ON THE ASYMPTOTIC BEHAVIORS ASSOCIATED WITH THE DAVISON FUNCTIONAL EQUATION

MOHAMMAD AMIN TAREEGHEE ${ }^{1}$, ABBAS NAJATI ${ }^{1 *}$, AND JAE-HYEONG BAE ${ }^{2}$

Abstract. We prove the Hyers-Ulam stability of the Davison functional equation

$$
f(x+x y)+f(y)=f(x+y)+f(x y)
$$

for a class of mappings from a normed algebra \mathcal{A} (with a unit element 1) into a Banach space \mathcal{B}, on the restricted domain $\{(x, y) \in \mathcal{A} \times \mathcal{A}: \min \{\|x\|,\|y\|\} \geqslant d\}$, where $d>0$ is a constant. As a result, we obtain some asymptotic behaviors of Davison mappings. In addition, we obtain the corollary that for every mapping g from a normed algebra \mathcal{A} into a normed space \mathcal{B}, and for all positive real numbers r, s, one of the following two conditions must be valid:

$$
\sup _{x, y \in \mathcal{A}}\|g(x+y)+g(x y)-g(x+x y)-g(y)\| \cdot\|x\|^{r} \cdot\|y\|^{s}=+\infty
$$

or

$$
g(x+y)+g(x y)=g(x+x y)+g(y) .
$$

1. Introduction and preliminaries

The functional equation

$$
\begin{equation*}
f(x+x y)+f(y)=f(x+y)+f(x y), \tag{1.1}
\end{equation*}
$$

was proposed by Davison [2] at the 17th International Symposium on Functional Equations. He inquired about its general solution for mappings from a commutative field \mathbb{F} to another commutative field \mathbb{K}. At the same symposium, Benz [1] provided the general continuous solution to the functional equation (1.1) when f is an unknown mapping from the real numbers to the real numbers. In 2000, Girgensohn and Lajkó [4] characterized the general solution of (1.1) without requiring any regular condition.

[^0]They showed that if $f: \mathbb{R} \rightarrow \mathbb{R}$ is a solution of (1.1), then f can be expressed as $f(x)=A(x)+b$, where $A: \mathbb{R} \rightarrow \mathbb{R}$ is an additive mapping and $b \in \mathbb{R}$ is any constant. Furthermore, they derived the general solution of the pexiderized version of (1.1). In a separate work, Davison [3] determined the solution of (1.1) when the domain of the unknown mapping f is the ring of integers \mathbb{Z} or the set of natural numbers \mathbb{N}. Najati and Sahoo [9] introduced two pexiderized functional equations of Davison type and obtained their general solutions.

Jung and Sahoo [6] were the first to study the Hyers-Ulam stability of the Davison functional equation (1.1). The pexiderized functional equation

$$
f(x y)+f(x+y)=g(x y+x)+g(y)
$$

was investigated for the Hyers-Ulam stability in [5]. Studying the Hyers-Ulam stability of Davison functional equation (1.1) and its pexiderized version on restricted domains would be interesting topics. Let \mathcal{A} be a normed algebra and consider

$$
\begin{aligned}
D_{1} & :=\{(x, y) \in \mathcal{A} \times \mathcal{A}: \min \{\|x\|,\|y\|\} \geqslant d\}, \\
D_{2} & :=\{(x, y) \in \mathcal{A} \times \mathcal{A}:\|x\| \geqslant d\}, \\
D_{3} & :=\{(x, y) \in \mathcal{A} \times \mathcal{A}:\|y\| \geqslant d\}, \\
D_{4} & :=\{(x, y) \in \mathcal{A} \times \mathcal{A}:\|x\|+\|y\| \geqslant d\}, \\
D_{5} & :=\{(x, y) \in \mathcal{A} \times \mathcal{A}: \max \{\|x\|,\|y\|\} \geqslant d\},
\end{aligned}
$$

where $d>0$ is a real constant. It is clear that $D_{1} \subseteq D_{j}$ for $2 \leqslant j \leqslant 5$. The primary objective of this current paper is to investigate the Hyers-Ulam stability of (1.1) on the unbounded restricted domain D_{1}. As a consequence, we obtain a hyperstability result for the Davison functional equation (1.1). This leads us to deduce the slightly surprising result that for any mapping f, from a normed algebra \mathcal{A} into a normed space \mathcal{B}, and for all positive real numbers $r, s>0$ one of the following two conditions must hold true:
(i) $\sup _{x, y \in \mathcal{A}}\|f(x+x y)+f(y)-f(x+y)-f(x y)\| \cdot\|x\|^{r} \cdot\|y\|^{s}=+\infty$,
(ii) $f(x+x y)+f(y)=f(x+y)+f(x y), x, y \in \mathcal{A}$.

Also (ii) is equivalent to

$$
\sup _{x, y \in \mathcal{A}}\|f(x+x y)+f(y)-f(x+y)-f(x y)\|\left(\|x\|^{r}+\|y\|^{s}\right)=+\infty .
$$

2. Stability and Hyperstability

The following lemma plays a key role in proving the main theorem.
Lemma 2.1. Let $\varepsilon \geqslant 0$ and $d>0$. Suppose that $f: \mathcal{A} \rightarrow \mathcal{B}$ is a mapping from a normed algebra \mathcal{A} (with unit element 1) to a normed space \mathcal{B} satisfying

$$
\begin{equation*}
\|f(x+y)+f(x y)-f(x+x y)-f(y)\| \leqslant \varepsilon, \quad \min \{\|x\|,\|y\|\} \geqslant d \tag{2.1}
\end{equation*}
$$

Then,

$$
\begin{equation*}
\|f(x+4 y)+f(x+4 y+1)-f(4 y)-f(4 y+1)-f(2 x+2 y)+f(2 y)\| \leqslant 3 \varepsilon \tag{2.2}
\end{equation*}
$$

for all $x, y \in \mathcal{A}$, with $\min \{\|x\|,\|y\|\} \geqslant d+1$. Moreover,

$$
\begin{align*}
\|f(-2 x)+f(2 x)-f(x)-f(-x)\| & \leqslant 39 \varepsilon, & \|x\| \geqslant 4 d+4 \tag{2.3}\\
\|-f(-4 x+1)-f(2 x)+f(-2 x)+f(1)\| & \leqslant 12 \varepsilon, & \|x\| \geqslant 2 d+2 \tag{2.4}\\
\|f(2 x)-2 f(x)+f(0)\| & \leqslant 213 \varepsilon, & \|x\| \geqslant 12 d+12 . \tag{2.5}
\end{align*}
$$

Proof. Replace y by $y+1$ in (2.1) to obtain
(2.6) $\|f(x+y+1)+f(x y+x)-f(2 x+x y)-f(y+1)\| \leqslant \varepsilon, \quad \min \{\|x\|,\|y\|\} \geqslant d+1$.

Adding (2.6) and (2.1), one obtains

$$
\begin{equation*}
\|f(x+y+1)+f(x+y)+f(x y)-f(2 x+x y)-f(y)-f(y+1)\| \leqslant 2 \varepsilon \tag{2.7}
\end{equation*}
$$

for all $x, y \in \mathcal{A}$, with $\min \{\|x\|,\|y\|\} \geqslant d+1$. By substituting $4 y$ for y in (2.7), we obtain
(2.8) $\|f(x+4 y+1)+f(x+4 y)+f(4 x y)-f(2 x+4 x y)-f(4 y)-f(4 y+1)\| \leqslant 2 \varepsilon$,
for all $x, y \in \mathcal{A}$, with $\min \{\|x\|,\|y\|\} \geqslant d+1$. Replacing x by $2 x$ and y by $2 y$ in (2.1), one obtains
(2.9) $\quad\|f(2 x+2 y)+f(4 x y)-f(2 x+4 x y)-f(2 y)\| \leqslant \varepsilon, \quad \min \{\|x\|,\|y\|\} \geqslant d$.

Using (2.8) and (2.9), we get (2.2).
By substituting $-2 x$ for x and x for y in (2.2), we obtain
(2.10) $\|2 f(2 x)+f(2 x+1)-f(4 x)-f(4 x+1)-f(-2 x)\| \leqslant 3 \varepsilon, \quad\|x\| \geqslant d+1$.

Also, replacing x by $2 x$ and y by $\frac{x}{2}$ in (2.2), we get
(2.11) $\|f(4 x)+f(4 x+1)-f(2 x)-f(2 x+1)-f(5 x)+f(x)\| \leqslant 3 \varepsilon, \quad\|x\| \geqslant 2 d+2$.

Adding (2.10) and (2.11), we obtain

$$
\begin{equation*}
\|f(2 x)-f(-2 x)-f(5 x)+f(x)\| \leqslant 6 \varepsilon, \quad\|x\| \geqslant 2 d+2 \tag{2.12}
\end{equation*}
$$

By substituting $-3 x$ for x and $\frac{x}{2}$ for y in (2.2), we have
(2.13) $\|f(-x)+f(-x+1)-f(2 x)-f(2 x+1)-f(-5 x)+f(x)\| \leqslant 3 \varepsilon, \quad\|x\| \geqslant 2 d+2$.

Add (2.10) and (2.13), to get

$$
\begin{align*}
& \| f(2 x)-f(4 x)-f(4 x+1)-f(-2 x)+f(-x) \tag{2.14}\\
& +f(-x+1)-f(-5 x)+f(x)\|\leqslant 6 \varepsilon, \quad\| x \| \geqslant 2 d+2 \tag{2.15}
\end{align*}
$$

Replacing x by $3 x$ and y by $-x$ in (2.2), we have
$\|f(-x)+f(-x+1)-f(-4 x)-f(-4 x+1)-f(4 x)+f(-2 x)\| \leqslant 3 \varepsilon, \quad\|x\| \geqslant d+1$.
By (2.14) and (2.15), we conclude

$$
\begin{align*}
& \| f(-4 x)+f(-4 x+1)-2 f(-2 x)+f(2 x) \tag{2.16}\\
& -f(4 x+1)-f(-5 x)+f(x)\|\leqslant 9 \varepsilon, \quad\| x \| \geqslant 2 d+2 .
\end{align*}
$$

By substituting $-x$ for x in equation (2.10) and then combining the result with inequalities (2.10) and (2.16), we arrive at

$$
\begin{align*}
& \| f(-2 x)-2 f(2 x)-f(-5 x)+f(x)+f(-2 x+1) \tag{2.17}\\
& -f(2 x+1)+f(4 x)\|\leqslant 15 \varepsilon, \quad\| x \| \geqslant 2 d+2 .
\end{align*}
$$

If we substitute $-4 x$ for x and $\frac{x}{2}$ for y in (2.2), we can obtain
$\|f(-2 x)+f(-2 x+1)-f(2 x)-f(2 x+1)-f(-7 x)+f(x)\| \leqslant 3 \varepsilon, \quad\|x\| \geqslant 2 d+2$.
It can be inferred from equations (2.17) and (2.18) that

$$
\begin{equation*}
\|-f(2 x)-f(-5 x)+f(4 x)+f(-7 x)\| \leqslant 18 \varepsilon, \quad\|x\| \geqslant 2 d+2 \tag{2.19}
\end{equation*}
$$

Replacing x by $-x$ in (2.19) and adding the resultant to (2.12), we obtain

$$
\begin{equation*}
\|f(7 x)+f(-4 x)-f(2 x)-f(x)\| \leqslant 24 \varepsilon, \quad\|x\| \geqslant 2 d+2 \tag{2.20}
\end{equation*}
$$

Replacing x by $2 x$ and y by $\frac{3 x}{2}$ in (2.2), we have

$$
\begin{equation*}
\|f(8 x)+f(8 x+1)-f(6 x)-f(6 x+1)-f(7 x)+f(3 x)\| \leqslant 3 \varepsilon, \quad\|x\| \geqslant d+1 . \tag{2.21}
\end{equation*}
$$

Also, replacing x by $-2 x$ and y by $2 x$ in (2.2), we get
(2.22) $\|f(6 x)+f(6 x+1)-f(8 x)-f(8 x+1)-f(0)+f(4 x)\| \leqslant 3 \varepsilon, \quad\|x\| \geqslant d+1$.

Add (2.21) and (2.22), to obtain

$$
\begin{equation*}
\|-f(7 x)+f(3 x)+f(4 x)-f(0)\| \leqslant 6 \varepsilon, \quad\|x\| \geqslant d+1 . \tag{2.23}
\end{equation*}
$$

Also, adding (2.20) and (2.23), we arrive at

$$
\begin{equation*}
\|f(-4 x)+f(4 x)+f(3 x)-f(2 x)-f(x)-f(0)\| \leqslant 30 \varepsilon, \quad\|x\| \geqslant 2 d+2 \tag{2.24}
\end{equation*}
$$

Putting $y=\frac{x}{2}$ in (2.2), we have

$$
\begin{equation*}
\|f(3 x+1)-f(2 x)-f(2 x+1)+f(x)\| \leqslant 3 \varepsilon, \quad\|x\| \geqslant 2 d+2 \tag{2.25}
\end{equation*}
$$

Now, replacing x by $\frac{x}{2}$ in (2.22) and combining the resultant to (2.25), we conclude (2.26)
$\|f(3 x)-f(4 x)-f(4 x+1)+2 f(2 x)+f(2 x+1)-f(x)-f(0)\| \leqslant 6 \varepsilon, \quad\|x\| \geqslant 2 d+2$.
It follows from (2.10) and (2.26) that

$$
\begin{equation*}
\|f(3 x)+f(-2 x)-f(x)-f(0)\| \leqslant 9 \varepsilon, \quad\|x\| \geqslant 2 d+2 \tag{2.27}
\end{equation*}
$$

So, by combining (2.24) and (2.27), we get (2.3).
By substituting $3 x-y$ for x in (2.2), we get the following inequality:

$$
\|f(3 x+3 y)+f(3 x+3 y+1)-f(6 x)-f(4 y)-f(4 y+1)+f(2 y)\| \leqslant 3 \varepsilon
$$

for all $x, y \in \mathcal{A}$, with $\min \{\|3 x-y\|,\|y\|\} \geqslant d+1$. If we put $y=-x$ in the above inequality, we can rewrite it as:

$$
\begin{equation*}
\|f(0)+f(1)-f(6 x)-f(-4 x)-f(-4 x+1)+f(-2 x)\| \leqslant 3 \varepsilon, \quad\|x\| \geqslant d+1 \tag{2.28}
\end{equation*}
$$

Finally, by substituting $2 x$ for x in (2.27) and adding the result to (2.28), we arrive at inequality (2.4).

Replacing x by $-x$ in (2.10) and then combining the resultant inequality with (2.4), one obtains

$$
\begin{equation*}
\|f(-4 x)-f(-2 x+1)-f(-2 x)+f(1)\| \leqslant 15 \varepsilon, \quad\|x\| \geqslant 2 d+2 \tag{2.29}
\end{equation*}
$$

Also, replacing x by $\frac{x}{2}$ in (2.4) and then combining the resultant inequality with (2.29), we conclude

$$
\begin{equation*}
\|f(-4 x)-f(-2 x)+f(x)-f(-x)\| \leqslant 27 \varepsilon, \quad\|x\| \geqslant 4 d+4 \tag{2.30}
\end{equation*}
$$

Substitute $2 x$ for x in (2.27) and then combining the obtained inequality with (2.30), we obtain the following inequality:

$$
\begin{equation*}
\|f(6 x)+f(-2 x)-f(x)+f(-x)-f(2 x)-f(0)\| \leqslant 36 \varepsilon, \quad\|x\| \geqslant 4 d+4 \tag{2.31}
\end{equation*}
$$

Inequality (2.3) gives us

$$
\|2 f(-4 x)+2 f(4 x)-2 f(2 x)-2 f(-2 x)\| \leqslant 78 \varepsilon, \quad\|x\| \geqslant 4 d+4
$$

By (2.3), (2.31) and the above inequality, we conclude
(2.32) $\|f(6 x)-2 f(2 x)-2 f(x)+2 f(4 x)+2 f(-4 x)-f(0)\| \leqslant 153 \varepsilon, \quad\|x\| \geqslant 4 d+4$.

By multiplying (2.24) by 2 and adding the result to (2.32), we get

$$
\|f(6 x)-2 f(3 x)+f(0)\| \leqslant 213 \varepsilon, \quad\|x\| \geqslant 4 d+4
$$

This can be rewritten as inequality (2.5), which is the desired result.
Now we are ready to prove the main theorem.
Theorem 2.1. Take $\varepsilon \geqslant 0, d>0$. Let \mathcal{A} be a normed algebra (with unit element 1) and \mathcal{B} a Banach space. If a mapping $f: \mathcal{A} \rightarrow \mathcal{B}$ satisfies (2.1), then there is a unique additive mapping $\varphi: \mathcal{A} \rightarrow \mathcal{B}$ such that

$$
\begin{equation*}
\|f(x)-\varphi(x)-f(0)\| \leqslant 640 \varepsilon, \quad x \in \mathcal{A} . \tag{2.33}
\end{equation*}
$$

Proof. By Lemma 2.1, f fulfills (2.5). Then, for all integers n, m with $n \geqslant m \geqslant 0$, we have

$$
\begin{equation*}
\left\|\frac{f\left(2^{n+1} x\right)}{2^{n+1}}-\frac{f\left(2^{m} x\right)}{2^{m}}+\sum_{i=m}^{n} \frac{f(0)}{2^{i+1}}\right\| \leqslant \sum_{i=m}^{n} \frac{213 \varepsilon}{2^{i+1}}, \quad\|x\| \geqslant 12 d+12 . \tag{2.34}
\end{equation*}
$$

Therefore, $\left\{\frac{f\left(2^{n} x\right)}{2^{n}}\right\}_{n}$ is a Cauchy sequence for all $x \in \mathcal{A}$. Define $\varphi: \mathcal{A} \rightarrow \mathcal{B}$ by $\varphi(x)=\lim _{n \rightarrow+\infty} \frac{f\left(2^{n} x\right)}{2^{n}}$ for all $x \in \mathcal{A}$. Obviously, $\varphi(2 x)=2 \varphi(x)$ for all $x \in \mathcal{A}$. Therefore, by (2.3) we infer that φ is odd. So, by (2.4), we conclude

$$
\varphi(x)=\lim _{n \rightarrow+\infty} \frac{f\left(2^{n} x+1\right)}{2^{n}}, \quad x \in \mathcal{A} .
$$

Hence, it follows from (2.2) that

$$
\begin{equation*}
2 \varphi(x+4 y)+\varphi(2 y)=2 \varphi(4 y)+\varphi(2 x+2 y), \quad x, y \in \mathcal{A} \tag{2.35}
\end{equation*}
$$

Since $\varphi(2 x)=2 \varphi(x),(2.35)$ can be written as

$$
\begin{equation*}
\varphi(2 x+8 y)=3 \varphi(2 y)+\varphi(2 x+2 y), \quad x, y \in \mathcal{A} . \tag{2.36}
\end{equation*}
$$

Putting $x=-y$ in (2.36) and using $\varphi(0)=0$, we conclude

$$
\begin{equation*}
\varphi(3 y)=3 \varphi(y), \quad y \in \mathcal{A} \tag{2.37}
\end{equation*}
$$

Hence, (2.36) and (2.37) yield

$$
\begin{equation*}
\varphi(2 x+8 y)=\varphi(6 y)+\varphi(2 x+2 y), \quad x, y \in \mathcal{A} . \tag{2.38}
\end{equation*}
$$

Replacing y by $\frac{y}{6}$ and x by $\frac{x}{2}-\frac{y}{6}$ in (2.38), we deduce that φ is an additive mapping.
By setting $m=0$ and letting n approach infinity in (2.34), we arrive at

$$
\begin{equation*}
\|f(x)-\varphi(x)-f(0)\| \leqslant 213 \varepsilon, \quad\|x\| \geqslant 12 d+12 \tag{2.39}
\end{equation*}
$$

For $y \in \mathcal{A} \backslash\{0\}$ we can choose $x \in \mathcal{A}$ such that

$$
\min \{\|x\|,\|x y\|,\|x+y\|,\|x+x y\|\} \geqslant 12 d+12 .
$$

By (2.39), we have the following inequalities

$$
\begin{aligned}
\|-f(x+y)+\varphi(x+y)+f(0)\| & \leqslant 213 \varepsilon \\
\|-f(x y)+\varphi(x y)+f(0)\| & \leqslant 213 \varepsilon \\
\|f(x+x y)-\varphi(x+x y)-f(0)\| & \leqslant 213 \varepsilon
\end{aligned}
$$

Combining the previous inequalities and (2.1), we get

$$
\|f(y)-\varphi(y)-f(0)\| \leqslant 640 \varepsilon
$$

Since this inequality holds for $y=0$, we deduce (2.33) which is what we wanted to prove.

As a result, we conclude that if a mapping f satisfies (1.1) on a certain subset $D \subseteq \mathcal{A}$, then f fulfills (1.1) on the entire \mathcal{A}.

In the subsequent results, \mathcal{A} denotes a normed algebra with unit element and \mathcal{B} is a normed space.

Corollary 2.1. Suppose that a mapping $f: \mathcal{A} \rightarrow \mathcal{B}$ satisfies one of the following assertions:
(i) $f(x+y)+f(x y)-f(x+x y)-f(y)=0, \min \{\|x\|,\|y\|\} \geqslant d$,
(ii) $f(x+y)+f(x y)-f(x+x y)-f(y)=0, \max \{\|x\|,\|y\|\} \geqslant d$,
(iii) $f(x+y)+f(x y)-f(x+x y)-f(y)=0,\|x\|+\|y\| \geqslant d$,
(iv) $f(x+y)+f(x y)-f(x+x y)-f(y)=0,\|x\| \geqslant d$,
(v) $f(x+y)+f(x y)-f(x+x y)-f(y)=0,\|y\| \geqslant d$,
for some constant $d>0$. Then, $f-f(0)$ is additive on \mathcal{A}.
Proof. Since $(i i)-(v)$ imply (i), we only need to deal with (i). Applying Lemma 2.1 for $\varepsilon=0$ we deduce

$$
f(2 x)=2 f(x)-f(0), \quad\|x\| \geqslant 12 d+12 .
$$

By induction on n, one obtains

$$
f\left(2^{n} x\right)=2^{n} f(x)-\left(2^{n}-1\right) f(0), \quad\|x\| \geqslant 12 d+12 .
$$

This yields the sequence $\left\{\frac{f\left(2^{n} x\right)}{2^{n}}\right\}_{n}$ is convergent for all $x \in \mathcal{A}$. We define

$$
\varphi(x):=\lim _{n \rightarrow+\infty} \frac{f\left(2^{n} x\right)}{2^{n}}, \quad x \in \mathcal{A}
$$

By applying some parts of the proof of Theorem 2.1, we deduce that φ is additive and $\varphi(x)=f(x)-f(0)$ for all $x \in \mathcal{A}$. This ends the proof.

In the following, we investigate a result that concerns some asymptotic properties related to Davison mappings.

Corollary 2.2. Suppose that a mapping $f: \mathcal{A} \rightarrow \mathcal{B}$ satisfies one of the following conditions:
(i) $\lim _{\min \{\|x\|,\|y\|\} \rightarrow+\infty}[f(x+y)+f(x y)-f(x+x y)-f(y)]=0$,
(ii) $\lim _{\max \{\|x\|\| \| y \|\} \rightarrow+\infty}[f(x+y)+f(x y)-f(x+x y)-f(y)]=0$,
(iii) $\lim _{\|x\|+\|y\| \rightarrow+\infty}[f(x+y)+f(x y)-f(x+x y)-f(y)]=0$,
(iv) $\lim _{\|x\| \rightarrow+\infty} \sup _{y \in \mathcal{A}}[f(x+y)+f(x y)-f(x+x y)-f(y)]=0$,
(v) $\lim _{\|y\| \rightarrow+\infty} \sup _{x \in \mathcal{A}}[f(x+y)+f(x y)-f(x+x y)-f(y)]=0$.

Then, $f-f(0)$ is additive on \mathcal{A}.
Proof. It is clear that (i) is a consequence of $(i i)-(v)$. Therefore, we only consider (i). Let $\varepsilon>0$ be any given real number and $\widetilde{\mathcal{B}}$ be the completion of \mathcal{B}. From (i), we can find $d_{\varepsilon}>0$ such that

$$
\|f(x+y)+f(x y)-f(x+x y)-f(y)\|<\varepsilon, \quad \min \{\|x\|,\|y\|\} \geqslant d_{\varepsilon}
$$

By applying Theorem 2.1 we obtain a constant $K>0$ and an additive mapping $\varphi_{\varepsilon}: \mathcal{A} \rightarrow \widetilde{\mathcal{B}}$ that satisfy

$$
\left\|\varphi_{\varepsilon}(x)-f(x)+f(0)\right\| \leqslant K \varepsilon, \quad x \in \mathcal{A} .
$$

So,

$$
\begin{aligned}
\|f(x+y)-f(x)-f(y)+f(0)\| \leqslant & \left\|f(x+y)-\varphi_{\varepsilon}(x+y)-f(0)\right\| \\
& +\left\|\varphi_{\varepsilon}(x)-f(x)+f(0)\right\| \\
& +\left\|\varphi_{\varepsilon}(y)-f(y)+f(0)\right\| \leqslant 3 K \varepsilon, \quad x, y \in \mathcal{A} .
\end{aligned}
$$

Because ε was chosen arbitrarily, we conclude that $f(x+y)=f(x)+f(y)-f(0)$ for every $x, y \in \mathcal{A}$. This yields that $f-f(0)$ is additive on \mathcal{A}.

Corollary 2.3. Take $\delta, \varepsilon \geqslant 0$ and suppose that $p, q<0$ are real numbers and a mapping $f: \mathcal{A} \rightarrow \mathcal{B}$ satisfies

$$
\|f(x+y)+f(x y)-f(x+x y)-f(y)\| \leqslant \varepsilon\|x\|^{p}\|y\|^{q}+\delta\left(\|x\|^{p}+\|y\|^{q}\right)
$$

for all $x, y \in \mathcal{A}$ with $\min \{\|x\|,\|y\|\} \geqslant d$, where $d>0$ is a constant. Then, $f-f(0)$ is additive on \mathcal{A}.

As a result, we can deduce the slightly surprising result that for any mapping f, from a normed algebra \mathcal{A} into a normed space \mathcal{B}, and for all positive real numbers $r, s>0$ one of the following two conditions must hold true:
(i) $\sup _{x, y \in \mathcal{A}}\|f(x+x y)+f(y)-f(x+y)-f(x y)\| \cdot\|x\|^{r} \cdot\|y\|^{s}=+\infty$,
(ii) $f(x+x y)+f(y)=f(x+y)+f(x y), x, y \in \mathcal{A}$.

Also (ii) is equivalent to

$$
\sup _{x, y \in \mathcal{A}}\|f(x+x y)+f(y)-f(x+y)-f(x y)\|\left(\|x\|^{r}+\|y\|^{s}\right)=+\infty
$$

Corollary 2.4. Take $\delta, \varepsilon>0$ and $d>0$. Suppose that $F: \mathcal{A} \rightarrow \mathcal{B}$ is a mapping such that $F\left(x_{0}, y_{0}\right) \neq 0$ for some $x_{0}, y_{0} \in \mathcal{A}$ with $\min \left\{\left\|x_{0}\right\|,\left\|y_{0}\right\|\right\} \geqslant d$ and there are real numbers $p, q<0$ such that

$$
\|F(x, y)\| \leqslant \varepsilon\|x\|^{p}\|y\|^{q}+\delta\left(\|x\|^{p}+\|y\|^{q}\right), \quad \min \{\|x\|,\|y\|\} \geqslant d .
$$

Then, there does not exist any mapping $f: \mathcal{A} \rightarrow \mathcal{B}$ satisfies

$$
\begin{equation*}
f(x+y)+f(x y)=f(x+x y)+f(y)+F(x, y) \tag{2.40}
\end{equation*}
$$

Proof. Suppose that $f: \mathcal{A} \rightarrow \mathcal{B}$ is a solution of (2.40). So,

$$
\|f(x+y)+f(x y)-f(x+x y)-f(y)\| \leqslant \varepsilon\|x\|^{p}\|y\|^{q}+\delta\left(\|x\|^{p}+\|y\|^{q}\right)
$$

where $\min \{\|x\|,\|y\|\} \geqslant d$. Consequently, based on the previous lemma, it can be concluded that $f-f(0)$ is additive on \mathcal{A}, which implies that $F\left(x_{0}, y_{0}\right)=0$. This contradicts our initial assumption.

3. Conclusions

The Hyers-Ulam stability of the Davison functional equation has been investigated in previous studies [5-8]. In all of them, a mapping $f: \mathcal{A} \rightarrow \mathcal{B}$ satisfies the inequality

$$
\|f(x+y)+f(x y)-f(x+x y)-f(y)\| \leqslant \varepsilon
$$

on the whole space \mathcal{A}. Studying the stability problems of the Davison functional equation on a restricted domain will also be an intriguing area of research. In more specific terms, we investigated whether a true additive mapping exists close to a mapping $f: \mathcal{A} \rightarrow \mathcal{B}$ that fulfills the aforementioned inequality only in the restricted domain $D_{1}=\{(x, y) \in \mathcal{A} \times \mathcal{A}: \min \{\|x\|,\|y\|\} \geqslant d\}$. Consequently, we will be able to derive certain asymptotic behaviors of Davison mappings. Of course, it should be noted that this issue has been investigated on the domain $D_{2}=\{(x, y) \in \mathcal{A} \times \mathcal{A}:\|x\| \geqslant d\}$, which contains D_{1}. The value derived from the estimate (2.33) is relatively large. It
is anticipated that smaller values may be attainable through an alternative proof method. Therefore, an unresolved question arises: does the constant in inequality (2.33) represent the optimal estimate?

References

[1] W. Benz, 191 R1. Remark, Aequationes Math. 20 (1980), 307.
[2] T. M. K. Davison, 191R1. Probem, Aequationes Math. 20 (1980), 306.
[3] T. M. K. Davison, A Hosszú-like functional equation, Publ. Math. Debrecen 58 (2001), 505-513. https://doi.org/10.5486/PMD.2001.2326
[4] R. Girgensohn and K. Lajkó, A functional equation of Davison and its generalization, Aequationes Math. 60(3) (2000), 219-224. https://doi.org/10.1007/s000100050148
[5] K.-W. Jun, S.-M. Jung and Y.-H. Lee, A generalization of the Hyers-Ulam-Rassias stability of a functional equation of Davison, J. Korean Math. Soc. 41(3) (2004), 501-511. https://doi.org/ 10.4134/JKMS.2004.41.3.501
[6] S.-M. Jung and P. K. Sahoo, Hyers-Ulam-Rassias stability of an equation of Davison, J. Math. Anal. Appl. 238(1) (1999), 297-304. https://doi.org/10.1006/jmaa.1999.6545
[7] S.-M. Jung and P. K. Sahoo, On the Hyers-Ulam stability of a functional equation of Davison, Kyungpook Math. J. 40(1) (2000), 87-92.
[8] S.-M. Jung and P. K. Sahoo, Hyers-Ulam-Rassias stability of a functional equation of Davison in rings, Nonlinear Funct. Anal. Appl. 11(5) (2006), 891-896.
[9] A. Najati and P. K. Sahoo, On two pexiderized functional equations of Davison type, Kragujevac J. Math. 47 (4) (2023), 539-544. https://doi.org/10.46793/KgJMat2304.539N
${ }^{1}$ Department of Mathematics, Faculty of Sciences, University of Mohaghegh Ardabili, Ardabil, Iran.
Email address: mohammadamint@uma.ac.ir
ORCID iD: https://orcid.org/0009-0000-8028-1495
Email address: a.nejati@yahoo.com
ORCID iD: https://orcid.org/0000-0001-7563-0507
*Corresponding Author
${ }^{2}$ Humanitas College,
Kyung Hee University,
Yongin 17104, Korea
Email address: jhbae@khu.ac.kr
ORCID iD: https://orcid.org/0000-0001-9513-3743

[^0]: Key words and phrases. Hyers-Ulam stability, Davison functional equation, asymptotic behavior. 2020 Mathematics Subject Classification. Primary: 39B82. Secondary: 39B62.
 DOI
 Received: December 21, 2023.
 Accepted: April 24, 2024.

