
Kragujevac Journal of Mathematics
Volume 50(5) (2026), Pages 777–785.

ON THE ASYMPTOTIC BEHAVIORS ASSOCIATED WITH THE
DAVISON FUNCTIONAL EQUATION

MOHAMMAD AMIN TAREEGHEE1, ABBAS NAJATI1∗, AND JAE-HYEONG BAE2

Abstract. We prove the Hyers-Ulam stability of the Davison functional equation
f(x + xy) + f(y) = f(x + y) + f(xy),

for a class of mappings from a normed algebra A (with a unit element 1) into a
Banach space B, on the restricted domain {(x, y) ∈ A × A : min{∥x∥, ∥y∥} ⩾ d},
where d > 0 is a constant. As a result, we obtain some asymptotic behaviors of
Davison mappings. In addition, we obtain the corollary that for every mapping g
from a normed algebra A into a normed space B, and for all positive real numbers
r, s, one of the following two conditions must be valid:

sup
x,y∈A

∥g(x + y) + g(xy) − g(x + xy) − g(y)∥ · ∥x∥r · ∥y∥s = +∞

or
g(x + y) + g(xy) = g(x + xy) + g(y).

1. Introduction and preliminaries

The functional equation
(1.1) f(x + xy) + f(y) = f(x + y) + f(xy),
was proposed by Davison [2] at the 17th International Symposium on Functional
Equations. He inquired about its general solution for mappings from a commutative
field F to another commutative field K. At the same symposium, Benz [1] provided
the general continuous solution to the functional equation (1.1) when f is an unknown
mapping from the real numbers to the real numbers. In 2000, Girgensohn and Lajkó
[4] characterized the general solution of (1.1) without requiring any regular condition.
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They showed that if f : R → R is a solution of (1.1), then f can be expressed as
f(x) = A(x) + b, where A : R → R is an additive mapping and b ∈ R is any constant.
Furthermore, they derived the general solution of the pexiderized version of (1.1). In
a separate work, Davison [3] determined the solution of (1.1) when the domain of the
unknown mapping f is the ring of integers Z or the set of natural numbers N. Najati
and Sahoo [9] introduced two pexiderized functional equations of Davison type and
obtained their general solutions.

Jung and Sahoo [6] were the first to study the Hyers-Ulam stability of the Davison
functional equation (1.1). The pexiderized functional equation

f(xy) + f(x + y) = g(xy + x) + g(y)
was investigated for the Hyers-Ulam stability in [5]. Studying the Hyers-Ulam stability
of Davison functional equation (1.1) and its pexiderized version on restricted domains
would be interesting topics. Let A be a normed algebra and consider

D1 := {(x, y) ∈ A × A : min{∥x∥, ∥y∥} ⩾ d} ,

D2 := {(x, y) ∈ A × A : ∥x∥ ⩾ d} ,

D3 := {(x, y) ∈ A × A : ∥y∥ ⩾ d} ,

D4 := {(x, y) ∈ A × A : ∥x∥ + ∥y∥ ⩾ d} ,

D5 := {(x, y) ∈ A × A : max{∥x∥, ∥y∥} ⩾ d} ,

where d > 0 is a real constant. It is clear that D1 ⊆ Dj for 2 ⩽ j ⩽ 5. The primary
objective of this current paper is to investigate the Hyers-Ulam stability of (1.1) on
the unbounded restricted domain D1. As a consequence, we obtain a hyperstability
result for the Davison functional equation (1.1). This leads us to deduce the slightly
surprising result that for any mapping f , from a normed algebra A into a normed
space B, and for all positive real numbers r, s > 0 one of the following two conditions
must hold true:

(i) supx,y∈A ∥f(x + xy) + f(y) − f(x + y) − f(xy)∥ · ∥x∥r · ∥y∥s = +∞,
(ii) f(x + xy) + f(y) = f(x + y) + f(xy), x, y ∈ A.

Also (ii) is equivalent to
sup

x,y∈A

∥f(x + xy) + f(y) − f(x + y) − f(xy)∥(∥x∥r + ∥y∥s) = +∞.

2. Stability and Hyperstability

The following lemma plays a key role in proving the main theorem.

Lemma 2.1. Let ε ⩾ 0 and d > 0. Suppose that f : A → B is a mapping from a
normed algebra A (with unit element 1) to a normed space B satisfying
(2.1) ∥f(x + y) + f(xy) − f(x + xy) − f(y)∥ ⩽ ε, min{∥x∥, ∥y∥} ⩾ d.

Then,
(2.2) ∥f(x + 4y) + f(x + 4y + 1) − f(4y) − f(4y + 1) − f(2x + 2y) + f(2y)∥ ⩽ 3ε,
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for all x, y ∈ A, with min{∥x∥, ∥y∥} ⩾ d + 1. Moreover,∥∥∥f(−2x) + f(2x) − f(x) − f(−x)
∥∥∥ ⩽ 39ε, ∥x∥ ⩾ 4d + 4,(2.3)

∥ − f(−4x + 1) − f(2x) + f(−2x) + f(1)∥ ⩽ 12ε, ∥x∥ ⩾ 2d + 2,(2.4)
∥f(2x) − 2f(x) + f(0)∥ ⩽ 213ε, ∥x∥ ⩾ 12d + 12.(2.5)

Proof. Replace y by y + 1 in (2.1) to obtain
(2.6) ∥f(x+y+1)+f(xy+x)−f(2x+xy)−f(y+1)∥ ⩽ ε, min{∥x∥, ∥y∥} ⩾ d+1.

Adding (2.6) and (2.1), one obtains
(2.7) ∥f(x + y + 1) + f(x + y) + f(xy) − f(2x + xy) − f(y) − f(y + 1)∥ ⩽ 2ε,

for all x, y ∈ A, with min{∥x∥, ∥y∥} ⩾ d + 1. By substituting 4y for y in (2.7), we
obtain
(2.8) ∥f(x + 4y + 1) + f(x + 4y) + f(4xy) − f(2x + 4xy) − f(4y) − f(4y + 1)∥ ⩽ 2ε,

for all x, y ∈ A, with min{∥x∥, ∥y∥} ⩾ d + 1. Replacing x by 2x and y by 2y in (2.1),
one obtains
(2.9) ∥f(2x + 2y) + f(4xy) − f(2x + 4xy) − f(2y)∥ ⩽ ε, min{∥x∥, ∥y∥} ⩾ d.

Using (2.8) and (2.9), we get (2.2).
By substituting −2x for x and x for y in (2.2), we obtain

(2.10) ∥2f(2x) + f(2x + 1) − f(4x) − f(4x + 1) − f(−2x)∥ ⩽ 3ε, ∥x∥ ⩾ d + 1.

Also, replacing x by 2x and y by x
2 in (2.2), we get

(2.11) ∥f(4x) + f(4x + 1) − f(2x) − f(2x + 1) − f(5x) + f(x)∥ ⩽ 3ε, ∥x∥ ⩾ 2d + 2.

Adding (2.10) and (2.11), we obtain
(2.12) ∥f(2x) − f(−2x) − f(5x) + f(x)∥ ⩽ 6ε, ∥x∥ ⩾ 2d + 2.

By substituting −3x for x and x
2 for y in (2.2), we have

(2.13) ∥f(−x)+f(−x+1)−f(2x)−f(2x+1)−f(−5x)+f(x)∥ ⩽ 3ε, ∥x∥ ⩾ 2d+2.

Add (2.10) and (2.13), to get
∥f(2x) − f(4x) − f(4x + 1) − f(−2x) + f(−x)(2.14)
+ f(−x + 1) − f(−5x) + f(x)∥ ⩽ 6ε, ∥x∥ ⩾ 2d + 2.

Replacing x by 3x and y by −x in (2.2), we have
(2.15)
∥f(−x) + f(−x + 1) − f(−4x) − f(−4x + 1) − f(4x) + f(−2x)∥ ⩽ 3ε, ∥x∥ ⩾ d + 1.

By (2.14) and (2.15), we conclude
∥f(−4x) + f(−4x + 1) − 2f(−2x) + f(2x)(2.16)
− f(4x + 1) − f(−5x) + f(x)∥ ⩽ 9ε, ∥x∥ ⩾ 2d + 2.
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By substituting −x for x in equation (2.10) and then combining the result with
inequalities (2.10) and (2.16), we arrive at

∥f(−2x) − 2f(2x) − f(−5x) + f(x) + f(−2x + 1)(2.17)
− f(2x + 1) + f(4x)∥ ⩽ 15ε, ∥x∥ ⩾ 2d + 2.

If we substitute −4x for x and x
2 for y in (2.2), we can obtain

(2.18)
∥f(−2x) + f(−2x + 1) − f(2x) − f(2x + 1) − f(−7x) + f(x)∥ ⩽ 3ε, ∥x∥ ⩾ 2d + 2.

It can be inferred from equations (2.17) and (2.18) that
(2.19) ∥ − f(2x) − f(−5x) + f(4x) + f(−7x)∥ ⩽ 18ε, ∥x∥ ⩾ 2d + 2.

Replacing x by −x in (2.19) and adding the resultant to (2.12), we obtain
(2.20) ∥f(7x) + f(−4x) − f(2x) − f(x)∥ ⩽ 24ε, ∥x∥ ⩾ 2d + 2.

Replacing x by 2x and y by 3x
2 in (2.2), we have

(2.21) ∥f(8x) + f(8x + 1) − f(6x) − f(6x + 1) − f(7x) + f(3x)∥ ⩽ 3ε, ∥x∥ ⩾ d + 1.

Also, replacing x by −2x and y by 2x in (2.2), we get
(2.22) ∥f(6x) + f(6x + 1) − f(8x) − f(8x + 1) − f(0) + f(4x)∥ ⩽ 3ε, ∥x∥ ⩾ d + 1.

Add (2.21) and (2.22), to obtain
(2.23) ∥ − f(7x) + f(3x) + f(4x) − f(0)∥ ⩽ 6ε, ∥x∥ ⩾ d + 1.

Also, adding (2.20) and (2.23), we arrive at
(2.24) ∥f(−4x) + f(4x) + f(3x) − f(2x) − f(x) − f(0)∥ ⩽ 30ε, ∥x∥ ⩾ 2d + 2.

Putting y = x
2 in (2.2), we have

(2.25) ∥f(3x + 1) − f(2x) − f(2x + 1) + f(x)∥ ⩽ 3ε, ∥x∥ ⩾ 2d + 2.

Now, replacing x by x
2 in (2.22) and combining the resultant to (2.25), we conclude

(2.26)
∥f(3x) − f(4x) − f(4x + 1) + 2f(2x) + f(2x + 1) − f(x) − f(0)∥ ⩽ 6ε, ∥x∥ ⩾ 2d + 2.

It follows from (2.10) and (2.26) that
(2.27) ∥f(3x) + f(−2x) − f(x) − f(0)∥ ⩽ 9ε, ∥x∥ ⩾ 2d + 2.

So, by combining (2.24) and (2.27), we get (2.3).
By substituting 3x − y for x in (2.2), we get the following inequality:

∥f(3x + 3y) + f(3x + 3y + 1) − f(6x) − f(4y) − f(4y + 1) + f(2y)∥ ⩽ 3ε,

for all x, y ∈ A, with min{∥3x − y∥, ∥y∥} ⩾ d + 1. If we put y = −x in the above
inequality, we can rewrite it as:
(2.28) ∥f(0) + f(1) − f(6x) − f(−4x) − f(−4x + 1) + f(−2x)∥ ⩽ 3ε, ∥x∥ ⩾ d + 1.
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Finally, by substituting 2x for x in (2.27) and adding the result to (2.28), we arrive
at inequality (2.4).

Replacing x by −x in (2.10) and then combining the resultant inequality with (2.4),
one obtains
(2.29) ∥f(−4x) − f(−2x + 1) − f(−2x) + f(1)∥ ⩽ 15ε, ∥x∥ ⩾ 2d + 2.

Also, replacing x by x
2 in (2.4) and then combining the resultant inequality with (2.29),

we conclude
(2.30) ∥f(−4x) − f(−2x) + f(x) − f(−x)∥ ⩽ 27ε, ∥x∥ ⩾ 4d + 4.

Substitute 2x for x in (2.27) and then combining the obtained inequality with (2.30),
we obtain the following inequality:
(2.31) ∥f(6x) + f(−2x) − f(x) + f(−x) − f(2x) − f(0)∥ ⩽ 36ε, ∥x∥ ⩾ 4d + 4.

Inequality (2.3) gives us∥∥∥2f(−4x) + 2f(4x) − 2f(2x) − 2f(−2x)
∥∥∥ ⩽ 78ε, ∥x∥ ⩾ 4d + 4.

By (2.3), (2.31) and the above inequality, we conclude
(2.32) ∥f(6x)−2f(2x)−2f(x)+2f(4x)+2f(−4x)−f(0)∥ ⩽ 153ε, ∥x∥ ⩾ 4d+4.

By multiplying (2.24) by 2 and adding the result to (2.32), we get
∥f(6x) − 2f(3x) + f(0)∥ ⩽ 213ε, ∥x∥ ⩾ 4d + 4.

This can be rewritten as inequality (2.5), which is the desired result. □

Now we are ready to prove the main theorem.

Theorem 2.1. Take ε ⩾ 0, d > 0. Let A be a normed algebra (with unit element 1)
and B a Banach space. If a mapping f : A → B satisfies (2.1), then there is a unique
additive mapping φ : A → B such that
(2.33) ∥f(x) − φ(x) − f(0)∥ ⩽ 640ε, x ∈ A.

Proof. By Lemma 2.1, f fulfills (2.5). Then, for all integers n, m with n ⩾ m ⩾ 0, we
have

(2.34)
∥∥∥∥f(2n+1x)

2n+1 − f(2mx)
2m

+
n∑

i=m

f(0)
2i+1

∥∥∥∥ ⩽
n∑

i=m

213ε

2i+1 , ∥x∥ ⩾ 12d + 12.

Therefore, {f(2nx)
2n }n is a Cauchy sequence for all x ∈ A. Define φ : A → B by

φ(x) = limn→+∞
f(2nx)

2n for all x ∈ A. Obviously, φ(2x) = 2φ(x) for all x ∈ A.
Therefore, by (2.3) we infer that φ is odd. So, by (2.4), we conclude

φ(x) = lim
n→+∞

f(2nx + 1)
2n

, x ∈ A.

Hence, it follows from (2.2) that
(2.35) 2φ(x + 4y) + φ(2y) = 2φ(4y) + φ(2x + 2y), x, y ∈ A.
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Since φ(2x) = 2φ(x), (2.35) can be written as
(2.36) φ(2x + 8y) = 3φ(2y) + φ(2x + 2y), x, y ∈ A.

Putting x = −y in (2.36) and using φ(0) = 0, we conclude
(2.37) φ(3y) = 3φ(y), y ∈ A.

Hence, (2.36) and (2.37) yield
(2.38) φ(2x + 8y) = φ(6y) + φ(2x + 2y), x, y ∈ A.

Replacing y by y
6 and x by x

2 − y
6 in (2.38), we deduce that φ is an additive mapping.

By setting m = 0 and letting n approach infinity in (2.34), we arrive at
(2.39) ∥f(x) − φ(x) − f(0)∥ ⩽ 213ε, ∥x∥ ⩾ 12d + 12.

For y ∈ A \ {0} we can choose x ∈ A such that
min{∥x∥, ∥xy∥, ∥x + y∥, ∥x + xy∥} ⩾ 12d + 12.

By (2.39), we have the following inequalities
∥ − f(x + y) + φ(x + y) + f(0)∥ ⩽ 213ε,

∥ − f(xy) + φ(xy) + f(0)∥ ⩽ 213ε,

∥f(x + xy) − φ(x + xy) − f(0)∥ ⩽ 213ε.

Combining the previous inequalities and (2.1), we get
∥f(y) − φ(y) − f(0)∥ ⩽ 640ε.

Since this inequality holds for y = 0, we deduce (2.33) which is what we wanted to
prove. □

As a result, we conclude that if a mapping f satisfies (1.1) on a certain subset
D ⊆ A, then f fulfills (1.1) on the entire A.

In the subsequent results, A denotes a normed algebra with unit element and B is
a normed space.

Corollary 2.1. Suppose that a mapping f : A → B satisfies one of the following
assertions:

(i) f(x + y) + f(xy) − f(x + xy) − f(y) = 0, min{∥x∥, ∥y∥} ⩾ d,
(ii) f(x + y) + f(xy) − f(x + xy) − f(y) = 0, max{∥x∥, ∥y∥} ⩾ d,

(iii) f(x + y) + f(xy) − f(x + xy) − f(y) = 0, ∥x∥ + ∥y∥ ⩾ d,
(iv) f(x + y) + f(xy) − f(x + xy) − f(y) = 0, ∥x∥ ⩾ d,
(v) f(x + y) + f(xy) − f(x + xy) − f(y) = 0, ∥y∥ ⩾ d,

for some constant d > 0. Then, f − f(0) is additive on A.

Proof. Since (ii) − (v) imply (i), we only need to deal with (i). Applying Lemma 2.1
for ε = 0 we deduce

f(2x) = 2f(x) − f(0), ∥x∥ ⩾ 12d + 12.
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By induction on n, one obtains

f(2nx) = 2nf(x) − (2n − 1)f(0), ∥x∥ ⩾ 12d + 12.

This yields the sequence {f(2nx)
2n }n is convergent for all x ∈ A. We define

φ(x) := lim
n→+∞

f(2nx)
2n

, x ∈ A.

By applying some parts of the proof of Theorem 2.1, we deduce that φ is additive
and φ(x) = f(x) − f(0) for all x ∈ A. This ends the proof. □

In the following, we investigate a result that concerns some asymptotic properties
related to Davison mappings.

Corollary 2.2. Suppose that a mapping f : A → B satisfies one of the following
conditions:

(i) limmin{∥x∥,∥y∥}→+∞ [f(x + y) + f(xy) − f(x + xy) − f(y)] = 0,

(ii) limmax{∥x∥,∥y∥}→+∞ [f(x + y) + f(xy) − f(x + xy) − f(y)] = 0,

(iii) lim∥x∥+∥y∥→+∞ [f(x + y) + f(xy) − f(x + xy) − f(y)] = 0,

(iv) lim∥x∥→+∞ supy∈A [f(x + y) + f(xy) − f(x + xy) − f(y)] = 0,

(v) lim∥y∥→+∞ supx∈A [f(x + y) + f(xy) − f(x + xy) − f(y)] = 0.

Then, f − f(0) is additive on A.

Proof. It is clear that (i) is a consequence of (ii) − (v). Therefore, we only consider
(i). Let ε > 0 be any given real number and B̃ be the completion of B. From (i), we
can find dε > 0 such that

∥f(x + y) + f(xy) − f(x + xy) − f(y)∥ < ε, min{∥x∥, ∥y∥} ⩾ dε.

By applying Theorem 2.1 we obtain a constant K > 0 and an additive mapping
φε : A → B̃ that satisfy

∥φε(x) − f(x) + f(0)∥ ⩽ Kε, x ∈ A.

So,

∥f(x + y) − f(x) − f(y) + f(0)∥ ⩽ ∥f(x + y) − φε(x + y) − f(0)∥
+ ∥φε(x) − f(x) + f(0)∥
+ ∥φε(y) − f(y) + f(0)∥ ⩽ 3Kε, x, y ∈ A.

Because ε was chosen arbitrarily, we conclude that f(x + y) = f(x) + f(y) − f(0) for
every x, y ∈ A. This yields that f − f(0) is additive on A. □
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Corollary 2.3. Take δ, ε ⩾ 0 and suppose that p, q < 0 are real numbers and a
mapping f : A → B satisfies

∥f(x + y) + f(xy) − f(x + xy) − f(y)∥ ⩽ ε∥x∥p∥y∥q + δ(∥x∥p + ∥y∥q),
for all x, y ∈ A with min{∥x∥, ∥y∥} ⩾ d, where d > 0 is a constant. Then, f − f(0)
is additive on A.

As a result, we can deduce the slightly surprising result that for any mapping f ,
from a normed algebra A into a normed space B, and for all positive real numbers
r, s > 0 one of the following two conditions must hold true:

(i) supx,y∈A ∥f(x + xy) + f(y) − f(x + y) − f(xy)∥ · ∥x∥r · ∥y∥s = +∞,
(ii) f(x + xy) + f(y) = f(x + y) + f(xy), x, y ∈ A.

Also (ii) is equivalent to
sup

x,y∈A

∥f(x + xy) + f(y) − f(x + y) − f(xy)∥(∥x∥r + ∥y∥s) = +∞.

Corollary 2.4. Take δ, ε > 0 and d > 0. Suppose that F : A → B is a mapping such
that F (x0, y0) ̸= 0 for some x0, y0 ∈ A with min{∥x0∥, ∥y0∥} ⩾ d and there are real
numbers p, q < 0 such that

∥F (x, y)∥ ⩽ ε∥x∥p∥y∥q + δ(∥x∥p + ∥y∥q), min{∥x∥, ∥y∥} ⩾ d.

Then, there does not exist any mapping f : A → B satisfies
(2.40) f(x + y) + f(xy) = f(x + xy) + f(y) + F (x, y).

Proof. Suppose that f : A → B is a solution of (2.40). So,
∥f(x + y) + f(xy) − f(x + xy) − f(y)∥ ⩽ ε∥x∥p∥y∥q + δ(∥x∥p + ∥y∥q),

where min{∥x∥, ∥y∥} ⩾ d. Consequently, based on the previous lemma, it can be
concluded that f − f(0) is additive on A, which implies that F (x0, y0) = 0. This
contradicts our initial assumption. □

3. Conclusions

The Hyers-Ulam stability of the Davison functional equation has been investigated
in previous studies [5–8]. In all of them, a mapping f : A → B satisfies the inequality

∥f(x + y) + f(xy) − f(x + xy) − f(y)∥ ⩽ ε,

on the whole space A. Studying the stability problems of the Davison functional equa-
tion on a restricted domain will also be an intriguing area of research. In more specific
terms, we investigated whether a true additive mapping exists close to a mapping
f : A → B that fulfills the aforementioned inequality only in the restricted domain
D1 = {(x, y) ∈ A × A : min{∥x∥, ∥y∥} ⩾ d}. Consequently, we will be able to derive
certain asymptotic behaviors of Davison mappings. Of course, it should be noted
that this issue has been investigated on the domain D2 = {(x, y) ∈ A × A : ∥x∥ ⩾ d},
which contains D1. The value derived from the estimate (2.33) is relatively large. It
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is anticipated that smaller values may be attainable through an alternative proof
method. Therefore, an unresolved question arises: does the constant in inequality
(2.33) represent the optimal estimate?
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