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ON SKEW LAPLACIAN SPECTRA AND SKEW LAPLACIAN
ENERGY OF DIGRAPHS

HILAL GANIE1, BILAL CHAT2, AND S. PIRZADA3

Abstract. Let D be a simple digraph with n vertices, m arcs having skew Lapla-
cian eigenvalues ν1, ν2, . . . , νn−1, νn = 0. The skew Laplacian energy SLE(D) of a
digraph D is defined as SLE(D) =

∑n
i=1 |νi|. We obtain upper and lower bounds

for SLE(D), which improves some previously known bounds. We also show that
every even positive integer is indeed the skew Laplacian energy of some digraph.

1. Introduction

Let D be a simple digraph with n vertices v1, v2, . . . , vn and m arcs. Let d+
i =

d+(vi), d−i = d−(vi) and di = d+
i + d−i , i = 1, 2, . . . , n be respectively, the out-degree,

in-degree and degree of the vertices of the digraph D . The out-adjacency matrix
A+(D) = (aij) of a digraph D is the n× n matrix, where aij = 1, if (vi, vj) is an arc
and aij = 0, otherwise. The in-adjacency matrix A−(D) = (aij) of a digraph D is the
n×n matrix, where aij = 1, if (vj, vi) is an arc and aij = 0, otherwise. It is clear that
A−(D) = (A+(D))t.

The skew adjacency matrix S(D) = (sij) of a digraph D is the n×n matrix, where

sij =


1, if there is an arc from vi to vj,
−1, if there is an arc from vj to vi,
0, otherwise.

It is clear that S(D) is a skew symmetric matrix, so all its eigenvalues are zero or
purely imaginary. The energy of the matrix S(D) was considered in [1], and is defined
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as
Es(D) =

n∑
i=1
|ξi|,

where ξ1, ξ2, . . . , ξn are the eigenvalues of S(D). This energy of a digraph D is called
the skew energy by Adiga et al. [1]. For recent developments in the theory of skew
spectrum and skew energy see the survey [10] and the references therein.

Let D+(G) = diag(d+
1 , d

+
2 , . . . , d

+
n ), D−(G) = diag(d−1 , d−2 , . . . , d−n ) and D(G) =

diag(d1, d2, . . . , dn) be the diagonal matrices of vertex out-degrees, vertex in-degrees
and vertex degrees of D , respectively. If S(D) is the skew adjacency matrix of D and
A(G) is the adjacency matrix of the underlying graph G of the digraph D , then it
is clear that A(G) = A+(D) + A−(D) and S(D) = A+(D) − A−(D), where A+(D)
and A−(D) are the out-adjacency and in-adjacency matrices of D . Following the
definition of Laplacian matrix of a graph, Cai et al. [2] called the matrix

S̃L(D) = (D+(D)−D−(D)) + (A+(D)− A−(D))
= D̃(D) + S(D),

where D̃(D) = D+(D)−D−(D), as the skew Laplacian matrix of the digraph D . It
is clear that the matrix S̃L(D) is not symmetric, so its eigenvalues need not be real.
However, the following observation was noted in [2].

Theorem 1.1. (i) If ν1, ν2, . . . , νn are the eigenvalues of S̃L(D), then
n∑

i=1
νi = 0.

(ii) 0 is an eigenvalue of S̃L(D) with multiplicity at least p, where p is the number
of components of D , with all ones vector (1, 1, . . . , 1) as the corresponding
eigenvector.

The skew Laplacian spectrum of a digraph D is a new concept in the field of spectral
theory of digraphs. A lot of literature can be found on spectral theory of skew matrix
[10], but one can hardly find a paper on the spectral theory of skew Laplacian matrix.
It will of interest in future to develop a spectral theory of digraphs for the skew
Laplacian matrix.

Let D be a digraph of order n with m arcs and having skew Laplacian eigenvalues
ν1, ν2, . . . , νn. The skew Laplacian energy of D is denoted by SLE(D) and is defined
as

SLE(D) =
n∑

j=1
|νj|.

This concept was introduced in 2013 by Cai et al. [2]. The idea of Cai et al. was to
conceive a graph energy like quantity for a digraph, that instead of skew adjacency
eigenvalues is defined in terms of skew Laplacian eigenvalues and that hopefully would
preserve the main features of the original graph energy. The definition of SLE(D)
was therefore so chosen that all the properties possessed by graph energy should be
preserved. The skew Laplacian energy is an extension of skew energy of a digraph
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just as Laplacian energy (see [4, 5, 11] and the references therein) is an extension of
graph energy (see [6] and the references therein).

The rest of the paper is organized as follows. In Section 2, we obtain the skew
Laplacian energy of star for any orientation and cycle for some orientations. In Section
3, we obtain bounds for SLE(D) which are better than the already known bounds.
We also leave some problems related to skew Laplacian spectrum and skew Laplacian
energy. These problems will be of interest for the future research.

2. Skew Laplacian Energy of Some Digraphs

In this Section, we obtain the skew Laplacian energy of star for any orientation and
cycle for some orientations.

A digraph D is said to be Eulerian if d+
i = d−i , for all i = 1, 2, . . . , n. Therefore,

for an Eulerian digraph D , we always have D̃(D) = 0, which gives S̃L(D) = S(D).
Using this, the following observation is immediate.

Theorem 2.1. For an Eulerian digraph D , we have SLE(D) = Es(D), where Es(D)
is the skew energy of D .

As an immediate consequence to Theorem 2.1 we have the following result.

Theorem 2.2. For a directed cycle Cn, we have SLE(Cn) = Es(Cn), where Es(D)
is the skew energy of D .

This shows that for a directed cycle Cn, the skew Laplacian energy is same as the
corresponding skew energy. In [1], the skew energy of a cycle for any orientation, was
completely determined. Like this, it will be interest to determine the skew Laplacian
energy of a cycle for any orientation. We leave this as a problem for the future research
at the end of the Section 3.

We obtain the skew Laplacian energy of a star for any orientation and as a conse-
quence we show that every even positive integer is indeed the skew Laplacian energy
of some digraph.

Theorem 2.3. For the star K1,n of order n + 1, we have SLE(K1,n) = 2(n − 1),
if all the edges are oriented towards or away from the center, and SLE(K1,n) =
n− 2 +

√
(n− 2k)2 − 4(n− 1), otherwise, where k, 1 ≤ k ≤ n− 1, is the number of

edges oriented towards the center.

Proof. Let V (K1,n) = {v1, v2, . . . , vn+1} be the vertex set of K1,n. If vn+1 is the center
of K1,n, orient all the edges toward vn+1. Then

S(K1,n) =


0 0 · · · 0 1
0 0 · · · 0 1
... ... . . . ... ...
0 0 · · · 0 1
−1 −1 · · · −1 0

 and D̃(K1,n) =


1 0 · · · 0 0
0 1 · · · 0 0
... ... . . . ... ...
0 0 · · · 1 0
0 0 · · · 0 −n

 .
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Therefore,

S̃L(K1,n) =


1 0 · · · 0 1
0 1 · · · 0 1
... ... . . . ... ...
0 0 · · · 1 1
−1 −1 · · · −1 −n

 .

It is easy to see that the eigenvalues of this matrix are {−(n − 1), 0, 1[n−1]}, and
so SLE(K1,n) = 2(n− 1). On the other hand, if we orient the edges away from vn+1,
then it can be seen that

S̃L(K1,n) =


−1 0 · · · 0 −1
0 −1 · · · 0 −1
... ... . . . ... ...
0 0 · · · −1 −1
1 1 · · · 1 n

 ,

having eigenvalues {(n−1), 0,−1[n−1]}, so SLE(K1,n) = 2(n−1). Thus, for a directed
star K1,n, we have SLE(K1,n) = 2(n− 1).

If all the edges of the star K1,n are oriented away from the center vn+1 except
k, 1 ≤ k ≤ n − 1, edges which are oriented towards the center vn+1, then it can be
seen that the skew Laplacian matrix of K1,n is

S̃L(K1,n) =



1 0 · · · 0 0 · · · 0 −1
0 1 · · · 0 0 · · · 0 −1
... ... . . . ... ... . . . ... ...
0 0 · · · 1 0 · · · 0 −1
0 0 · · · 0 −1 · · · 0 1
... ... . . . 0 0 . . . ... ...
0 0 · · · 0 0 · · · −1 1
1 1 · · · 1 −1 · · · −1 n− 2k


.

By direct calculation, it can be seen that the skew Laplacian characteristic poly-
nomial of this matrix is x(x− 1)k−1(x+ 1)n−k−1 (x2 − (n− 2k)x+ n− 1) and so its
eigenvalues are

{
0, 1[k−1],−1[n−k−1],

n−2k+
√

(n−2k)2−4(n−1)
2 ,

n−2k−
√

(n−2k)2−4(n−1)
2

}
.

Therefore, SLE(K1,n) = n − 2 +
√

(n− 2k)2 − 4(n− 1). Thus, we have
SLE(K1,n) = 2(n− 1), if all the edges are oriented towards or away from the center,
and SLE(K1,n) = n− 2 +

√
(n− 2k)2 − 4(n− 1), otherwise, where k, 1 ≤ k ≤ n− 1

is the number of edges oriented towards the center. �

As a consequence to Theorem 2.3, we have the following observation.

Corollary 2.1. For a directed star of order n, skew Laplacian energy is always
2(n− 2).
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The above Theorem gives a complete description of the skew Laplacian energy of
orientations of K1,n. It is clear that unlike the skew energy of any orientation of K1,n,
which is same as the corresponding energy, the skew Laplacian energy of orientations
of K1,n is not same as the corresponding Laplacian energy. Moreover, it is also clear
that any two orientations which contain edges directed from and directed towards the
center of K1,n are non-isomorphic non-skew Laplacian cospectral digraphs. Further,
it gives an infinite family of real non-symmetric matrices with real eigenvalues.

3. Bounds for Skew Laplacian Energy

In this Section, we obtain bounds for skew Laplacian energy SLE(D), which gives
its connection to various parameters associated to a digraph. We show these bounds
for SLE(D) are better than some of the previously known bounds.

We first mention some known bounds for SLE(D). For a digraph with n vertices,
m arcs having vertex out-degrees d+

i and vertex in-degrees d−i , i = 1, 2, . . . , n, let
M = −m + 1

2

n∑
i=1

(
d+

i − d−i
)2

and M1 = M + 2m = m + 1
2

n∑
i=1

(
d+

i − d−i
)2
. Clearly,

M1 ≥ m, with equality if and only if D is an Eulerian digraph.
The following bounds are obtained in the basic paper [2] for skew Laplacian en-

ergy SLE(D) of a digraph D , which are analogues to the corresponding bounds on
Laplacian energy LE(G).
Theorem 3.1. Let D be a simple digraph possessing n vertices, m arcs and p com-
ponents. Assume that d+

i and d−i respectively, are the out-degree and in-degree of the
vertex vi, i = 1, 2, . . . , n and ν1, ν2, . . . , νn are the skew Laplacian eigenvalues of D .
Then

2
√
|M | ≤ SLE(D) ≤

√
2M1(n− p).

Equality occurs on the left if and only if for each pair of νi1νj1 and νi2νj2 (i1 6= j1,
i2 6= j2), there exists a non-negative real number k such that νi1νj1 = kνi2νj2; and for
each pair of ν2

i1 and ν2
i2, there exists a non-negative real number l such that ν2

i1 = lν2
i2.

Equality occurs on the right if and only if D is 0-regular or D is an Eulerian digraph
with skew Laplacian eigenvalues 0[p], (ai)[ n−p

2 ], (−ai)[ n−p
2 ], a > 0, where b[t], means

that the eigenvalues b is repeated t times in the spectrum.
As an immediate consequence to Theorem 3.1, we have the following result.

Corollary 3.1. Let D be a simple digraph possessing p components C1, C2, . . . , Cp.
If SLE(D) =

√
2M1(n− p), then each component Ci is Eulerian with odd number of

vertices.
Since n− p ≤ n, we have the following consequence of Theorem 3.1.

Corollary 3.2. For any simple digraph D , we have SLE(D) ≤
√

2M1n.
If D has no isolated vertices, then n ≤ 2m, and so

√
2M1n ≤ 2

√
M1m ≤ 2M1.

Thus, we have the following observation.
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Corollary 3.3. For any simple digraph D , we have SLE(D) ≤ 2M1.

The following Theorem gives a Koolen type [9] upper bound for SLE(D).

Theorem 3.2. Let D be a simple digraph with n vertices, m arcs and p components.
Assume that t = |ν1| ≥ |ν2| ≥ · · · ≥ |νn−p| ≥ 0, where ν1, ν2, . . . , νn−p, 0[p] are the
eigenvalues of S̃L(D). Then

(3.1) SLE(D) ≤ t+
√

(n− p− 1)(2M1 − t2).

Equality occurs if and only if D is 0-regular or D is an Eulerian digraph with skew
Laplacian eigenvalues 0[p], (ai)[

n−p
2 ], (−ai)[

n−p
2 ], a > 0.

Proof. Let S̃L(D) = (lij). By Schur’s triangularization theorem [7], there exists a
unitary matrix U such that U∗S̃L(D)U = T , where T = (tij) is an upper triangular
matrix with diagonal entries tii = νi, i = 1, 2, . . . , n. Therefore,

(3.2)
n∑

i,j=1
|lij|2 =

n∑
i,j=1
|tij|2 ≥

n∑
i=1
|tii|2 =

n∑
i=1
|νi|2,

that is,

(3.3)
n∑

i=1
|νi|2 ≤

n∑
i,j=1
|lij|2 =

n∑
i=1

(d+
i − d−i )2 + 2m = 2M1.

Now, applying Cauchy-Schwarz’s inequality to vectors (|ν2|, |ν3|, . . . , |νn−p|) and
(1, 1, . . . , 1) and using (3.3), we have

SLE(D)− |ν1| =
n∑

i=2
|νi| =

n−p∑
i=2
|νi| ≤

√√√√(n− p− 1)
n−p∑
i=2
|νi|2

=
√√√√(n− p− 1)

n∑
i=2
|νi|2 ≤

√
(n− p− 1)(2M1 − |ν1|2).

This gives

SLE(D) ≤ t+
√

(n− p− 1)(2M1 − t2).

Equality occurs in (3.1) if and only if equality occurs in (3.2) and equality occurs in
Cauchy-Schwarz’s inequality. Since equality occurs in (3.2) if and only if T = (tij) is
a diagonal matrix. It follows that equality occurs in (3.1) if and only if T = (tij) is a
diagonal matrix and |ν2| = |ν3| = · · · = |νn−p|.

From Schur’s unitary triangularzation theorem [7], we know that T = (tij) is a
diagonal matrix if and only if S̃L(D) is a normal matrix. That is,

(3.4) S̃L(D)S̃L∗(D) = S̃L
∗(D)S̃L(D).
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Since S̃L(D) = D̃(D) +S(D) and S̃L∗(D) = D̃(D) +S(D), it follows from (3.4) that
(D̃(D)− S(D))(D̃(D) + S(D)) = (D̃(D)− S(D))(D̃(D)− S(D))
⇒S(D)D̃(D) = D̃(D)S(D).

Comparing the element on the ith row and the jth column of the matrices on both
sides, we arrive at
(3.5) sij(d+

j − d−j ) = (d+
i − d−i )sij.

If vi and vj are not adjacent, then sij = 0 and so (3.5) always holds. Assume that vi

and vj are adjacent, then sij 6= 0 and so (3.5) gives
d+

i − d−i = d+
j − d−j .

Let C1, C2, . . . , Cp be the components of D . As Ck, 1 ≤ k ≤ p is connected, there
is a path between any two vertices, let P : u = v0, v1, . . . , vt = w be a path between
u and w in Ck. Since for any two connected vertices in D , the differences between
the out-degree and in-degree is same, it follows that d+(u)− d−(u) = d+(w)− d−(w),
for all u,w ∈ Ck. Therefore, using the fact that ∑v∈Ck

(d+(v)− d−(v)) = 0, it follows
that d+(v) − d−(v) = 0, for all v ∈ Ck. That is, d+

i = d−i , for all vi ∈ D , giving
that D̃(D) = 0 and so S̃L(D) = −S(D). This shows that equality occurs in (3.1) if
and only if the non-zero skew Laplacian eigenvalues ν1, ν2, . . . , νn−p of D are purely
imaginary with t = |ν1| and |ν2| = · · · = |νn−p|.

If t = |ν1| and |ν2| = · · · = |νn−p| = 0, then we must have t = 0. For if t > 0,
then using the fact that the eigenvalues of S̃L(D) either zero or purely imaginary, it
follows that the spectrum of S̃L(D) is {it,−it, 0[n−1]}, which is not possible as order
of D is n. Therefore, we must have t = 0 and so the spectrum of S̃L(D) contains 0
with multiplicity n. Since d+

i = d−i , for all vi it follows that D is a 0-regular digraph.
If t = |ν1| and |ν2| = · · · = |νn−p| = a, a > 0 then we must have t = a. For if t > a >

0, then using the fact that the eigenvalues of S̃L(D) either zero or purely imaginary, it
follows that the spectrum of S̃L(D) is {it,−it, (ia)[

n−p−1
2 ], (−ia)[

n−p−1
2 ], 0[p]}, which

is not possible as order of D is n. Therefore, we must have t = a and so the eigenvalues
of S̃L(D) are {(ia)[

n−p
2 ], (−ia)[

n−p
2 ], 0[p]}. That completes the proof. �

The following arithmetic-geometric mean inequality can be found in [8].

Lemma 3.1. If a1, a2, . . . , an are non-negative numbers, then

n

 1
n

n∑
j=1

aj −

 n∏
j=1

aj

 1
n

 ≤ n
n∑

j=1
aj −

 n∑
j=1

√
aj

2

≤ n(n− 1)

 1
n

n∑
j=1

aj −

 n∏
j=1

aj

 1
n

 .
Moreover, equality occurs if and only if a1 = a2 = · · · = an.
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The following inequality was obtained by Furuichi [3].

Lemma 3.2. For a1, a2, . . . , an ≥ 0 and p1, p2, . . . , pn ≥ 0 such that
n∑

j=1
pi = 1, then

n∑
j=1

ajpj −
n∏

j=1
a

pj

j ≥ nλ

 1
n

n∑
j=1

aj −
n∏

j=1
a

1
n
j

 ,
where λ = min{p1, p2, . . . , pn}. Moreover, equality occurs if and only if a1 = a2 =
· · · = an.

For a connected digraph D with absolute values of the skew Laplacian eigenvalues
|ν1| ≥ |ν2| ≥ |νn−1| ≥ 0, let K =

n−1∏
j=1
|νj|.

We obtain a lower bound for SLE(D), in terms of the number of vertices n and
the number K.

Theorem 3.3. Let D be a simple connected digraph with n vertices and m arcs having
skew Laplacian eigenvalues ν1, ν2, . . . , νn−1, 0 with t = |ν1| ≥ |ν2| ≥ · · · ≥ |νn−1| ≥ 0.
Then

(3.6) SLE(D) ≥ t+ (n− 2)K
1

n−1

K 1
2(n−1)(n−2)

t
1

2n−4
− 1

 ,
with equality if and only if t = |ν1| = |ν2| = · · · = |νn−1|.

Proof. Setting n := n−1, aj = |νj|, for j = 1, 2, . . . , n−1, p1 = 1
2(n−1) , pj = 2n−3

2(n−1)(n−2) ,
for j = 2, 3, . . . , n− 1 in Lemma 3.2, we have

|ν1|
2(n− 1) + 2n− 3

2(n− 1)(n− 2)

n−1∑
j=2
|νj| − |ν1|

1
2(n−1)

n−1∏
j=2
|νj|

2n−3
2(n−1)(n−2)

≥ 1
2(n− 1)

n−1∑
j=1
|νj| −

1
2

n−1∏
j=1
|νj|

1
n−1 ,

that is,
|ν1|

2(n− 1) + 2n− 3
2(n− 1)(n− 2) (SLE(D)− |ν1|)− |ν1|

−1
2(n−2)K

2n−3
2(n−1)(n−2)

≥ 1
2(n− 1)SLE(D)− 1

2K
1

n−1 ,

this gives

SLE(D) ≥ 2(n− 2)
 |ν1|

2(n− 2) + K
2n−3

2(n−1)(n−2)

|ν1|
1

2(n−2)
− 1

2K
1

n−1

 .
From previous the result follows.

Equality occurs in (3.6) if and only if equality occurs in Lemma 3.2, that is, if and
only if t = |ν1| = |ν2| = · · · = |νn−1|. That completes the proof. �
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We now obtain the bounds for SLE(D), in terms of the number of vertices n, the
numbers K, M and M1 associated with the digraph D .

Theorem 3.4. Let D be a simple connected digraph with n vertices and m arcs having
skew Laplacian eigenvalues ν1, ν2, . . . , νn−1, 0 with |ν1| ≥ |ν2| ≥ · · · ≥ |νn−1| ≥ 0. Then

(3.7)
√

2|M |+ (n− 1)(n− 2)K
2

n−1 ≤ SLE(D) ≤
√

2M1(n− 2) + (n− 1)K
2

n−1 ,

with equality on the left if and only if ν2
1 = ν2

2 = · · · = ν2
n−1 and the equality on right

occurs if and only if D is 0-regular or D is an Eulerian digraph with skew Laplacian
eigenvalues 0[p], (ai)[ n−p

2 ], (−ai)[ n−p
2 ], a > 0.

Proof. Setting n := n−1 and aj = |νj|2, for j = 1, 2, . . . , n−1 in Lemma 3.1, we have

α ≤ (n− 1)
n−1∑
j=1
|νj|2 −

n−1∑
j=1
|νj|

2

≤ (n− 2)α,

that is,

(3.8) α ≤ (n− 1)
n−1∑
j=1
|νj|2 − (SLE(D))2 ≤ (n− 2)α,

where

α = (n− 1)

 1
n− 1

n−1∑
j=1
|νj|2 −

n−1∏
j=1
|νj|2

 1
n−1


=
n−1∑
j=1
|νj|2 − (n− 1)

n−1∏
j=1
|νj|

 2
n−1

=
n−1∑
j=1
|νj|2 − (n− 1)K

2
n−1 .

Using (3.3) and the value of α, we have from the left inequality of (3.8)

(SLE(D))2 ≤ (n− 2)
n−1∑
j=1
|νj|2 + (n− 1)K

2
n−1 ,

that is,

SLE(D) ≤
√

2M1(n− 2) + (n− 1)K
2

n−1 ,

which proves the right inequality.
Now, using inequality (7) from [2] and the value of α, we have from the right

inequality of (3.8)

(SLE(D))2 ≥
n−1∑
j=1
|νj|2 + (n− 1)(n− 2)K

2
n−1 ,
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that is,

SLE(D) ≥
√

2|M |+ (n− 1)(n− 2)K
2

n−1 ,

which proves the left inequality.
Equality occurs on the left of (3.7) if and only if equality occurs in Lemma 3.1 and

equality occurs in (6) and (7) in [2]. Since equality occurs in Lemma 3.1 if and only if
all as

i are equal and equality occurs in (6) and(7) of [2] if and only if for each pair of
νi1νj1 and νi2νj2 , i1 6= j1, i2 6= j2, there exists a non-negative real number k such that
νi1νj1 = kνi2νj2 ; and for each pair ν2

i1 and ν2
i2 , there exists a non-negative real number

l such that ν2
i1 = lν2

i2 . It follows that equality occurs on the left of (3.7) if and only if
ν2

1 = ν2
2 = · · · = ν2

n−1.
Equality occurs on the right of (3.7) if and only if equality occurs in Lemma 3.1

and equality occurs in (3.3). Since equality occurs in Lemma 3.1 if and only if all as
i

are equal and equality occurs in (3.3) if and only if the matrix T = (tij) in Theorem
3.2, is a diagonal matrix. That is, equality occurs on the right of (3.7) if and only
if T = (tij) is a diagonal matrix and |ν1|2 = |ν2|2 = · · · = |νn−1|2. Now, proceeding
similarly as in Theorem 3.2, it can be seen that equality occurs on the right of (3.7) if
and only if D is 0-regular or D is an Eulerian digraph with the eigenvalues of S̃L(D)
as 0[p], (ai)[

n−p
2 ], (−ai)[

n−p
2 ], a > 0. �

Remark 3.1. The upper bound given by Theorem 3.4 is better than the upper bound
given by Theorem 3.1 for all connected digraphs D . As by arithmetic-geometric mean
inequality, we have

2M1 ≥
n−1∑
j=1
|νj|2 ≥ (n− 1)

n−1∏
j=1
|νj|

 2
n−1

= (n− 1)K
2

n−1 ,

adding 2M1(n− 2) on both sides, we obtain

2M1(n− 1) ≥ 2M1(n− 2) + (n− 1)K
2

n−1 ,

from which the result follows.

Remark 3.2. The lower bound given by Theorem 3.4, is better than the lower bound
given by Theorem 3.1 for all connected digraphs D , with 2|M | ≤ (n− 1)(n− 2)K

2
n−1 .

We conclude this paper with the following problems which will be of interest for
the future research.

For a simple digraph D , the relation between the coefficients of the characteristic
polynomial of S(D) and the structure of D is known [10]. Like wise, the following
problem will be of interest.

Problem 3.1. For a simple non-Eulerian digraph D , interpret if possible the coefficients
of the characteristic polynomial of S̃L(D), in terms of structure of D .
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For a simple digraph D , the largest among the absolute values of skew eigenvalues
is called skew spectral radius [10]. Like wise, we call the largest among the absolute
values of skew Laplacian eigenvalues as the skew Laplacian spectral radius of the
digraph D . The following problem will be of interest.

Problem 3.2. Establish possible relations between the skew spectral radius and the
skew Laplacian spectral radius of a digraph D . Also, establish possible relations
between the skew Laplacian spectral radius with the parameters associated with the
structure of the digraph.

Various relations between the skew spectrum of a simple digraph D and the adja-
cency spectrum of the underlying graph are established see [10]. The problem can be
of interest.

Problem 3.3. Establish possible relations between the skew Laplacian spectrum of a
digraph D and the Laplacian spectrum of the corresponding underlying graph.

A complete description of the skew energy of a cycle is given in [1]. Like wise, the
following problem will be of interest.

Problem 3.4. For any orientation, give the complete description for the skew Laplacian
energy of the cycle Cn.

Problem 3.5. Characterise all the non-Eulerian digraphs D for which SLE(D) =
Es(D).

Problem 3.6. If possible, interpret skew Laplacian energy in chemistry and other
disciplines.

For a simple digraph D , the rank of the matrix S(D) is called skew rank of the
underlying graph G. Like wise, if we call the rank of the matrix S̃L(D) as the skew
Laplacian rank of the corresponding underlying graph G, the following problem will
be of interest.

Problem 3.7. For a simple digraph D , establish possible relations between the skew
Laplacian rank and the rank of underlying graph.
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uscript.
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