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PSEUDO COMMUTATIVE DOUBLE BASIC ALGEBRAS

SHOKOOFEH GHORBANI1

Abstract. In this paper, we study the concept of pseudo commutative double basic
algebras and investigate some related results. We prove that there are relations
among pseudo commutative double basic algebras and other logical algebras such
as pseudo hoops, pseudo BCK-algebras and double MV-algebras. We obtain a close
relation between pseudo commutative double basic algebras and pseudo residuted
l-groupoids. Then we investigate the properties of the boolean center of pseudo
commutative double basic algebras and we use the boolean elements to define and
study algebras on subintervals of pseudo commutative double basic algebras.

1. Introduction

C. C. Chang introduced the concept of MV-algebra in 1958 [16] to prove the
completeness theorem of infinite valued Łukasiewicz propositional calculus. Basic
algebras were introduced by I. Chajda et al. as a generalization of MV-algebras and
orthomodular lattices, see [8,10] and [11]. They are very useful in non-classical logics
including the logic of quantum mechanics. Every basic algebra is in fact a bounded
lattice with the so-called section antitone involutions.

I. Chajda introduced the concept of double basic algebra in 2009 [12] as a gen-
eralization of basic algebra. Double basic algebras are determined by two binary,
two unary and a nullary operation satisfying similar axioms to those defining basic
algebras. Hence the class of these algebras forms a variety. He proved that there
exists a one-to-one correspondence between the variety of double basic algebras and
the class of lattices with section antitone bijections. Also, he obtained the relation
between double MV-algebras and double basic algebras.
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residuted l-groupoid, boolean element.
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The concept of interval algebra was introduced in [9] for MV-algebras. Chajda and
Kuhr extended this concept also for double basic algebras in [12]. In the case of a
double basic algebra, they endowed the subinterval [a, 1] with the structure of double
basic algebra for all elements a in a double basic algebra.

In this paper, we will obtain some properties of (pseudo commutative) double basic
algebras. We find under what conditions pseudo commutative double basic algebras
are double MV-algebras. We will study the relation between pseudo commutative
double basic algebras and pseudo residuated l-gropoids. Finally, we will obtain some
properties of boolean elements of a pseudo commutative double basic algebra and we
will prove that a boolean center is subalgebra of a pseudo commutative double basic
algebra. We will prove that, if a, b are boolean elements of a pseudo commutative
double basic algebra and a ≤ b, then the subintervals of the form [0, a] and [a, b] can
also be endowed with a double basic algebra structure.

2. Preliminaries

In this section, we recall some definitions and theorems which will be needed in
this paper.
Definition 2.1 ([8,10]). A basic algebra is an algebra (A,⊕,¬, 0, 1) of type (2, 1, 0, 0)
satisfying the following identities:

(BA1) x⊕ 0 = x;
(BA2) ¬¬x = x;
(BA3) ¬(¬x⊕ y)⊕ y = ¬(¬y ⊕ x)⊕ x;
(BA4) ¬(¬(¬(x⊕ y)⊕ y)⊕ z)⊕ (x⊕ z) = 1.
Orthomodular lattices and MV-algebras are examples of basic algebras. It is obvious

that a basic algebra is an MV-algebra if and only if the operation ⊕ is associative
and commutative. It was recently shown that a basic algebra is an MV-algebra if and
only if it is associative (see [15]).
Definition 2.2 ([12]). A double basic algebra is an algebra A = (A,⊕,�,− ,∼ , 0, 1)
of type (2, 2, 1, 1, 0, 0) satisfying the following identities:

(P1) x⊕ 0 = x, x� 0 = x;
(P2) (x−)∼ = x, (x∼)− = x;
(P3) (x∼ ⊕ y)− � y = (y∼ ⊕ x)− � x = (x− � y)∼ ⊕ y = (y− � x)∼ ⊕ x;
(P4) (((x� y)∼ ⊕ y)− � z)∼ ⊕ (x� z) = 1, (((x⊕ y)− � y)∼ ⊕ z)− � (x⊕ z) = 1.
The connections between basic and double basic algebras are obvious. Suppose that

(A,⊕,¬, 0, 1) is a basic algebra. Then (A,⊕,⊕,¬,¬, 0, 1) is a double basic algebra.
Conversely, if we are given a double basic algebra in which ⊕ coincides with �, then
the negations − and ∼ coincide too, hence the double basic algebra becomes a basic
algebra (see [13]).
Proposition 2.1 ([13]). Let (A,⊕,�,− ,∼ , 0, 1) be a double basic algebra. Then the
reduct (A,�,− , 0, 1) is a basic algebra if and only if A satisfies the identity x⊕y = x�y.
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We call a double basic algebra (A,⊕,�,− ,∼ , 0, 1) pseudo-commutative if it satisfies
the identity x⊕ y = y � x for all x, y ∈ A.

Given a double basic algebra (A,⊕,�,− ,∼ , 0, 1), define a binary relation ≤ on A
by x ≤ y if and only if x∼ ⊕ y = 1 if and only if x− � y = 1. Then (A,≤) is a lattice
and the following identities hold:

x ∨ y = (x∼ ⊕ y)− � y and x ∧ y = (x− ∨ y−)∼ = (x∼ ∨ y∼)−.

If a double basic algebra is pseudo-commutative, then the induced lattice is distributive
(see [12]).

Proposition 2.2 ([12, 13]). Let (A,⊕,�,− ,∼ , 0, 1) be a double basic algebra. Then
the following hold for all x, y, z ∈ A:

(1) 0⊕ x = x, 0� x = x;
(2) 1⊕ x = 1 = x⊕ 1, 1� x = 1 = x� 1;
(3) x∼ ⊕ x = 1, x− � x = 1;
(4) x ≤ y if and only if y− ≤ x− if and only if y∼ ≤ x∼;
(5) x ≤ y implies x⊕ z ≤ y ⊕ z and x� z ≤ y � z;
(6) y ≤ x⊕ y and y ≤ x� y;
(7) if x⊕ y = z and y ≤ x−, then x = (z− � y)∼;
(8) if x� y = z and y ≤ x∼, then x = (z∼ ⊕ y)−;
(9) (x ∧ y∼)⊕ y = x⊕ y, (x ∧ y−)� y = x� y;
(10) if x−, y are comparable, then x⊕ y = x⊕ (y ∧ x−);
(11) if x∼, y are comparable, then x� y = x� (y ∧ x∼);
(12) (x ∧ y)⊕ z = (x⊕ z) ∧ (y ⊕ z), (x ∧ y)� z = (x� z) ∧ (y � z);
(13) 1∼ = 0 = 1−, 0∼ = 1 = 0−.

Let (L,∧,∨, (fa)a∈L, 0, 1) be a bounded lattice equipped with a set {fa, a ∈ L} of
partial mappings such that every fa is defined just on the section [a, 1] and, moreover

(i) every fa is a bijection of [a, 1] onto [a, 1];
(ii) both fa and f−1

a are antitone, i.e., for x, y ∈ [a, 1] with x ≤ y, we have
fa(y) ≤ fa(x) and f−1

a (y) ≤ f−1
a (x).

It was proved in [12] that to any bounded lattice with section antitone bijections
can be assigned a double basic algebra. Also conversely, every double basic algebra
induces a bounded lattice equipped with antitone bijections in every section.

Definition 2.3 ([12]). A double MV-algebra is an algebra (A,⊕,�,− ,∼ , 0, 1) of type
(2, 2, 1, 1, 0, 0) satisfying the following identities for all x, y, z ∈ A:

(D1) x⊕ (y ⊕ z) = (x⊕ y)⊕ z and x� (y � z) = (x� y)� z;
(D2) x⊕ y = y � x;
(D3) x⊕ 0 = x and x� 0 = x;
(D4) x−∼ = x and x∼− = x;
(D5) x⊕ 1 = 1 and x� 1 = 1;
(D6) (x∼ ⊕ y)− � y = (y∼ ⊕ x)− � x = (x− � y)∼ ⊕ y = (y− � x)∼ ⊕ x.
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Proposition 2.3 ([12]). Let (A,⊕,�,− ,∼ , 0, 1) be a double basic algebra. The fol-
lowing conditions are equivalent:

(a) A is a double MV-algebra;
(b) A is pseudo-commutative and associative both in ⊕ and �;
(c) A satisfies the Exchange identity (x⊕ (y � z) = y � (x⊕ z)).

Pseudo hoops were introduced by Bosbach in [2] and [3] under the name of comple-
mentary semigroups. It was proved that a bounded pseudo-hoop is a meet semilattice
ordered residuated, integral and divisible monoid.

Definition 2.4 ([2]). A pseudo-hoop is an algebra (A,�,→, , 1) of type (2, 2, 2, 0)
such that, for all x, y, z ∈ A:

(psHOOP1) x� 1 = 1� x = x;
(psHOOP2) x→ x = x x = 1;
(psHOOP3) (x� y)→ z = x→ (y → z);
(psHOOP4) (x� y) z = y  (x z);
(psHOOP5) (x→ y)� x = (y → x)� y = x� (x y) = y � (y  x).

Pseudo-BCK algebras were introduced by G. Georgescu and A. Iorgulescu ([19]) as
non-commutative generalizations of BCK-algebras.

Definition 2.5 ([19]). A pseudo-BCK algebra (more precisely, reversed left-pseudo-
BCK algebra) is a structure (A,≤,→, , 1) where ≤ is a binary relation on A,→ and
 are binary operations on A and 1 is an element of A satisfying, for all x, y, z ∈ A,
the axioms:

(psBCK1) x→ y ≤ (y → z) (x→ z), x y ≤ (y  z)→ (x z);
(psBCK2) x ≤ (x→ y) y, x ≤ (x y)→ y;
(psBCK3) x ≤ x;
(psBCK4) x ≤ 1;
(psBCK5) if x ≤ y and y ≤ x, then x = y; (psBCK6) x ≤ y if and only if x→ y = 1

if and only if x y = 1.

3. Some Properties of Double Basic Algebras

In any double basic algebra (A,⊕,�,− ,∼ , 0, 1), we define four new derived binary
operations as follows:

x� y = (x∼ ⊕ y∼)−, x� y = (x− � y−)∼,

x y = x∼ ⊕ y, x→ y = x− � y,

for all x, y ∈ A. It can be easily shown that
(C1) x− = x→ 0, x∼ = x 0;
(C2) x⊕ y = x−  y, x� y = x∼ → y;
(C3) x⊕ y = (x− � y−)∼, x� y = (x∼ � y∼)−;
(C4) x ∨ y = (x→ y) y = (y → x) x = (x y)→ y = (y  x)→ x;
(C5) x ∨ y = (x� y−)� y = (y � x−)� x = (x� y∼)⊕ y = (y � x∼)⊕ x;
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(C6) x ∧ y = (x⊕ y−)� y = (y ⊕ x−)� x = (x� y∼)� y = (y � x∼)� x;
(C7) (((x y)→ y) z)→ (x z) = (((x→ y) y)→ z) (x→ z) = 1.

Proposition 3.1. Let (A,⊕,�,− ,∼ , 0, 1) be a double basic algebra. Then for all
x, y, z ∈ A, the following statements hold:

(1) x ≤ y if and only if x→ y = 1 if and only if x y = 1;
(2) x→ 1 = x→ x = x x = x 1 = 1;
(3) 1→ x = 1 x = x;
(4) y ≤ x→ y and y ≤ x y;
(5) x� 1 = 1� x = x, x� 1 = 1� x = x;
(6) x� y ≤ y, x� y ≤ y;
(7) if x ≤ y, then x� z ≤ y � z and x� z ≤ y � z;
(8) x ≤ y implies that y → z ≤ x→ z and y  z ≤ x z;
(9) x ≤ y → z if and only if y ≤ x z;
(10) ((x y)→ y) y = x y, ((x→ y) y)→ y = x→ y;
(11) (x ∨ y)→ z = (x→ z) ∧ (y → z), (x ∨ y) z = (x z) ∧ (y  z).

Proof. The proof of parts (1)-(7) is straightforward by Proposition 2.2 and the defini-
tion of the operators.

(8) Suppose that x ≤ y. Then y∼ ≤ x∼ by Proposition 2.2 part (4). Applying
Proposition 2.2 part (5), we get y∼ ⊕ z ≤ x∼ ⊕ z. By (P2) and (C2), we obtain
y  z ≤ x z. Similarly, we can prove y → z ≤ x→ z.

(9) Suppose that x ≤ y → z. Using part (8), we have (y → z)  z ≤ x  z. By
(C4), we have y ≤ y ∨ z = (y → z) z. Hence, y ≤ x z. Similarly, we can show
that y ≤ x z implies x ≤ y → z.

(10) Using (C4), we have x ≤ (x y)→ y and x ≤ (x→ y) y. Applying part
(8), we obtain ((x  y) → y)  y ≤ x  y and ((x → y)  y) → y ≤ x → y. On
the other hand, by (C4), we have x y ≤ ((x y)→ y) y and x→ y ≤ ((x→
y) y)→ y.

(11) We have that x, y ≤ x ∨ y. By part (8), we get (x ∨ y) → z ≤ x → z and
(x∨ y)→ z ≤ y → z. Thus (x∨ y)→ z is a lower bound of {x→ z, y → z}. Let u be
an arbitrary lower bound of {x → z, y → z}. Applying part (9), we get x ≤ u  z
and y ≤ u z. Thus x∨y ≤ u z. Using part (9), we have u ≤ (x∨y)→ z. Hence,
(x ∨ y)→ z = (x→ z) ∧ (y → z). Similarly, (x ∨ y) z = (x z) ∧ (y  z). �

Proposition 3.2. Let (A,⊕,�,− ,∼ , 0, 1) be a pseudo commutative double basic alge-
bra. Then the following properties hold, for every x, y, z ∈ A:

(1) x ∨ y ≤ x⊕ y, x ∨ y ≤ x� y;
(2) if x ≤ y, then z → x ≤ z → y, z  x ≤ z  y;
(3) x→ y = y−  x−, x y = y∼ → x∼;
(4) x→ y∼ = y  x−;
(5) if x ≤ y, then z � x ≤ z � y, z � x ≤ z � y;
(6) (x→ y)� y− = x− ∧ y−, (x y)� y∼ = x∼ ∧ y∼;
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(7) (x ∨ y)� z = (x� z) ∨ (y � z), (x ∨ y)� z = (x� z) ∨ (y � z);
(8) (x→ y)� x = x ∧ y = (x y)� x;
(9) x ≤ y → z if and only if x� y ≤ z;
(10) x ≤ y  z if and only if x� y ≤ z;
(11) x→ (y ∧ z) = (x→ y) ∧ (x→ z), x (y ∧ z) = (x y) ∧ (x z);
(12) (y ∨ z)⊕ x = (y ⊕ x) ∨ (z ⊕ x), (y ∨ z)� x = (y � x) ∨ (z � x);
(13) (x ∧ y)� z = (x� z) ∧ (y � z), (x ∧ y)� z = (x� z) ∧ (y � z).

Proof. The proofs of (1)-(4) are easy.
(5) Suppose x ≤ y. By Proposition 2.2 part (4), we have y− ≤ x− and y∼ ≤ x∼.

Using Proposition 2.2 part (5), we obtain y−⊕ z− ≤ x−⊕ z− and y∼� z∼ ≤ x∼� z∼.
Since A is pseudo commutative, then z−� y− ≤ z−� x− and z∼⊕ y∼ ≤ z∼⊕ x∼. By
Proposition 2.2 part (4), we have (z−�x−)∼ ≤ (z−�y−)∼ and (z∼⊕x∼)− ≤ (z∼⊕y∼)−,
that is z � x ≤ z � y, z � x ≤ z � y.

(6) We have (x→ y)� y− = ((x− � y)∼ ⊕ y)− = (x∨ y)− = x− ∧ y−. Similarly, we
can prove (x→ y)� y∼ = x∼ ∧ y∼.

(7) It follows from Proposition 2.2 part (12), (P2) and definition �.
(8) Since A is pseudo commutative and by (C6), we have

(x→ y)� x = (x− � y)� x = (y ⊕ x−)� x = x ∧ y;
(x y)� x = (x∼ ⊕ y)� x = (y � x∼)� x = x ∧ y.

(9) Let x ≤ y → z. By Proposition 3.1 part (7), we get x � y ≤ (y → z) � y =
y ∧ z ≤ z. Conversely, suppose x� y ≤ z. Then

x ≤ (x ∨ y−) = (x� y)⊕ y− ≤ z ⊕ y− = y− � z = y → z.

(10) The proof is similar to part (9).
(11) Since y ∧ z ≤ y, z, then x → (y ∧ z) ≤ x → y and x → (y ∧ z) ≤ x → z

by part (2). Hence, x → (y ∧ z) is a lower bound of {x → y, x → z}. Let u be an
arbitrary lower bound of {x→ y, x→ z}. Then u ≤ x→ y and u ≤ x→ z. By part
(9), we have u� x ≤ y and u� x ≤ z. So, u� x ≤ y ∧ z. Again, applying part (9),
we obtain u ≤ x → (y ∧ z). Hence, x → (y ∧ z) = (x → y) ∧ (x → z). Similarly,
x (y ∧ z) = (x y) ∧ (x z).

(12) Since y, z ≤ y ∨ z, then y ⊕ x ≤ (y ∨ z) ⊕ x and z ⊕ x ≤ (y ∨ z) ⊕ x by
Proposition 2.4 part (5). Hence, (y ⊕ x) ∨ (z ⊕ x) ≤ (y ∨ z) ⊕ x. Conversely, let
u := (y⊕x)∨ (z⊕x). Then y⊕x ≤ u and z⊕x ≤ u. By Proposition 3.1 part (7) and
(C6), we have z∧x∼ = (z⊕x)�x∼ ≤ u�x∼ and y∧x∼ = (y⊕x)�x∼ ≤ u�x∼. Since A
is a distributive lattice, then (z∨y)∧x∼ = (y∧x∼)∨(z∧x∼) ≤ u�x∼. By Proposition
2.2 part (5) and (C5), we get ((z ∨ y) ∧ x∼)⊕ x ≤ (u� x∼)⊕ x = u ∨ x = u. Using
Proposition 2.2 part (12) and part (3), we obtain ((z∨y)⊕x)∧(x∼⊕x) = (z∨y)⊕x ≤ u.
Hence, (z ∨ y)⊕ x ≤ (y ⊕ x) ∨ (z ⊕ x).

(13) It follows from part (12) and definitions � and �. �

Corollary 3.1. Let (A,⊕,�,− ,∼ , 0, 1) be a pseudo commutative double basic algebra.
Then y � x = x� y for all x, y ∈ A.
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Proof. Since x � y ≤ x � y, then x ≤ y → (x � y) by Proposition 3.2 part (9). We
obtain y ≤ x (x� y) by Proposition 3.1 part (9). Using Proposition 3.2 part (10),
we get y�x ≤ x� y. Similarly, we can prove x� y ≤ y�x. Hence x� y = y�x. �

Proposition 3.3. Let (A,⊕,�,− ,∼ , 0, 1) be a pseudo commutative double basic alge-
bra.

(1) If (x� y) z = x (y  z) for any x, y, z ∈ A, then ⊕ is associative.
(2) If (x� y)→ z = x→ (y → z) for any x, y, z ∈ A, then � is associative.

Proof. (1) We have (x∼ ⊕ y∼) ⊕ z = (x � y)  z = x  (y  z) = x∼ ⊕ (y∼ ⊕ z).
Hence ⊕ is associative. The proof of part (2) is similar. �

Corollary 3.2. Let (A,⊕,�,− ,∼ , 0, 1) be a pseudo commutative double basic algebra
such that (A,∧,∨,�, ,→, 1) and (A,∧,∨,�,→, , 1) be pseudo hoops. Then A is
a double MV-algebra.

Proof. Let (A,∧,∨,�, ,→, 1) and (A,∧,∨,�,→, , 1) be pseudo hoops. Then ⊕
and � are associative by Proposition 3.3. Since ⊕ and � are associative and A is a
pseudo commutative, then A is a double MV-algebra. �

Proposition 3.4. Let (A,⊕,�,− ,∼ , 0, 1) be a pseudo commutative double basic alge-
bra such that satisfies the following identities for all x, y, z ∈ A

x→ y ≤ (y → z) (x→ z), x y ≤ (y  z)→ (x z).
Then ⊕ and � are associative.

Proof. Suppose that A satisfies x→ y ≤ (y → z) (x→ z) and x y ≤ (y  z)→
(x z). Then (A,≤,→, , 1) is a pseudo-BCK algebra. By Proposition 1.2 part (3)
in [17], we have x  (y → z) = y → (x  z) and x → (y  z) = y  (x → z).
Thus, x∼⊕ (y−� z) = y−� (x∼⊕ z). So A satisfies Exchange identity. Hence, ⊕ and
� are associative by Proposition 2.3. �

Corollary 3.3. Let (A,⊕,�,− ,∼ , 0, 1) be a pseudo commutative double basic algebra
such that (A,≤,→, , 1) is a pseudo BCK-algebra. Then A is a double MV-algebra.

Proof. Similarly to the proof of Proposition 3.4, we can prove the associativity of
⊕ and �. Since A is a pseudo commutative, then A is a double MV-algebra by
Proposition 2.3. �

The relation between (commutative) basic algebras and residuated groupoids have
been studied in [7]. In the following, we will study the relation between pseudo
commutative double basic algebras and pseudo residuated l-groupoids.

Definition 3.1. A pseudo residuated l-groupoid is an algebra (A,∧,∨, ∗,→, , 0, 1)
of type (2, 2, 2, 2, 2, 0, 0) such that

(R1) (A,∧,∨, 0, 1) is a bounded lattice;
(R2) (A, ∗, 1) is a groupoid with 1, i.e. it satisfies x ∗ 1 = 1 ∗ x = x;
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(R3) x ∗ y ≤ z if and only if x ≤ y → z if and only if y ≤ x z for any x, y, z ∈ A
(pseudo residuation).

Proposition 3.5. Let (A,∧,∨, ∗,→, , 0, 1) be a pseudo residuated l-groupoid. Then
(1) if x ≤ y, then x ∗ z ≤ y ∗ z and z ∗ x ≤ z ∗ y;
(2) (x→ y) ∗ x ≤ x ∧ y, x ∗ (x y) ≤ x ∧ y;
(3) x ≤ y implies y → z ≤ x→ z and y  z ≤ x z;
(4) 1→ x = x, 1 x = x.

Proof. (1) Suppose that x ≤ y. Since y ∗z ≤ y ∗z and z ∗y ≤ z ∗y, then y ≤ z → y ∗z
and y ≤ z  z ∗ y. Thus x ≤ z → y ∗ z and x ≤ z  z ∗ y. Therefore x ∗ z ≤ y ∗ z
and z ∗ x ≤ z ∗ y.

The proofs of (2)-(4) are easy. �

Proposition 3.6. Let (A,⊕,�,− ,∼ , 0, 1) be a pseudo commutative double basic alge-
bra. Then (A,∧,∨,�,→, , 0, 1) and (A,∧,∨,�, ,→, 0, 1) are pseudo residuated
l-groupoids.

Proof. Since A is a pseudo commutative double basic algebra, then (A,∧,∨, 0, 1) is a
bounded distributive lattice. By Proposition 3.1 part (5), (A,�, 1) and (A,�, 1) are
groupoids with 1. Applying Proposition 3.2 part (9) and Proposition 3.1 part (9), we
get x� y ≤ z if and only if x ≤ y → z if and only if y ≤ x z.

Hence, (A,∧,∨,�,→, , 0, 1) is a pseudo residuated l-groupoid.
Again, By Proposition 3.2 part (10) and Proposition 3.1 part (9), we have

x� y ≤ z if and only if x ≤ y  z if and only if y ≤ x→ z.
Hence, (A,∧,∨,�, ,→, 1) is a pseudo residuated l-groupoid. �

For the case of basic algebra, the next theorems are proved in [7]. Here, we formulate
and prove them for the case of pseudo commutative double basic algebras as well.

Lemma 3.1. Let (A,∧,∨, ∗,→, , 0, 1) be a pseudo residuated l-groupoid satisfying
the pseudo double negation laws and

(i) x ∗ (y∼ → x∼) = x ∧ y;
(ii) (y−  x−) ∗ x = x ∧ y;

then the following hold:
(1) x→ y = y−  x−, x y = y∼ → x∼;
(2) x ∗ (y ∗ z) = 0 implies (x ∗ y) ∗ z = 0;
(3) x→ y = (x ∗ y∼)−, x y = (y− ∗ x)∼;

where x− = x→ 0 and x∼ = x 0.

Proof. (1) By assumption, we have x ∗ (y∼ → x∼) = x ∧ y ≤ y and (y−  x−) ∗ x =
x ∧ y ≤ y. Thus, y∼ → x∼ ≤ x y and y−  x− ≤ x→ y.

Using the pseudo double negation laws and substituting y− for x and x− for y in
y∼ → x∼ ≤ x y, this yields x→ y ≤ y−  x−.
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In y−  x− ≤ x→ y, applying the pseudo double negation laws and substituting
y∼ for x and x∼ for y, this yields x y ≤ y∼ → x∼. Hence, x→ y = y−  x− and
x y = y∼ → x∼.

(2) Suppose x ∗ (y ∗ z) = 0. Then y ∗ z ≤ x 0 = x∼. So, y ≤ z → x∼. By part (1)
and pseudo double negation laws, we get y ≤ x z−. Thus, x ∗ y ≤ z → 0. Hence,
(x ∗ y) ∗ z = 0.

(3) Since x ∗ y∼ ≤ x ∗ y∼, then x ≤ y∼ → (x ∗ y∼). Applying part (1) and pseudo
double negation laws, we have x ≤ (x ∗ y∼)−  y. So, (x ∗ y∼)− ∗ x ≤ y. Hence,
(x ∗ y∼)− ≤ x→ y.

On the other hand, using part (1) and then assumption (ii), we obtain
((x→ y) ∗ x) ∗ y∼ = ((y−  x−) ∗ x) ∗ y∼ = (x ∧ y) ∗ y∼ ≤ y ∗ y∼ = 0.

Hence, ((x → y) ∗ x) ∗ y∼ = 0. By part (2), we get (x → y) ∗ (x ∗ y∼) = 0.
Thus, x → y ≤ (x ∗ y∼)−. Therefore, x → y = (x ∗ y∼)−. Similarly, we can prove
x y = (y− ∗ x)∼. �

Theorem 3.1. Let (A,∧,∨, ∗,→, , 0, 1) be a pseudo residuated l-groupoid satisfying
the conditions of Lemma 3.1. Then (A,⊕,�,− ,∼ , 0, 1) is a pseudo commutative double
basic algebra where x− = x→ 0, x∼ = x 0, x⊕y = (y−∗x−)∼ and x�y = (x∼∗y∼)−.

Proof. We will check the axioms (P1)-(P4).
(P1) We have x⊕ 0 = (0− ∗ x−)∼ = x−∼ = x and x� 0 = (x∼ ∗ 0∼)− = x∼− = x.
(P2) It holds by assumption (pseudo double negation laws).
(P3) By Lemma 3.1 part (3), definitions of ⊕ and �, pseudo double negation laws

and then assumption (i), we get
(x∼ ⊕ y)− � y =(y− ∗ x)� y = (x y)− � y = ((x y) ∗ y∼)−

=((x∼−  y∼−) ∗ y∼)− = (x∼ ∧ y∼)− = x ∨ y.

Similarly, we can prove (y∼ ⊕ x)− � x = (x− � y)∼ ⊕ y = (y− � x)∼ ⊕ x = x ∨ y.
(P4) It is easy to prove (x ∧ y−)� z ≤ x� z. Hence,

1 = ((x ∧ y−)� z) (x� z)
= ((y− ∗ (x∼ → y−∼))� z) (x� z)
= ((y− ∗ (x∼ → y))� z) (x� z)
= ((y− ∗ (x� y))� z) (x� z)
= (((x� y)∼ ⊕ y)− � z) (x� z)
= (((x� y)∼ ⊕ y)− � z)∼ ⊕ (x� z).

Similarly, we can prove (((x⊕y)−�y)∼⊕z)−�(x⊕z) = 1. Hence, (A,⊕,�,− ,∼ , 0, 1)
is a double basic algebra. By Lemma 3.11 part (1) and (3), we have

x⊕ y = (y− ∗ x−)∼ = x−  y = y∼ → x = (y∼ ∗ x∼)− = y � x.

Hence, (A,⊕,�,− ,∼ , 0, 1) is a pseudo commutative. �
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Lemma 3.2. Let (A,∧,∨, ∗,→, , 0, 1) be a pseudo residuated l-groupoid satisfying
the following identities:

x ∨ y = (y−  x−) y = (y∼ → x∼)→ y;
then the following hold:

(1) x−∼ = x, x∼− = x;
(2) x→ y = y−  x−, x y = y∼ → x∼;
(3) x ∗ (y ∗ z) = 0 implies (x ∗ y) ∗ z = 0;
(4) x→ y = (x ∗ y∼)−, x y = (y− ∗ x)∼;
(5) (x→ y) ∗ x = x ∧ y, x ∗ (x y) = x ∧ y.

Proof. (1) We have 1  x− = x− ≤ x → 0 by Proposition 3.5 part (4). Applying
Proposition 3.5 part (3) and assumption, we get (x → 0)  0 ≤ (1  x−)  0 =
x ∨ 0 = x. Hence, x−∼ ≤ x.

On the other hand, (x→ 0) ∗ x ≤ 0 by Proposition 3.5 part (2). Hence, x ≤ (x→
0) 0 = x−∼. Therefore, x−∼ = x. Similarly, we can prove x∼− = x.

(2) Since x ≤ x ∨ y = (y−  x−) y, then (y−  x−) ∗ x ≤ y. Thus, y−  x− ≤
x → y. Also, using the pseudo double negation laws and substituting y∼ for x and
x∼ for y in y−  x− ≤ x→ y, we obtain x y ≤ y∼ → x∼.

Similarly, we can show y∼ → x∼ ≤ x  y and x → y ≤ y−  x−. Hence,
x→ y = y−  x−, x y = y− → x−.

The proof of part (3) and part (4) is similar to the proof of part (2) and part (3)
in Lemma 3.1, respectively.

(5) Using part (1), part (4) and then assumption, we get
(x→ y) ∗ x = ((x→ y) ∗ x−∼)−∼ = ((x→ y)→ x−)∼ = (x− ∨ y−)∼ = x ∧ y.

Similarly, we can prove that x ∗ (x y) = x ∧ y. �

Proposition 3.7. Let (A,∧,∨, ∗,→, , 0, 1) be a pseudo residuated l-groupoid. Then
A satisfies the conditions of Lemma 3.2 if and only if it satisfies the conditions of
Lemma 3.1.

Proof. Let (A,∧,∨, ∗,→, , 0, 1) be a pseudo residuated l-groupoid satisfying condi-
tions of Lemma 3.1. Using Lemma 3.1 part (1) and part (3), we obtain

x ∨ y =(y− ∧ x−)∼ = (y− ∗ (x→ y))∼ = (x→ y) y = (y−  x−) y;
x ∨ y =(y∼ ∧ x∼)− = ((x→ y) ∗ y∼)− = (x y)→ y = (y∼ → x∼)→ y.

Conversely, suppose that A satisfies the conditions of Lemma 3.2. Applying Lemma
3.2 part (2) and then part (5), we obtain

x ∗ (y∼ → x∼) = x ∗ (x y) = x ∧ y, (y−  x−) ∗ x = (x→ y) ∗ x = x ∧ y.

Also, by part (1) of Lemma 3.2, A satisfies the pseudo double negation laws. �

Corollary 3.4. Let (A,∧,∨, ∗,→, , 0, 1) be a pseudo residuated l-groupoid satisfying
the following identities:
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x ∨ y = (y−  x−) y = (y∼ → x∼)→ y.
Then (A,⊕,�,− ,∼ , 0, 1) is a pseudo commutative double basic algebra where x− =
x→ 0, x∼ = x 0, x⊕ y = (y− ∗ x−)∼ and x� y = (x∼ ∗ y∼)−.

Proof. The proof follows from Proposition 3.7 and Theorem 3.1. �

By Proposition 3.6, if (A,⊕,�,− ,∼ , 0, 1) is a pseudo commutative double basic
algebra, then F ((A,⊕,�,− ,∼ , 0, 1)) := (A,∧,∨,�,→, , 0, 1) is a pseudo residuated
l-groupoid where x� y = (x− � y−)∼, x→ y = (x� y∼)−, x y = (y− � x)∼.

Moreover, if (A,∧,∨, ∗,→, , 0, 1) is a pseudo residuated l-groupoid that satisfies
the conditions of Lemma 3.1 (or Lemma 3.2), then G((A,∧,∨, ∗,→, , 0, 1)) :=
(A,⊕,�,− ,∼ , 0, 1) is a pseudo commutative double basic algebra, where x− = x→ 0,
x∼ = x 0, x⊕ y = (y− ∗ x−)∼ and x� y = (x∼ ∗ y∼)−.

The category whose objects are double basic algebras and whose morphisms are
homomorphisms of double basic algebras is called the category of double basic algebras.
Let A be its subcategory whose object are pseudo commutative double basic algebras.
The category of pseudo residuated l-groupoids can be defined similarly. Let B be its
subcategory whose objects are pseudo residuated l-groupoids satisfying conditions of
Lemma 3.1. It is clear that F : A → B and G : B → A are functors. In the next
theorem, we study a relation between these functors.

Theorem 3.2. (1) Let (A,⊕,�,− ,∼ , 0, 1) be a pseudo commutative double basic al-
gebra. Then G(F ((A,⊕,�,− ,∼ , 0, 1))) = (A,⊕,�,− ,∼ , 0, 1).

(2) Let (A,∧,∨, ∗,→, , 0, 1) be a pseudo residuated l-groupoid that satisfies the
conditions of Lemma 3.1. Then

F (G((A,∧,∨, ∗,→, , 0, 1))) = (A,∧,∨, ∗,→, , 0, 1).

(3) The category A and the category B are categorically isomorphic.

Proof. (1) By Proposition 3.6, Proposition 3.2 part (3) and part (8),

F ((A,⊕,�,− ,∼ , 0, 1)) := (A,∧,∨,�,→, , 0, 1)

is a pseudo residuated l-groupoid satisfying conditions of Lemma 3.1. Hence,
G(F ((A,⊕,�,− ,∼ , 0, 1))) is a pseudo commutative double basic algebra by Theo-
rem 3.1. Now, suppose that ⊕′,�′,−′ and ∼′ are the operations derived by �, → and
 on the pseudo residuated l-groupoid F ((A,⊕,�,− ,∼ , 0, 1)), respectively. We will
prove that ⊕′ = ⊕, �′ = �, −′ =− and ∼′ =∼. Let x, y ∈ A be arbitrary. We have
x−

′ = x→ 0 = x− � 0 = x− and x∼
′ = x 0 = x∼ ⊕ 0 = x∼. Using Lemma 3.1 part

(3) and part (1), we get

x�′ y =(x∼′
� y∼

′)−′ = (x∼ � y∼)− = x� y,

x⊕′ y =(x−′
� y−

′)∼′ = (y− � x−)∼ = x−  y = y∼ → x = (y∼ � x∼)− = y � x

=x⊕ y.
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(2) By Theorem 3.1, G((A,∧,∨, ∗,→, , 0, 1)) := (A,⊕,�,− ,∼ , 0, 1) is a pseudo
commutative double basic algebra. Hence, F (G((A,∧,∨, ∗,→, , 0, 1))) is a pseudo
residuated l-groupoid satisfying conditions of Lemma 3.1. Let F (G((A,∧,∨, ∗,→, 
, 0, 1))) = (A,∧′,∨′, ∗′,→′, ′, 0, 1). We have

x ∗′ y =x� y = (x− � y−)∼ = (x−∼ ∗ y−∼)−∼ = x ∗ y,

x→′ y =x− � y = (x ∗ y∼)− = x→ y,

x ′ y =x∼ ⊕ y = (y− ∗ x)− = x y,

x ∧′ y =x ∗′ (y∼′ → x∼
′) = x ∗ (y∼ → x∼) = x ∧ y,

x ∨′ y =(x−′ ∧′ y−′)∼′ = (x− ∧ y−)∼.

(3) The proof follows from (i) and (ii). �

By Proposition 3.6, if (A,⊕,�,− ,∼ , 0, 1) is a pseudo commutative double basic
algebra, then H((A,⊕,�,− ,∼ , 0, 1)) := (A,∧,∨,�, ,→, 0, 1) is a pseudo residuated
l-groupoid, (that is x � y ≤ z if and only if x ≤ y  z if and only if y ≤ x → z for
any x, y, z ∈ A) where x� y = (x∼ ⊕ y∼)−, x y = x∼ ⊕ y, x→ y = y ⊕ x−. Then
clearly, H : A→ B is a functor.

Proposition 3.8. Let (A,∧,∨, ∗, ,→, 0, 1) be a pseudo residuated l-groupoid satis-
fying pseudo double negation laws and

(i)’ (y∼ → x∼) ∗ x = x ∧ y;
(ii)’ x ∗ (y−  x−) = x ∧ y.

Then (A,⊕,�,− ,∼ , 0, 1) is a pseudo commutative double basic algebra, where x− =
x→ 0, x∼ = x 0, x⊕ y = (x− ∗ y−)∼ and x� y = (y∼ ∗ x∼)−.

Proof. Similar to Lemma 3.1, we can prove
(1) x→ y = y−  x−, x y = y∼ → x∼;
(2) x ∗ (y ∗ z) = 0 implies (x ∗ y) ∗ z = 0;
(3) x→ y = (y∼ ∗ x)−, x y = (x ∗ y−)∼;

and use them to prove that (A,⊕,�,− ,∼ , 0, 1) is a pseudo commutative double basic
algebra such that x− = x → 0, x∼ = x  0, x ⊕ y = (x− ∗ y−)∼ and x � y =
(y∼ ∗ x∼)−. �

Theorem 3.3. (1) Let (A,⊕,�,− ,∼ , 0, 1) be a pseudo commutative double basic al-
gebra. Then G(H((A,⊕,�,− ,∼ , 0, 1))) = (A,⊕,�,− ,∼ , 0, 1).

(2) Let (A,∧,∨, ∗, ,→, 0, 1) be a pseudo residuated l-groupoid that satisfies the
conditions of Proposition 3.14, then

H(G((A,∧,∨, ∗, ,→, 0, 1))) = (A,∧,∨, ∗, ,→, 0, 1).

Proof. (1) By Proposition 3.6, H((A,⊕,�,− ,∼ , 0, 1)) := (A,∧,∨,�, ,→, 0, 1) is a
pseudo residuated l-groupoid. Using Proposition 3.2 part (3) and part (4), we have

(i)’ (y∼ → x∼)� x = (x y)� x = x ∧ y;
(ii)’ x� (y∼ → x∼) = (x y)� x = x ∧ y.
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Hence, by Proposition 3.8, G(H((A,⊕,�,− ,∼ , 0, 1))) = (A,⊕′,�′,−′
,∼

′
, 0, 1) is a

pseudo commutative double basic algebra where x−
′ = x→ 0, x∼

′ = x 0, x⊕′ y =
(x−′ � y−

′)∼′ and x �′ y = (y∼′ � x∼
′)−′ . We will show that −′ =−, ∼′ =∼, ⊕′ = ⊕

and �′ = �. It is obvious that −′ =− and ∼′ =∼. We have
x⊕′ y =(x−′ � y−

′)∼′ = (x− � y−)∼ = x⊕ y,

x�′ y =(y∼′ � x∼
′)−′ = (y∼ � x∼)− = (x∼ � y∼)− = x� y.

Hence, G(H((A,⊕,�,− ,∼ , 0, 1))) = (A,⊕,�,− ,∼ , 0, 1).
(2) G((A,∧,∨, ∗, ,→, 0, 1)) := (A,⊕,�,− ,∼ , 0, 1) is a pseudo commutative dou-

ble basic algebra like Proposition 3.7. Hence, H(G((A,∧,∨, ∗,→, , 0, 1))) is a pseudo
residuated l-groupoid satisfying conditions of Proposition 3.7. Suppose that

H(G((A,∧,∨, ∗,→, , 0, 1))) = (A,∧′,∨′, ∗′, ′,→′, 0, 1).
We have

x ∗′ y =x� y = (x∼ ⊕ y∼)− = (x−∼ ∗ y−∼)∼− = x ∗ y,

x→′ y =x∼ ⊕ y = (x ∗ y−)∼ = x y,

x ′ y =x− � y = (y∼ ∗ x)− = x→ y,

x ∧′ y =x ∗′ (y∼′ → x∼
′) = (y−  x−) ∗ x = x ∧ y,

x ∨′ y =(x−′ ∧′ y−′)∼′ = (x∼ ∧ y∼)− = x ∨ y. �

Proposition 3.9. Let (A,⊕,�,− ,∼ , 0, 1) be a double MV-algebra. Then
(A,∧,∨,�, ,→, 1) and (A,∧,∨,�,→, , 1) are pseudo hoops.
Proof. Let (A,⊕,�,− ,∼ , 0, 1) be a double MV-algebra. Then (A,⊕,�,− ,∼ , 0, 1) is a
pseudo commutative double basic algebra. Hence, (A,∧,∨,�,→, , 0, 1) is a pseudo
residuated l-groupoid by Proposition 3.6. Since � is associative, then � is associative.
By Proposition 3.2 part (8) (((x � y) → z) � x) � y = ((x � y) → z) � (x � y) ≤ z
and (((x� y) z)� y)� x = ((x� y) z)� (y� x) = ((x� y) z)� (x� y) ≤ z.
So, (x� y)→ z ≤ x→ (y → z) and (x� y) z ≤ y  (x z) by Proposition 3.2
part (9) and part (10). On the other hand

(x→ (y → z))� (x� y) =((x→ (y → z))� x)� y ≤ (y → z)� y ≤ z,

(y  (x z))� (x� y) =(((y  (x z))� y)� x) ≤ (x z)� x ≤ z.

Hence, (A,∧,∨,�, ,→, 1) is a pseudo hoop. Similarly, we can prove (x� y) z =
x  (y  z) and (x � y) → z = y → (x → z). Hence, (A,∧,∨,�, ,→, 1) is a
pseudo hoop. �

Corollary 3.5. Let (A,⊕,�,− ,∼ , 0, 1) be a double MV-algebra. Then (A,≤,→, , 1)
is a pseudo BCK-algebra.
Proof. We know that every pseudo-hoop is a pseudo-BCK algebra which is a meet
semilattice satisfying the pseudo-divisibility property. Since (A,∧,∨,�, ,→, 1) is a
pseudo hoop by Proposition 3.9, then (A,≤,→, , 1) is a pseudo BCK-algebra. �
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4. Boolean Center of Pseudo Commutative Double Basic Algebras

Let (L,∧,∨, 0, 1) be a bounded lattice. Recall that (see [1,21]) an element a ∈ L is
said to be complemented if there is an element b ∈ L such that a∨ b = 1 and a∧ b = 0.
If such an element b exists, then it is called a complement of a. Complements are
generally not unique unless the lattice is distributive. Hence in pseudo commutative
double basic algebras the complements are unique.

Proposition 4.1. Let (A,⊕,�,− ,∼ , 0, 1) be a pseudo commutative double basic alge-
bra and a ∈ A an element which has a complement b ∈ A. Then a− = a∼ = b and
b− = b∼ = a.

Proof. We have 1 = a ∨ b ≤ a � b. Hence, a � b = 1. Thus, a∼ ≤ b. On the
other hand, we have that a∼ = 0 � a∼ = (b ∧ a) � a∼ = (b � a∼) ∧ (a � a∼) =
(b�a∼)∧ (a∼⊕a) = (b�a∼)∧ 1 = (b�a∼) by Proposition 2.4 part (12) and part (3).
Since (b ∨ a∼) ≤ (b � a∼) = a∼, then b ≤ a∼. Therefore, a∼ = b and a = a∼− = b−.
Similarly, we can prove a− = b and b∼ = a. �

Let (A,⊕,�,− ,∼ , 0, 1) be a pseudo commutative double basic algebra. We denote
by B(A) the boolean algebra associated with the bounded distributive lattice L(A) =
(A,∧,∨, 0, 1). The set B(A) is called the boolean center of A and elements of B(A)
are called the boolean elements of A.

Proposition 4.2. Let (A,⊕,�,− ,∼ , 0, 1) be a pseudo commutative double basic alge-
bra. Then the following are equivalent:

(1) a ∈ B(A);
(2) a ∧ a− = 0;
(3) a⊕ a = a;
(4) a� a = a;
(5) a ∧ a∼ = 0;
(6) a ∨ a− = 1;
(7) a� a = a;
(8) a� a = a;
(9) a ∨ a∼ = 1.

Proof. (1)⇒(2) Since a ∈ B(A), then a has a complement b ∈ A. By Proposition 4.1,
we have b = a−. Hence, a ∧ a− = 0.

(2)⇒(3) By Proposition 2.2 part (12) and part (3), we obtain a = 0 ⊕ a = (a ∧
a∼)⊕ a = (a⊕ a) ∧ (a∼ ⊕ a) = a⊕ a.

(3)⇒(4) Since A is pseudo commutative, it is clear.
(4)⇒(5) Let a� a = a. By Proposition 2.2 part (3), we have

a ∧ a∼ = (a− ∨ a)∼ = ((a� a)∼ ⊕ a)− = (a∼ ⊕ a)− = 1− = 0.

(5)⇒(6) We have 0 = a∧a∼ = (a−∨a∼−)∼ = (a−∨a)∼. Hence a−∨a = (a∧a∼)− =
0− = 1.
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(6)⇒(7) Using Proposition 3.1 part (5) and Proposition 3.2 part (7), we get a =
1� a = (a ∨ a−)� a = (a� a) ∨ (a� a−) = (a� a) ∨ 0 = a� a.

(7)⇒(8) It is clear.
(8)⇒(9) Suppose a � a = a. Then a− � a− = a−. Similar to (4)⇒ (5), we can

prove a− ∧ a−∼ = 0. Hence, a ∨ a∼ = 1.
(9)⇒(1) Since a ∨ a∼ = 1, then a ∧ a− = 0. Similar to (2)⇒ (3), we can show that

a⊕ a = a. Thus, a� a = a. Then, similar to (4) ⇒ (5), we obtain a ∧ a∼ = 0. �

Proposition 4.3. Let (A,⊕,�,− ,∼ , 0, 1) be a pseudo commutative double basic alge-
bra and a ∈ B(A). Then the following hold:

(1) a− = a→ a− = a a− = a→ a∼ = a a∼ = a∼;
(2) a− → a = a−  a = a∼ → a = a∼  a = a.

Proof. (1) We have 1 = a ∨ a− = (a  a−) → a− = (a → a−)  a− by (C4).
Hence, a a− ≤ a− and a→ a− ≤ a−. Since a− ≤ a a− and a− ≤ a→ a−, then
a→ a− = a a− = a−. By Proposition 3.2 part (4), we have a→ a∼ = a a− = a−.
Similarly, we can prove a→ a∼ = a a∼ = a∼.

(2) It follows from (1) and Proposition 3.2 part (3). �

Proposition 4.4. Let (A,⊕,�,− ,∼ , 0, 1) be a pseudo commutative double basic alge-
bra, a ∈ B(A) and x, y ∈ A. Then the following hold:

(1) a⊕ x = x⊕ a = a ∨ x = a� x = x� a;
(2) a� x = x� a = a ∧ x = a� x = x� a;
(3) a ∨ (x� y) = (a ∨ x)� (a ∨ y), a ∨ (x� y) = (a ∨ x)� (a ∨ y);
(4) a ∧ (x⊕ y) = (a ∧ x)⊕ (a ∧ y), a ∧ (x� y) = (a ∧ x)� (a ∧ y).

Proof. (1) Since A is pseudo commutative, we have a ∨ x ≤ a⊕ x. Using Proposition
3.2 part (13) and (C6), we get (a⊕x)�(a∨x)∼ = (a⊕x)�(a∼∧x∼) = ((a⊕x)�a∼)∧
((a⊕x)�x∼) = ((a⊕x)�a∼)∧ (a∧x∼) ≤ (a−∧a) = 0. Hence (a⊕x)−� (a∨x) = 1
implies that a⊕x ≤ a∨x. Since A is pseudo commutative, then a⊕x = a∨x = x⊕a.
Similarly, we can prove a ∨ x = a� x = x� a.

(2) It follows from part (1) and the definitions of � and �.
(3) By Proposition 3.2 part (7), Proposition 4.2 part (7) and Proposition 3.1 part (6),

we have (a∨x)�(a∨y) = (a�(a∨y))∨(x�(a∨y)) = (a�a)∨(a�y)∨(x�a)∨(x�y) =
a ∨ (x� y).

(4) Using Proposition 2.2 part (12) Proposition 4.2 part (3) and Proposition 2.2
part (6), we obtain

(a ∧ x)⊕ (a ∧ y) =(a⊕ (a ∧ y)) ∨ (x⊕ (a ∧ y))
=(a⊕ a) ∧ (a⊕ y) ∧ (x⊕ a) ∧ (x⊕ y)
=a ∧ (x⊕ y). �

Proposition 4.5. Let (A,⊕,�,− ,∼ , 0, 1) be a pseudo commutative double basic alge-
bra. Then B(A) is a boolean subalgebra of A.
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Proof. Clearly 0, 1 ∈ B(A). Let a, b ∈ B(A). By Proposition 4.1, we have a ∧ a− = 0,
a ∨ a− = 1, b ∧ b− = 0, b ∨ b− = 1. We will prove that a− ∨ b− is the complement of
a ∧ b and

(a ∧ b) ∧ (a− ∨ b−) =((a ∧ b) ∧ a−) ∨ ((a ∧ b) ∧ b−) = 0 ∨ 0 = 0,

(a ∧ b) ∨ (a− ∨ b−) =(a ∨ (a− ∨ b−)) ∧ (b ∨ (a− ∨ b−)) = 1 ∧ 1 = 1.

Similarly, we can show that a−∨b− is the complement of a a∧b. Hence a∧b, a∨b ∈ B(A)
and (B(A),∧,∨) is a distributive lattice. By Proposition 4.4 part (1), we have
a⊕ b = a∨ b ∈ B(A) and a� b = a∨ b ∈ B(A). It is clear that a−, a∼ ∈ B(A). Hence
B(A) is closed under the operations ⊕, �, − and ∼. �

Corollary 4.1. Let (A,⊕,�,− ,∼ , 0, 1) be a pseudo commutative double basic algebra.
Then (B(A),∧,∨,− ) is a De Morgan lattice.

Proposition 4.6. Let (A,⊕,�,− ,∼ , 0, 1) be a pseudo commutative double basic alge-
bra and a ∈ B(A). Then ([0, a],⊕a

0,�a
0,−

a
0 ,∼

a
0 , 0, a) is a pseudo commutative double

basic algebra, where

x−
a
0 :=x− � a, x∼

a
0 := x∼ � a,

x⊕a
0 y :=x⊕ y, x�a

0 y := x� y.

Proof. Let x, y ∈ [0, a] be arbitrary. Using pseudo commutativity, Proposition 2.2
part (5) and Proposition 4.2 part (3) and part (4), we have 0 ≤ x ⊕ y ≤ a ⊕ a = a,
0 ≤ x � y ≤ a � a = a. Thus x ⊕ y, x � y ∈ [0, a]. By Proposition 3.1 part (6), we
obtain x−

a
0 := x−� a ≤ a and x∼

a
0 := x∼� a ≤ a. So, x−

a
0 , x∼

a
0 ∈ [0, a]. We will check

condition (P2) from the definition of a double basic algebra.
Applying Corollary 3.1, Proposition 4.4 part (1), Proposition 3.2 part (7) and

Proposition 4.2, we get

(x−a
0 )∼a

0 =(x− � a)∼ � a = (x⊕ a∼)� a = a� (x ∨ a∼) = (a� x) ∨ (a� a∼)
=(a ∧ x) ∨ (a ∧ a∼) = x ∨ 0 = x,

(x∼a
0 )−a

0 =(x∼ � a)− � a = (x� a−)� a = a� (x ∨ a−) = (a� x) ∨ (a� a−)
=(a ∧ x) ∨ (a ∧ a−) = x ∨ 0 = x.

It is easy to prove the other identities. �

Proposition 4.7. Let (A,⊕,�,− ,∼ , 0, 1) be a pseudo commutative double basic alge-
bra with a, b ∈ B(A) and a ≤ b. Then ([a, b],⊕b

a,�b
a,−

b
a ,∼

b
a , a, b) is a pseudo commu-

tative double basic algebra, where

x−
b
a :=(x− � b)� a, x∼

b
a := (x∼ � b)⊕ a,

x⊕b
a y :=((x− � a)∼ ⊕ y) ∧ b, x�b

a y := ((x∼ ⊕ a)− � y) ∧ b.

Proof. It could be easily proven by Proposition 4.6 and Theorem 4 in [12]. �
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