RAINAVAL: dx—T/AVn\b (VI*b (V) do

_/ Vo) [b(V, dx+/ V)b (V,) da.

It can be shown that

(45) — [ Ava b b(v) <.
Q
Combining (4.4) with (4.5), we get

b (VIIES < [ b (Vaos) Ib(Va) b (Vi) do+
It follows that
(4.6)
k+2 k+1 TA k1
I IS <10 IR 10 Vi llss + ey fy 9 ) DOV

To deal with the second term on the above inequality, using hypotheses (H3)-(H4),
we obtain

|9 oVl do < [ (19(Va)) = 9(0)] + g(0))[b(Va)| " da

< [ 19(V) = g(0)] - [o(Vu) " da + 9(0) [ [b(Va)[*" da

k+1

dx

(4.4)

ity Jy o V) OV

< Co [ 1b(Va) = b(O)|- o (V) do 4 9(0) [ 1oV,

<Co [ VI do+g(0) [ 1b(1V2) [ da

< Colb (V) IEE3 +9(0) [ (V) [+ da
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Then, inequality (4.6) becomes
16 (VIS < 10 (VIS 1 (Vi) ey + Co 1D V) 53+ 9(0) [ 10(V2) 44! d
Under the hypothesis (H4), we get that

(1= Co) 16Vl < 1o (Vs 1 (Ve )l ya + Con 116 (V)50

Then, there exists a positive constant C' such that

CHb( )Hk+2 < Hb( n— 1)Hk+2 + Caa.
By induction, we get that

1 N
002 < (5) 1008 sa + Caal.
We tend k to infinity, we get

0@l < (5) 100+ o,

This implies that
Valleo < C (M, V5).

Now, we prove the second inequality (4.2) in Theorem 4.1. Toward this end, multi-
plying (3.1) by Vi and integrating over 2, we get

(4.7) /Q(b(Vk) —b(Vi—1)) - Vi dﬂS—T/ AV Vi dx = /\/ m
Q Xz

Since
(48) [0 004) dr— [ (6 i) de < (6(Ve) = b(Vier) Vi) g

Keeping (4.7)—(4.8) and hypotheses on ¢ in mind, we obtain

/xp* (Vi) dar— /¢ (Ver)) da+7 [V Vil o < /|g Vi) |- Vil da.

(ameas
On the other hand, we have
TA
Jo @il do < [t 19V = g0 Vil + 19O)] - Vi) do
(0 meas(2))
AL
< oo Ly Wl e+ 9(0)] [ 1V da]
(o meas(£2

< Coa Vil 2q) + CoslI Vil 1o

From the above inequality and Héder’s inequality combining with (4.9), it yields that

(4.10) /\I/* (V&) dx—/ T (b(Vi1)) dz + 7 || VVil[7a @ < Co6 Vil 20y -
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Summing (4.10) from k& = 1 to n, we obtain

znj[/xp (Vi) dx—/\lf (Vir))da

+7 Z IVVilly < Cas Z [Vl -

k=0
Then,
/\11* dx—/ U (Vo))da + 73 IIVVAIE < Cas 3 Vi
k=0 k=0
Hence,
/xp* dx+72|yvvk||2 <0262\|Vk|]2+/ W (b (V) da.

Keeping this in mind and using (4.1), there exists a positive constant Cy (M, Vp) such
that

(4.11) / U (V) de+ 73 [V < O (M, V).
k=0

Now, let us prove that
> vt~ (V)< o aa, ).
k=1

To this end, multiplying the first equation of (3.1) by b(V}) and integrating over 2,
we get that

/Q<b(vk) —b(Vie1)) b (Vi) do 4 7(=AVi, b (Vi) :m/ (g V)b (Vi)

@ (Jog9(Vi)dr)?

Applying the following identity 2a(a — b) = a* — b* + (a — b)? in the first term on the
above identity, we get that

[ (Vk)||§ - IIb (kal)llg 1 (Vi) = b (Vie) 720 — T/QAVIJJ (Vi)

A/ d.
ng Vk d:c

Knowing that
—7/ AVib (Vi) di = r/ VVV (b(V3)) dx = T/ IVVi2 6 (Vi) da > 0.
Q Q Q

It yields that

1) b (Vi)

(4.12) b (VI = 11 (Vi) 12 4 115 (Vi) = b (Vi) B <AM/‘bgVD 0z
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On the other hand, by using hypotheses on g, we get that
L9 ilde < [ 1lg (V) = g(O)l +1g(0)1]- b (Vi) da

< Cy [ 1DV P da+ 9O [ 1b(Vi) | da

< Co b (Vi)lls + [9(0)] - 116 (Vidll 11 e
Then,

(4.13) /Qg (Vi) [b (Vi) dz < Co ([0 (Vi)llz + 19 (O] - 116 (Vi) 1y -
From (4.12) and (4.13), we get
16 (Villz = 116 (Vi1)ll3 + 11 (Vi) = b (Ve )l 720

MCo 2 MlgO)]\
S o meas(Q))? 16 (Villz + (o meas()]? 16 (Vi1 e -

We know that (V) is a bounded sequence in L*(£2). Furthermore, we have that b is
a Liptshitz function, then there exists a positive constant Cy; such that

15 (VI = 15 Vi) I3+ 16 (V) — b (Ve )22y < Cor.
This implies that

n

S (B ORI = () I2) + 3 16V = b (Vi) I < nCar.

k=1 k=1
It follows that

1o (Va3 = 15 (Vo)ll5 + 3 116(Va) = b (Vien) I3 < nCr.
k=1

Hence,
1B (Va)lls + D 11(V) = b (Via) 15 < nCor + [0 (Vo)[5 -
k=1
Then, there exists a positive constant Cy (M, V;) such that

> v — s (V)| < s (01, 1).
k=1
This concludes the proof. 0

5. ERROR ESTIMATES FOR SOLUTIONS

In this section, we will study the error estimate. If y is a continuous function (resp.,
summable), defined in ]0, M|, with values in H'(Q) or L*(Q2) or H}(f2), we define
yr=y "), gt = 1/7) [, y(t,)dt, §° = y° = y(0,-) and the error e, = v(t) — V,,
ep =b(v(t)) —b(V,) forallt € I",n=1,..., N. For notational simplicity, we denote
u, = b(v,) and U, = b(V,) and introduce the local errors e and e}, defined by

en =0, —Vy, e =b(v,) —b(V,)=u, —U,.

v
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Let’s (—A)™! be the Green operator satisfying

(5.1) <V(—A)_1v, Vw> = (v,w), forallve H)(Q),we H Q).
By arguments inspired from [4,13,28], we get the following result hold.
Theorem 5.1. Assume that the hypotheses (H1)-(H5) holds. Then,

(5:2) il <Cos7*”,
2 M 2
(53) €41 o an sy + |, Nl 3 dt <Conr,
m 2
HV/ €vdt §030T1/4.
0 L2(Q)

Proof. The discrete problem (3.1) has the following variational formulation

(b(vn) — b (V1) ,80>L2(Q) + 7 (Vuy, VS0>L2(Q)

(54) _—T)\ (Y or a !

Integrating the continuous problem (1.2) over .J,,, we obtain that its solution verifies
the following variational identity with respect to the notation introduced in the

introduction
_ g (Vi)
(V) —b(Vat)— A (/ mt) _ A/Jn ANTUATTE
Then,
(5.5) b(V,) — b (Vi) — TAV, = A 9 (Vn) _dt.

Multiplying (5.5) by ¢ and integrating over 2, we get

: 9 (Va)
<b (Vn) —b (Vn—l) ) 90> - T AVn7 )= <)‘ —dt> S0> )
< > /J" (Jog (Va) dx)Q
for all p € H}(€2). From Green’s formula, we obtain
- g (Va) >
b(V) —b(Vir), @) +7(VV,, V) = A / 9 g o),
B08) = 01 (T e = [ e
for all ¢ € Hy(Q). Then,
A
(Jo 9(Va)dx)?
for all ¢ € Hy(Q). Substracting (5.6) from (5.4), we get
(b () = b(vn1) = (b(Va) = b (Vo)) @) sy ey + 7 {VVa = Vo, Vip)

=T g (vn) _ 9(Va)
M T ™ T )

(5:6)  (b(Va) =b(Varr),9) +7(VV,, Vo) = (9(Va), ),

()
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Then,
S (b~ e+ 7Y (Ver, Vo)
(5.7) . = .
<Cu7| Y (9(0)" =g (Vo) wp)’ +Car (> (9(V;
n=1 n=1
We set
= (b(v ) b(Va) = (b(vn-1) = 0(Va1)) , ©) -1(). 3 (o)
< ’ > H-1(Q),H)(Q)’
T(VBU, V(p)Lz ()
I = Cur|> (ﬁ" —g V), @)‘ + Csor | Y (9 (Va), <P)| = 13 + I3
n=1 n=1

Choosing ¢ = V(—A)"'e and adding from n = 1 to m with m < N, we have

S =3 (VA [ g ] VA ) L

n=1 n=1

(V=) V=2 L

3 AV (AT g =) V(AT [ - 47))

||M3

1
27
1 2
m2 n n—1
_5 ey -1 + B Z:l Heb % HH*l(Q) '
From (5.1), we get
I =1(Vel, V)eq) =T <Ve V(- A)_16?>L2(Q) = (e, ) 12(q) -

Again adding from n = 1 to m with m < N, we obtain

Z Iy =7 Z (ey, 6?>L2(Q)
n=1 1

- Z/ — Vi iy — u(t)) 2t
=1+ I

Since b is an increasing function, it follows that

= Z/ — 0, b(0()) = b(va)) L2(@ = 0.
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Now, we split /7" into two parts and we estimate each one separately
B =3 [ (0l0) = Vit~ () g
- Z N RCORIORAPL
- Z/ (Vi ttn — u(t)) 2y dt

="+ I7".
We start by estimating I§"

oL o f )
6 | — , _
n=1"Jn t 0s 3@ (@)
- "1 ou
= Z/J (/t 0s ds) ' ”U(t)HHl(Q) dt
(58) n=1 n H*l(Q)
S "1 ou
= / / ds | - [lv(t 10y dt
nz::l I ( ¢ ||0s H-1(Q) ) @)1l ()
ob
o L
88 LQ(O,th—l(Q))

In similar manner, to derive an estimate of 17", we use inequality (4.2) to get

1655

"9
7| = Z/ < o “ds> dt
! HE(),H~1(2)
(59) 8b( ) m 1/2
ST H s <T > anlﬁié(ﬁ))
L2(04mH-1(Q)) \ n=1
< Oy
From (5.8)—(5.9), we get that
(5.10) 1] < G
Next, we estimate I3, by using Holder’s, Young’s inequalities and hypotheses on g
) <35 ([t = g il (- )|
n=1 n

/2 m 5 1/2

<cur - (f Hg<v>—g<vn>|rzdt) €5 -1
- 037 n

< ([, loto) =g (Ve ) + =% ZH,,HH
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m

< Con 3 (f, o) = bR ae) + S 3 el

Knowing that b is an increasing Lipschitz function, we get

1531 < Cam Y [ [ (6(0) = (Vi) (v = Va)dadt + cn)r 3 g 510
n=1Jn n=1
Moreover, we have

m e n 2
13y < Cr+ 7 Z e |IH*1(Q) :

n=1

From (5.7), we get

(5.11) > IT Z I3 + I
n=1 n=1
It follows that

i I —Cr+ fjl /J n /Q (b(v) — b(V,))(v — V) dadt
<Cs9n znj:l/Jn /Q(b(v) — b(Vy)) (v — Vp,)dxdt + c(n Z er ||H

Then choosing 7 small enough to absorb the first term of the rlght hand side of the
above estimate, we get that
(5.12)

e e + 5 ZHeb—ez s+ 2 [, 00 = o) 0 = Vi

<CT + Cyo1 Z ||62”%{*1(Q)'

n=1

Putting m
yt=2 |!62H}2q—1(g), y" =y < C o+ Chg oy
and applying discretziéronwall’s inequality, we get that y™ < C(T)
el -1y < Cur'’?,
which proves the inequality (5.2). On the other hand, we have

n . 1/2< n (in _ n
tes(})l,?m) ley (O -1 () — cn™ /" < max ley (") | -1 max leb 1 -1q) -

Thus, o
||6§||L°°(O,T;H*1(Q)) —Cyr'? < 12}%}% ||eg||H*1(Q) .

From the above inequality, we obtain

N
lesll 2w o712y + 2 / (b(v(t)) = b (Vi) , v(t) = Vi) o) dt < ClaoT.
n=1 n



SEMI DISCRETIZED NONLOCAL THERMISTOR PROBLEM 1657

That achieve the proof of the second point in Theorem 5.3.

Now, return to the inequality (5.7) and taking ¢ = >, el = 3" (v, — V,,) as
test function, to get
2

2| S° (5, — V3)

L*(Q)

Then,

2

2
T |

SOV (50 — Vi)

n=1

L(Q)

= Jl + JQ + Jg.
We begin by estimating Jy

b= (/Q (i / (9(v) — g (V) dt)zda:)
( /, (Z / dt) d:p) "
(i/ gt <Vn>”2>2df) N (i /(e - vnusdt)

1/2

1/2
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<1 (35 [ low) ~otilar)

m 1/2
2
< (2o + 2 3 V1)
n=1
<Cyst'2.

The above inequality follows by using respectively the L*-estimate of v(t), V™ and
the error bound given in Theorem 4.1. Arguing as in the previous estimate, we get

m 1/2 m 1/2
Bt (35 [ ailer) (200l + 2 AIE)
n=1""'n n=1

Combining (4.2) with the estimates above and using hypothesis (H1), to obtain
J3 S 0467_1/2 and

(5.13) Ji < ||62n”H*1(Q) Z [0 ()] 2 Q) dt"‘TZ HVnHHl(Q) :
n=1 m 0( n=1 0
Finally, collecting these results, it follows that
T 2
v /0 erdt]| < Cyor!/2,
2

By accumulating all of the previous results, the proof of Theorem 5.1 is completed. [

Remark 5.1. As an example of the application, we can take b(v) = v. If we then
choose a field that satisfies the hypotheses (H1)-(H5), we will apply Theorem 3.1 to
obtain the existence of a solution to the semi-discrete problem associated with the
continuous problem (1.2). This result is confirmed by the result obtained in [14] with
the appropriate value of ”b“. We can also consider the following example:

g1(x) =/C222 + 5,

and the function b(z) = z. It can be shown that g; and b satisfy assumptions (H1) to
(H5).

We now exhibit an example showing that many functions satisfy (H1)-(H4).

Example 5.1. Consider b and g two functions such that:
e b(z) = kx (increasing, Lipschitz, b(0) = 0);
e g(z) = o + 4 tanh(z) (bounded below by o, Lipschitz).
Verification.
(a) (H1) g is Lipschitz because tanh(z) has derivative sech®(z) < 1, so L; =
Ly 1
51
(b) (H2) tanh(z) €] — 1,1], so g(z) > o — £L. To ensure g(z) > o, we must
pick L; small enough (e.g., L1 < 20 ).
(c¢) (H3) b is increasing, Lipschitz, and b(0) = 0.
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(d) (H4)
i) Since b(z) — b(y) = k(z — y), we have:

9(r) ~ 9(y)| = = tanh() — tanh(y)] < T~ ]

ii) Meanwhile, |b(z) — b(y)| = k|lx — y|.
iii) Thus, [g(z) — g(y)| < (5) [b(x) — b(y)].

Choose k small enough to ensure % < M

Observe that all hypotheses of the preceding theorem are satisfied, from which the
error estimates immediately follow.

6. CONCLUSION AND PERSPECTIVE

In this work, we have shown the existence and uniqueness of a solution to the
steadystate problem, which is the time discretization for the continuous problem (1.2).
We have also proved some stability results and error estimates for a family of time
discretization schemes. We would like to point out that this study is accompanied by
effective numerical computations.

Acknowledgements. We are very grateful to the anonymous reviewers for their
thorough and thoughtful feedback, which helped to improve the clarity, rigor, and
impact of this paper.
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