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FIXED POINT THEOREMS AND CONTINUITY
CHARACTERIZATION FOR LINEAR MAPS IN COLOMBEAU

ALGEBRAS

ABDELLAH TAQBIBT1, MOHAMED CHAIB2, AND SAID MELLIANI2

Abstract. In this article, we present a novel characterization of the continuity of
linear maps within Colombeau algebras. Additionally, we introduce an alternative
representation for the contraction of these maps. Moreover, we put forth a new
concept of fixed-point theorems in Colombeau algebra, extending classical fixed-
point theorems, including those of Banach, Chatterjea, and Kannan. To underscore
the practical relevance of our findings, we offer various examples and applications.

1. Introduction

The fixed point theorems are regarded as an effective tool for solving differential
equations, for example, see [21–26]. In the literature, the embedding of fixed point
theory in the framework of Colombeau algebra is based on the famous theorem of
J. A. Marti see [16]. The idea of J. A. Marti is based on the Banach fixed point
theorem in classical metric spaces, with several assumptions to make sense of the
contraction of mappings. Our new idea is based on this result of J. A. Marti, but
we will lighten the assumptions. Indeed: We have defined a new contraction in
which we don’t need all these assumptions. Our contraction is intended for mappings
defined between the Colombeau algebras (GE, (Pi)i∈I , where (Pi)i∈I , Pi(u) = e−vpi (uϵ)

and vpi
is the valuation function associated with the ultra pseudo-seminorms family

which makes E a locally convex space. We have also extended the two theorems of
Chattergia and Kannan in the framework of Colombeau algebras. On the other hand,
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our paper contains a very legitimate notion of contraction, which will allow us to
cite some fundamental theorems of fixed point in the algebra of generalized functions
of Colombeau. We have also introduced a characterization of the continuity notion
of C̃-linear maps between Colombeau algebras, based on the sharp topology defined
on Colombeau algebras seen as modules on C̃. In this article, we have proved three
well-known fixed point theorems in the classical framework, namely Banach’s fixed
point theorem, Kannan’s fixed point theorem, and that of Chatterjea (see [2, 14]).
Fixed point theorems are very useful to know if an equation has a solution, finding
a solution to a differential equation can then be interpreted as finding a map and
proving that it has a fixed point, which will be the solution to the problem.

The present work is formulated in the framework of Colombeau generalized functions.
This will allow us to use the powerful tools from this theory to combine generalized
function data with nonlinearities and measure regularity. We give some properties in
the theory of topological C̃-modules and locally convex topological C̃-modules, and
illustrated this with application to an evolution problem. In [8] the authors, shows
that in one space dimension, an initial singularity at the origin propagates along the
characteristic lines emanating from the origin, as in the linear case. The proof is
based on a fixed point theorem in a suitable ultrametric topology on the subset of
Colombeau solutions possessing the required regularity. J. A. Marti in [16] and several
other authors have found together a lot of results on the existence and uniqueness
of generalized fixed point by a method which consists of transforming the problem
given in the sense of Colombeau to its equivalence in classic, after they showed that
its solutions are moderate and therefore deduce that the generalized solution exists.
But our point of view is to use a definition of contraction in the sense of generalized
functions to mount existence and uniqueness of fixed point in this frame of Colombeau
generalized functions. Starting from the notions of C̃-linear and locally convex C̃-
linear topologies which are introduced and described from their neighborhoods, a
characterization of the continuity of C̃-linear maps from a locally convex topological
C̃-modules into another C̃-modules is given in this work. We are inspired by the
analogous statement involving seminormes and locally convex vector spaces, making
use of the concept of ultra pseudo-seminorm, for example, the continuity of C̃-modules
is studied in this paper. Our main result is to give a necessary and sufficient condition
in order to a linear map from a Colombeau algebra to another be continuous, and we
focus on proving a new theorems of fixed point in this context.

The present paper is organized as follows. After this introduction, we will recall
some basic properties concerning Colombeaus algebra in Section 2. The notion of
C̃-modules topology and some properties are presents in Section 3. In Section 4,
we are talking about continuity, contraction and fixed point in C̃-modules. Finally,
Section 5 is devoted to the existence-uniqueness result of a differential equation.
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2. Preliminaries

Before describing our results in more detail, a few words about Colombeau algebras
are in order. The elements of Colombeau algebra G are equivalence classes of nets of
smooth functions satisfying asymptotic conditions in the regularization parameter ϵ,
for more details [3–6,12,13,17]. We define the set E(Rn) = (C∞(Rn))(0,1]. The set of
moderate functions is given as follows

EM(Rn) =
{

(σϵ)ϵ ∈ E(Rn) | for all K ⊂⊂ Rn, α ∈ N,

there exists N ∈ N : sup
x∈K

|Dασϵ(x)| = Oϵ→0(ϵ−N)
}

,

where Dα is the differential operator of order α. The ideal of negligible functions is
defined by

N(Rn) =
{

(σϵ)ϵ ∈ E(Rn) | for all K ⊂⊂ Rn, α ∈ N,

for all q ∈ N : sup
x∈K

|Dασϵ(x)| = Oϵ→0(ϵq)
}

.

The Colombeau algebra is defined as a factor algebra
(2.1) G(Rn) = EM(Rn)/N(Rn).
We denote C the field of complex numbers. Let C̃ be the ring of complex generalized
numbers obtained by factorizing,

(2.2) EC =
{
(rϵ)ϵ ∈ C(0,1] | there exists N ∈ N, |rϵ| = Oϵ→0(ϵ−N)

}
,

with respect to the ideal

(2.3) NC =
{
(rϵ)ϵ ∈ C(0,1] | for all q ∈ N, |rϵ| = Oϵ→0(ϵq)

}
.

Also, the algebra of generalized complex numbers is defined as follows
(2.4) C̃ = EC/NC.

3. Definition and Basic Properties of C̃-Module G

It is clear that C̃ is trivially a module over itself and it can be endowed with a
structure of a topological ring (see [10, 11]). In the sequel, we need the following
function, which is inspired by non-standard analysis [17,20] and the previous work in
this field [1, 18,19] we define the following function

(3.1) v :

EM(Rn) → (−∞, +∞],
(σϵ)ϵ → sup

{
l ∈ R | |σϵ| = Oϵ→0(ϵl)

}
.

It satisfies the following conditions:
(i) v ((σϵ)ϵ) = +∞ if and only if (σϵ)ϵ ∈ N(Rn);
(ii) v ((σϵ)ϵ(ϱϵ)ϵ) ⩾ v ((σϵ)ϵ) + v ((ϱϵ)ϵ), for all (σϵ)ϵ, (ϱϵ)ϵ ∈ EM(Rn);
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(ii’) v ((σϵ)ϵ(ϱϵ)ϵ) = v ((σϵ)ϵ) + v ((ϱϵ)ϵ), for all ϱϵ = cϵb, c ∈ C, b ∈ R;
(iii) v ((σϵ)ϵ + (ϱϵ)ϵ) ⩾ min {v ((σϵ)ϵ) , v ((ϱϵ)ϵ)}, for all (σϵ)ϵ, (ϱϵ)ϵ ∈ EM(Rn).

Note that if
(
σϵ − σ

′
ϵ

)
ϵ

∈ N(Rn), (i) combined with (iii) yields v ((σϵ)ϵ) = v
(
(σ′

ϵ)ϵ

)
.

This means that we can use the function v to define the valuation
(3.2) vC̃(σ) = v ((σϵ)ϵ) ,

of a complex generalized number σ = [(σϵ)ϵ], and that all the previous properties hold
for elements of C̃. Now let us consider the following map

(3.3) | · |e :

C̃ → [0, +∞),
σ → |σ|e = e−v

C̃
(σ).

Definition 3.1. Let E be a locally convex topological vector space equipped through
the family of seminorms {pi}i∈I . The elements of

(3.4) ME =
{
(σϵ)ϵ ∈ E(0,1] | for all i ∈ I, there exists N ∈ N, pi(σϵ) = Oϵ→0(ϵ−N)

}
and
(3.5) NE =

{
(σϵ)ϵ ∈ E(0,1] | for all i ∈ I, q ∈ N, pi(σϵ) = Oϵ→0(ϵq)

}
,

are called respectively ME-moderate space and NE-negligible space, respectively.
We introduce the space of generalized functions based on E as the factor space

GE = EE/NE

It is clear that the definition of GE does not depend on the family of seminorms
which determines the locally convex topology of E. We adopte the notation σ =

[
(σϵ)ϵ

]
for the class σ of (σϵ)ϵ in GE, and C∞(R) embedded into this algebra via the constant
embedding f 7→

[
(f)ϵ

]
. By the properties of seminorms on E we may define the product

between complex generalized numbers and elements of GE via the map C̃×GE → GE.
It is natural to introduce the pi-valuation of (σϵ)ϵ ∈ ME as
(3.6) vpi

((σϵ)ϵ) = sup
{
b ∈ R | for all i ∈ I, pi(σϵ) = Oϵ→0(ϵb)

}
.

Note that vpi
((σϵ)ϵ) = v ((pi(σϵ))ϵ), (where the function v) gives the valuation on ME.

Clearly vpi
maps ME into (−∞, +∞) and the following properties hold:

(i) vpi
((σϵ)ϵ) = +∞ for all i ∈ I if and only if ((σϵ)ϵ) ∈ NE;

(ii) vpi
((ϱϵσϵ)ϵ) ⩾ vpi

((ϱϵ)ϵ) + vpi
((σϵ)ϵ), for all (σϵ)ϵ, (ϱϵ)ϵ ∈ ME;

(iii) vpi
((λϵσϵ)ϵ) = vpi

((λϵ)ϵ) + vpi
((σϵ)ϵ) for all λϵ = cϵb, c ∈ C, b ∈ R;

(iv) vpi
((σϵ)ϵ + (ϱϵ)ϵ) ⩾ min {vpi

((σϵ)ϵ) , vpi
((ϱϵ)ϵ)} , for all (σϵ)ϵ, (ϱϵ)ϵ ∈ ME.

Last assertion (i) combined with (iv) shows that
vpi

((σϵ)ϵ) = vpi

(
(σ′

ϵ)ϵ

)
, if

(
σϵ − σ

′

ϵ

)
ϵ

is NE-negligible.

This means that we can use (3.6) for defining the pi-valuation of a generalized function
σ =

[
(σϵ)ϵ

]
∈ GE by

vpi
(σ) = vpi

((σϵ)ϵ) .
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And thus Pi(σ) = e−vpi (σ) is an ultra pseudo-seminorm on the C̃-module GE. By [10,
Theorem 1.10] GE endowed with the topology of ultra pseudo-seminorms (Pi)i∈I is
a locally convex topological C̃-module. The topology induced by the ultra pseudo-
seminorms (Pi)i∈I called the sharp topology on GE. A basis of 0-neighbourhood is the
set of all balls

B(i, γ) =
{
σ ∈ GE | Pi(σ) < γ

}
, i ∈ I and γ > 0.

4. Main Results

This section is devoted to the important results of this paper. Let’s start with the
subsection of continuity.

4.1. Continuity and contraction in C̃-modules.
First, we are looking if it is possible to define a C̃-linear map S : GE → GF by means
of a given family (Sϵ)ϵ∈(0,1] of C-linear maps Sϵ : E → F , where E and F are locally
convex topological vector spaces. The general requirement is given in the following.

Lemma 4.1 ([16]). Let (Sϵ)ϵ∈(0,1] be a given family of C-linear maps Sϵ : E → F .
Suppose that

1. (σϵ)ϵ ∈ ME implies (Sϵσϵ)ϵ ∈ MF ;
2. (σϵ)ϵ ∈ NE implies (Sϵσϵ)ϵ ∈ NF .

Then, C̃-linear map S : (GE, (Pi)i∈I) → (GF , (Qj)j∈I) is well defined by
Sσ = [(Sϵσϵ)ϵ], for all σ ∈ GE.

Now we turn up to the continuity of mappings in Colombeau algebras. A function
f : GE → GF between Colombeau algebras is said to be continuous in σ0 in GE, if for all
γ > 0 there exists δγ > 0 such that σ−σ0 ∈ B(i, δγ) implies that f(σ)−f(σ0) ∈ B(j, γ).

Definition 4.1. Let S : GE → GF be a map with (GE, (Pi)i∈I) and (GF , (Qj)j∈J) are
two locally convex topological C̃-modules. We say that S is continuous if and only if,
for every j ∈ J, there exist i0 ∈ I, c > 0 such that

Qj(Sσ − Sϱ) ⩽ cPi0(σ − ϱ), for all σ, ϱ ∈ GE.

Example 4.1. Let E = C∞(R), Pi(·) = e−vpi (·) and pi(·) = ∥ · ∥∞ for all i ∈ I. The
mapping

S :

GE → GE,

σ → Sσ = [(Sϵσϵ)ϵ] = [( 1
ϵ2 sin(σϵ))ϵ],

is continuous in GE. Indeed, for all σ, ϱ ∈ GE, we have

|Sϵσϵ − Sϵϱϵ| ≤ c

ϵ2 |σϵ − ϱϵ|, c > 0.

And thus, vpi
(Sϵσϵ − Sϵϱϵ) ≥ −2 + vpi0

(σϵ − ϱϵ). It follows that,

Pi(Sσ − Sϱ) ≤ cPi0(σ − ϱ), c = e2 > 0.
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In particular for the continuity of a linear map on Colombeau’s algebra we have
the following.

Definition 4.2. Let S : GE → GF be a C̃-linear map with (GE, (Pi)i∈I) and
(GF , (Qj)j∈J) are two locally convex topological C̃-modules. We say that S is con-
tinuous if and only if, for every j ∈ J, there exist i0 ∈ I and c > 0 such that
(4.1) Qj(Sσ) ⩽ cPi0(σ), for all σ.

Theorem 4.1. Under the some notations above, let (Sϵ)ϵ be a C-linear maps family
given by the constant family (s)ϵ (i.e, Sσ = [(sσϵ)ϵ]). If s : E → F is continuous, then
S : GE → GF is a well defined C̃-linear and continuous.

Proof. First, show that S is well defined. Let (σϵ)ϵ ∈ ME. Then, for any i ∈ I, there
exists N ∈ N such that pi(σϵ) = Oϵ→0(ϵ−N), and σϵ ∈ E, for all ϵ ∈ (0, 1]. So, sσϵ ∈ F.
By continuity of s, for each j ∈ J , there exist i0 ∈ I, c > 0, such that

qj(sσϵ) ⩽ cpi(σϵ) ⩽ c × c
′
ϵ−N = c2ϵ

−N .

Then, for j ∈ J, there exists N ∈ N, with qj(sσϵ) = Oϵ→0(ϵ−N). Hence, (sσϵ)ϵ ∈ MF ,
which implies that Sσ ∈ GF .

Let (ϱϵ)ϵ ∈ NE, i.e., for each i ∈ I, pi(ϱϵ) = Oϵ→0(ϵq), for all q ∈ N and ϱϵ ∈ F, for
all ϵ ∈ (0, 1]. Since s is linear and continuous, then for any j ∈ J there exist i0 ∈ I
and c > 0 such that

qj (sϱϵ) ⩽ cpi0(ϱϵ) ⩽ c
′
ϵq, where c

′
> 0.

Hence, qj(Sϵϱϵ) = Oϵ→0(ϵq), and thus (sσϵ)ϵ ∈ NF . From Lemma 4.1, S is well defined.
The continuity. Let h = sup

{
b ∈ R | qj (sσϵ) = Oϵ→0(ϵb)

}
. For every j ∈ J , we

have
vqj

((sσϵ)ϵ) = v
(

(qj(sσϵ))ϵ

)
= sup

{
b ∈ R | qj (sσϵ) = Oϵ→0(ϵb)

}
= h.

And s is a linear continuous mapping, then for all j ∈ J, there exist i0 ∈ I, c > 0
such that qj(sσϵ) ⩽ cpi0(σϵ). Now we have to consider

d = vpi
((σϵ)ϵ) = v ((pi(σϵ))ϵ) = sup

{
b ∈ R | pi(σϵ) = Oϵ→0(ϵb)

}
.

Then, we have
qj (sσϵ) ⩽ c × c

′′
ϵd = c0ϵ

d, where c0, c′′ > 0.

So, d ⩽ h, which implies vpi0
((σϵ)ϵ) ⩽ vqj

((sσϵ)ϵ). Hence, e−vqj ((sσϵ)ϵ) ⩽ e−vpi0
((σϵ)ϵ),

and we get Qj(Sσ) ⩽ Pi0(σ). Conlusion S is C̃-linear continuous. □

Theorem 4.2. With the previous notations, if the following map

Sϵ :

E → F,

σϵ → Sϵσϵ,

is linear and contraction with the constant of contraction kϵ = Mϵk0 and k0, M > 0,
then S : GE → GF is contraction.
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Proof. For the proof of this result, we will follow the same procedure as in [7]. Let
ϵ ∈ (0, 1], and let the linear mapping Sϵ : (E, (pi)i∈I) → (F, (qj)j∈J) be contraction.
Then for all j ∈ J there exist i0 ∈ I and kϵ ∈ (0, 1) such that for all σϵ, ϱϵ ∈ E, we
have

(4.2) qj(Sϵσϵ − Sϵϱϵ) ⩽ kϵpi0(σϵ − ϱϵ).

Setting

h = vqj

(
(Sϵσϵ − Sϵϱϵ)ϵ

)
= v

(
(qj(Sϵσϵ − Sϵϱϵ))ϵ

)
= sup

{
b ∈ R | qj(Sϵσϵ − Sϵϱϵ) = Oϵ→0(ϵb)

}
and

d = vpi0

(
(σϵ − ϱϵ)ϵ

)
= v

(
(pi0(σϵ − ϱϵ))ϵ

)
= sup

{
b ∈ R | pi0(σϵ − ϱϵ) = Oϵ→0(ϵb)

}
.

Thank’s to (4.2), we get

qj(Sϵσϵ − Sϵϱϵ) ⩽ kϵpi0(σϵ − ϱϵ) ⩽ ϵk0M c ϵd = c1ϵ
d+k0 ,

where c1 > 0. Hence, d + k0 ⩽ h, which implies that

vqj

(
(Sϵσϵ − Sϵϱϵ)ϵ

)
⩾ vpi0

(
(σϵ − ϱϵ)ϵ

)
+ k0,

e−vqj ((Sϵσϵ−Sϵϱϵ)ϵ) ⩽ e−k0 e
−vpi0

((σϵ−ϱϵ)ϵ)
,

Qj(Sσ − Sϱ) ⩽ e−k0 Pi0(σ − ϱ).

We conclude that S is contraction. □

Example 4.2. Let GE = R̃, Pi(·) = e−vpi (·) and pi(·) = | · | for all i ∈ I. The mapping

S :

R̃ → R̃,

σ → Sσ = [(Sϵσϵ)ϵ] = [(ϵre−σϵ)ϵ],

where r > 0, is continuous in R̃. Indeed, for all σ, ϱ ∈ R̃, we have

|Sϵσϵ − Sϵϱϵ| ≤ kϵ|σϵ − ϱϵ|, kϵ = ϵr.

And thus, vpi
(Sϵσϵ − Sϵϱϵ) ≥ r + vpi0

(σϵ − ϱϵ). Consequently, we have

Pi(Sσ − Sϱ) ≤ cPi0(σ − ϱ), with c = e−r ∈ (0, 1).

Proposition 4.1. The space (GE, (Pi)i∈I) is a separated locally convex topological
C̃-module.

Proof. By the definition of the negligible space NE, if u ≠ 0 in GE, then vpi
((σϵ)ϵ) ̸=

±∞ for some i ∈ I, hence Pi(u) > 0, so, (GE, (Pi)i∈I) is separate. □
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A sequence in Colombeau algebra is a map

σ : N → GE, n 7→ σn = [(σn,ϵ)ϵ],

and is denoted by (σn)n∈N. We say that (σn)n∈N converges to σ ∈ GE if for all γ > 0,
there is n0 ∈ N, such that if n > n0, then σn −σ ∈ B(i, γ). Such a sequence (σn)n∈N is
a Cauchy if for all γ > 0 there is n0 ∈ N such that if m, n > n0, then σm −σn ∈ B(i, γ).
Since the sharp topology is a Hausdorff, then limits are unique whenever they exist.
Which is equivalent in terms of families of seminorms to the following definition.

Definition 4.3. A sequence (σn)n∈N in locally convex topological C̃-module
(GE,Pi∈I) is called convergent and converges to σ ∈ GE if,

lim
n→+∞

Pi(σn) = σ, for all i ∈ I.

Example 4.3. If we take GE = R̃, Pi(·) = e−vpi (·) and pi(·) = | · | for all i ∈ I. The
sequence σn = [(σn,ϵ)ϵ] in R̃, where σn,ϵ = 1

n
, n ∈ N does not converge to 0 in R̃ with

respect to the sharp topology, because if Pi( 1
n
) < γ, for all γ > 0, we obtain n < −1

ln(γ) ,
which is absurd when n is large enough. However, the sequence σn = [(σn,ϵ)ϵ] in
R̃, where σn,ϵ = rϵ

n
and rϵ = ϵ

r2
r4+ϵ4 , r > 0 converges to 0. Indeed, for all γ > 0,

take n0 = ⌈|rϵ|ϵln(γ)⌋ + 1 and ⌈·⌋ symbolizes the integer part. If n > n0, we have
that | ϵγ

n
| < ϵ− ln(γ), then vpi

( rϵ

n
) > − ln(γ). And thus Pi( ϵγ

n
) < γ which implies that

σn ∈ B(i, γ).

Definition 4.4. A sequence (σn)n∈N in locally convex topological C̃-module
(GE,Pi∈I) is called Cauchy if, for each m, n ∈ N, where m > n such that

lim
n→+∞

Pi(σn − σm) = 0, for all i ∈ I.

The following proposition has been proved in [10].

Proposition 4.2. ([10, Proposition 3.4, p. 25]) The space (GE, (Pi)i∈I) is complete.

Remark 4.1. Let (σn)n∈N be a sequence in GE. Then (σn)n∈N is convergent if and
only if, it is a Cauchy sequence if and only if, for all γ > 0 there is n0 ∈ N such that
n > m > n0 implies that σm − σn ∈ B(i, γ).

4.2. Some fixed point theorems in Colombeau algebra. The second part of
this section is dealing with some new theorems of fixed point in the framework of
Colombeau algebra based on the locally convex space. In this subsection to simplify
the formula we take v((σϵ)ϵ) = v(σϵ). The idea of this theorem inspired by that of the
Banach fixed point theorem in a classical metric space.

Theorem 4.3. Let A : (GE, (Pi)i∈I) → (GE, (Pi)i∈I) be a mapping from an algebra of
generalized functions into itself such that

1. there exists σ0 ∈ GE, pi(Aϵσ0,ϵ − σ0,ϵ) = Oϵ→0(ϵc), where σ0 = [(σ0,ϵ)ϵ];
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2. for every i ∈ I, pi(Aϵσϵ − Aϵϱϵ) ≤ Mϵk0 pi(σϵ − ϱϵ) for all (σϵ)ϵ, (ϱϵ)ϵ ∈ ME,
and M, k0 > 0.

Then, A has a unique fixed point.

Proof. We introduce the sequence (xn)n∈N defined by{
xn+1 = Axn,
x0 = σ0,

is equivalent to
{

xn+1,ϵ = Axn,ϵ + nϵ

x0,ϵ = σ0,ϵ + mϵ,

where (nϵ)ϵ, (mϵ)ϵ ∈ NE. We have,

e−vpi (xn+1,ϵ−xn,ϵ) = e−vpi (Aϵxn,ϵ−Aϵxn−1,ϵ).

We set

h = vpi
(Aϵxn,ϵ − Aϵxn−1,ϵ) = sup

{
b ∈ R | pi(Aϵxn,ϵ − Aϵxn−1,ϵ) = Oϵ→0(ϵb)

}
and

d = vpi
(xn,ϵ − xn−1,ϵ) = sup

{
b ∈ R | pi(xn,ϵ − xn−1,ϵ) = Oϵ→0(ϵb)

}
.

By taking σϵ = xn,ϵ and ϱϵ = xn−1,ϵ in the second condition, we get

pi(Aϵxn,ϵ − Aϵxn−1,ϵ) ⩽ Mϵk0pi(xn,ϵ − xn−1,ϵ) ⩽ Mϵk0 c ϵd = c1ϵ
d+k0 ,

where c1 > 0. Hence, d + k0 ⩽ h then, it follows that

vpi
(Aϵxn,ϵ − Aϵxn−1,ϵ) ⩾ vpi

(xn,ϵ − xn−1,ϵ) + k0,

e−vpi (Aϵxn,ϵ−Aϵxn−1,ϵ) ⩽ e−k0 e−vpi (xn,ϵ−xn−1,ϵ).

Therefore, e−vpi (xn+1,ϵ−xn,ϵ) ≤ e−k0e−vpi (xn,ϵ−xn−1,ϵ). By induction, we obtain

e−vpi (xn+1,ϵ−xn,ϵ) ≤ (e−k0)ne−vpi (Aϵx0,ϵ−x0,ϵ).

Now let us prove that (xn) is a Cauchy sequence. Let m, n ∈ N, m > n. We have

e−vpi (xm,ϵ−xn,ϵ) = e−vpi (xm,ϵ−xn,ϵ)

≤ esup{−vpi (xm,ϵ−xm−1,ϵ),−vpi (xm−1,ϵ−xn,ϵ})

≤ sup
{
e−vpi (xm,ϵ−xm−1,ϵ), e−vpi (xm−1,ϵ−xn,ϵ)

}
≤ e−vpi (xm,ϵ−xm−1,ϵ) + e−vpi (xm−1,ϵ−xn,ϵ)

≤
(
e−k0

)m−1
pi (Aϵx0,ϵ − x0,ϵ) + · · · +

(
e−k0

)n
pi (Aϵx0,ϵ − x0,ϵ)

≤ (e−k0)n
(
1 + e−k0 + · · · + e−k0(m−n−1)

)
pi (Aϵx0,ϵ − x0,ϵ)

= (e−k0)n

(
1 − e−k0(m−n)

1 − ek0

)
e−vpi (Aϵx0,ϵ−x0,ϵ)

≤ (e−k0)n

1 − ek0
e−vpi (Aϵx0,ϵ−x0,ϵ),



588 A. TAQBIBT, M. CHAIB, AND S. MELLIANI

by the first condition, we get pi (Aϵx0,ϵ − x0,ϵ) = Oϵ→0(ϵc). Then,

vpi
(Aϵx0,ϵ − x0,ϵ) ≥ c,

−vpi
(Aϵx0,ϵ − x0,ϵ) ≤ −c,

e−vpi (Aϵx0,ϵ−x0,ϵ) ≤ e−c = const.

And thus,

e−vpi (xm,ϵ−xn,ϵ) ≤

(
e−k0

)n

1 − ek0
const.

Since the right hand side of the last inequality tends to zero as n → +∞, it follows that
(xn)n∈N is a Cauchy sequence in (G,(Pi)i∈I) which is a complete space, by Proposition
4.2, then (xn)n∈N is convergent. Then there exists σ in GE such that σ = limn→+∞ xn.
On the other hand, we have for any σ, ϱ ∈ GE, we can prove that A is a continuous
mapping. Indeed for any σ, ϱ ∈ GE, we have

Pi (Aσ − Aϱ) = e−vpi (Aϵσϵ−Aϵϱϵ) ≤ e−k0 e−vpi (σϵ−ϱϵ) ≤ e−k0 Pi (σ−ϱ) .

We deduce that A is continuous. And we have, xn+1 = Axn → σ as n → +∞ which
implies that σ = Aσ. Therefore, A has a fixed point. Now, assume that A has another
fixed point ϱ ∈ GE. Then Aϱ = ϱ, we can write

e−vpi (σϵ−ϱϵ) = Pi (σ − ϱ) = Pi (Aσ − Aϱ) = e−vpi (Aσϵ−Aϱϵ) ≤ e−k0 e−vpi (σϵ−ϱϵ),

this implies e−vpi (σϵ−ϱϵ) = 0, which signifies that vpi
(σϵ − ϱϵ) = +∞, and thus,

(σϵ − ϱϵ)ϵ ∈ NE. Therefore, σ = ϱ in GE. □

The theorem below is an extended of Kannan’s fixed point theorem in classical
metric space.

Theorem 4.4. Let A : (GE, (Pi)i∈I) → (GE, (Pi)i∈I) be a mapping from an algebra of
generalized functions equipped with a family of ultra pseudo-norms (Pi)i∈I into itself,
and satisfying the two following conditions:

1. there exists σ0 ∈ GE, pi(Aϵσ0,ϵ − σ0,ϵ) = Oϵ→0(ϵd), with d > 0;
2. for every i ∈ I, pi(Aϵσϵ − Aϵϱϵ) ≤ Mϵλ

[
pi(Aϵσϵ − σϵ) + pi(Aϵϱϵ − ϱϵ)

]
, for all

(σϵ)ϵ, (ϱϵ)ϵ ∈ ME, λ > ln(2), M > 0.
Then A has a unique fixed point in GE.

Proof. Let us consider the following sequenceyn+1 = Ayn,

y0 = σ0,
is equivalent to

yn+1,ϵ = Ayn,ϵ + nϵ,

y0,ϵ = σ0,ϵ + mϵ,

where (nϵ)ϵ, (mϵ)ϵ ∈ NE. We have

e−vpi (yn+1,ϵ−yn,ϵ) = e−vpi (yn+1,ϵ−yn,ϵ) = e−vpi (Aϵyn,ϵ−Aϵyn−1,ϵ).
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By the definition of the valuation function vpi
, we can write

pi (Aϵyn,ϵ − Aϵyn−1,ϵ) ≤ Mϵλ ϵmin{vpi (Aϵyn,ϵ−yn,ϵ),vpi (Aϵyn−1,ϵ−yn−1,ϵ)}.

Then,
vpi

(Aϵyn+1,ϵ − Aϵyn−1,ϵ) ≥ λ + min {vpi
(Aϵyn,ϵ − yn,ϵ), vpi

(Aϵyn−1,ϵ − yn−1,ϵ)} .

Thus,

e−vpi (Aϵyn,ϵ−Aϵyn−1,ϵ) ≤ e−λ e− min{vpi (Aϵyn,ϵ−yn,ϵ),vpi (Aϵyn−1,ϵ−yn−1,ϵ)}

≤ e−λ max
{
e−vpi (Aϵyn,ϵ−yn,ϵ), e−vpi (Aϵyn−1,ϵ−yn−1,ϵ)

}
≤ e−λ

(
e−vpi (Aϵyn,ϵ−yn,ϵ) + e−vpi (Aϵyn−1,ϵ−yn−1,ϵ)

)
.

It follows,

e−vpi (Aϵyn,ϵ−Aϵyn−1,ϵ) ≤ e−λ

1 − e−λ
e−vpi (Aϵyn−1,ϵ−yn−1,ϵ).

By induction, we can conclude that

e−vpi (Aϵyn,ϵ−Aϵyn−1,ϵ) ≤
(

e−λ

1 − e−λ

)n

e−vpi (Aϵy0,ϵ−y0,ϵ).

Now we have to prove that (yn)n is a Cauchy sequence. Let n, p ∈ N,
e−vpi (xn+p,ϵ−yn,ϵ) =e−vpi (xn+p,ϵ−yn,ϵ)

≤emax{−vpi (yn+p,ϵ−yn+p−1,ϵ),−vpi (yn+p−1,ϵ−yn,ϵ)}

≤ max
{
e−vpi (yn+p,ϵ−yn+p−1,ϵ), e−vpi (yn+p−1,ϵ−yn,ϵ)

}
≤e−vpi (yn+p,ϵ−yn+p−1,ϵ) + e−vpi (yn+p−1,ϵ−yn,ϵ)

...

≤

( e−λ

1 − e−λ

)n

+ · · · +
(

e−λ

1 − e−λ

)n+p−1
 e−vpi (Aϵy0,ϵ−y0,ϵ)

≤

(
e−λ

1−e−λ

)n

1 − e−λ

1−e−λ

e−vpi (Aϵy0,ϵ−y0,ϵ).

From the first property in the theorem we have e−vpi (Aϵy0,ϵ−y0,ϵ) is finite, the right
hand side of the last inequality tends to zero as n → +∞. Then, (yn)n is a Cauchy
sequence in GE which is complete by Proposition 4.2, and thus there is σ in GE such
that yn → 0 as n → +∞.

Now, let us prove that σ is a fixed point of the mapping A, we have

e−vpi (Aϵσϵ−σϵ) ≤ esup{−vpi (Aϵσϵ−yn,ϵ),−vpi (yn,ϵ−σϵ)}

≤ e−vpi (Aϵσϵ−yn,ϵ) + e−vpi (yn,ϵ−σϵ).
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On the other hand

e−vpi (yn,ϵ−σϵ) ≤ e−λ
(

e− min{vpi (yn,ϵ−yn−1,ϵ),vpi (σϵ−Aϵσϵ)}
)

≤ e−λ sup
{
(e−vpi (yn,ϵ−yn−1,ϵ), e−vpi (σϵ−Aϵσϵ)

}
.

Hence,
e−vpi (Aϵσϵ−σϵ) ≤ e−vpi (yn,ϵ−σϵ) + e−λe−vpi (yn,ϵ−yn−1,ϵ) + e−λe−vpi (Aϵσϵ−σϵ).

Thus, (
1 − e−λ

)
e−vpi (Aϵσϵ−σϵ) ≤ e−vpi (yn,ϵ−σϵ) + e−λ e−vpi (yn,ϵ−yn−1,ϵ).

By passing to the limit as n → +∞, we obtain e−vpi (Aϵσϵ−σϵ) = 0, this implies
vpi

(Aϵσϵ − σϵ) = +∞,

which means that (Aϵσϵ − σϵ)ϵ ∈ NE. Then, Aσ = σ. It now remains to demonstrate
the uniqueness. Assume that there is another fixed point ϱ of A, Aϱ = ϱ, such that
σ ̸= ϱ.

So, we can write
e−vpi (σϵ−ϱϵ) ≤ e−vpi (Aϵσϵ−Aϵϱϵ)

≤ e−λ esup{(−vpi (Aϵσϵ−σϵ),−vpi (Aϵϱϵ−ϱϵ)}

≤ e−λ sup
{
e−vpi (Aϵσϵ−σϵ), e−vpi (Aϵϱϵ−ϱϵ)

}
≤ e−λ

(
e−vpi (Aϵσϵ−σϵ) + e−vpi (Aϵϱϵ−ϱϵ)

)
.

Since Aσ = σ and Aϱ = ϱ, then
vpi

(Aϵσϵ − σϵ) = vpi
(Aϵϱϵ − ϱϵ) = +∞,

which implies that e−vpi (σϵ−ϱϵ) = 0. Thus, vpi
(σϵ − ϱϵ) = +∞. Then, (σϵ − ϱϵ)ϵ ∈ NE.

Conclusion is σ = ϱ in GE. □

The following theorem is based on the theorem in the classical case, of Chatterjia.

Theorem 4.5. Let A : (GE, (Pi)i∈I) → (GE, (Pi)i∈I) be a mapping from an algebra
of generalized functions equipped with a family of ultra pseudoseminorms (Pi)i∈I into
itself, and satisfying the two following conditions:

1. there exists σ0 ∈ GE, pi(Aϵσ0,ϵ − σ0,ϵ) = Oϵ→0(ϵk), with k > 0;
2. for any i ∈ I, pi(Aϵσϵ − Aϵvϵ) ≤ Mϵβ

[
pi(Aϵσϵ − ϱϵ) + pi(Aϵvϵ − σϵ)

]
, for all

(σϵ)ϵ, (ϱϵ)ϵ ∈ ME, β > ln(2), M > 0.
Then A has a unique fixed point in GE.

Proof. Let us consider the following sequenceyn+1 = Ayn,

y0 = σ0,
is equivalent to

yn+1,ϵ = Ayn,ϵ + nϵ,

y0,ϵ = σ0,ϵ + mϵ,
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where (nϵ)ϵ, (mϵ)ϵ ∈ NE. We have e−vpi (yn+1,ϵ−yn,ϵ) = e−vpi (Aϵyn+1,ϵ−Aϵyn−1,ϵ). By the
definition of the valuation function vpi

we can write

pi (Aϵyn,ϵ − Aϵyn−1,ϵ) ≤ Mϵβϵmin{vpi (Aϵyn,ϵ−yn,ϵ),vpi (Aϵyn−1,ϵ−yn−1,ϵ)}.

So,
vpi

(Aϵyn+1,ϵ − Aϵyn−1,ϵ) ≥ β + min {vpi
(Aϵyn,ϵ − yn−1,ϵ) , vpi

(Aϵyn−1,ϵ − yn,ϵ)} .

Thus,

e−vpi (Aϵyn,ϵ−Aϵyn−1,ϵ) ≤ e−βe− min{vpi (Aϵyn,ϵ−yn−1,ϵ),vpi (Aϵyn−1,ϵ−yn,ϵ)}

≤ e−β sup
{
e−vpi (Aϵyn,ϵ−yn−1,ϵ), e−vpi (Aϵyn−1,ϵ−yn,ϵ)

}
.

Since, (Aϵyn−1,ϵ − yn,ϵ)ϵ ∈ NE, it follows vpi
(Aϵyn−1,ϵ − yn,ϵ) = +∞. Then,

e−vpi (Aϵyn−1,ϵ−yn,ϵ) = 0.

We can write the last inequality as follow
e−vpi (Aϵyn,ϵ−Aϵyn−1,ϵ) ≤ e−β e−vpi (yn+1,ϵ−yn−1,ϵ),

and by the properties of the valuation function we can conclude
vpi

(yn+1,ϵ − yn−1,ϵ) = vpi
((yn+1,ϵ − yn,ϵ) + (yn,ϵ − yn−1,ϵ))

≥ min {vpi
(yn+1,ϵ − yn,ϵ) , vpi

(yn,ϵ − yn−1,ϵ)} .

On the other hand, we have

e−vpi (Aϵyn,ϵ−Aϵyn−1,ϵ) ≤ e−β
(
e−vpi (yn+1,ϵ−yn,ϵ) + e−vpi (yn,ϵ−yn−1,ϵ)

)
≤ e−βe−vpi (Aϵyn,ϵ−Aϵyn−1,ϵ) + e−βe−vpi (yn,ϵ−yn−1,ϵ).

Then,

e−vpi (Aϵyn,ϵ−Aϵyn−1,ϵ) ≤
(

e−β

1 − e−β

)
e−vpi (yn,ϵ−yn−1,ϵ).

By induction we can conclude that

e−vpi (Aϵyn,ϵ−Aϵyn−1,ϵ) ≤
(

e−β

1 − e−β

)n

e−vpi (Aϵy0,ϵ−y0,ϵ).

Now let us prove that (yn)n is a Cauchy sequence in GE

e−vpi (yn+p,ϵ−yn,ϵ) =e−vpi (yn+p,ϵ−yn,ϵ)

≤emax{−vpi (yn+p,ϵ−yn+p−1,ϵ),−vpi (yn+p−1,ϵ−yn,ϵ)}

≤ max
{
e−vpi (yn+p,ϵ−yn+p−1,ϵ), e−vpi (yn+p−1,ϵ−yn,ϵ)

}
≤e−vpi (yn+p,ϵ−yn+p−1,ϵ) + e−vpi (yn+p−1,ϵ−yn,ϵ)

...
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≤

( e−β

1 − e−β

)n

+ · · · +
(

e−β

1 − e−β

)n+p−1
 e−vpi (Aϵy0,ϵ−y0,ϵ)

≤

(
e−β

1−e−β

)n

1 −
(

e−β

1−e−β

)e−vpi (Aϵy0,ϵ−y0,ϵ).

Thus (yn)n is a Cauchy sequence in GE which is complete by Proposition 4.2, so there
is σ ∈ GE such that yn → σ as n → +∞. We show that σ is a fixed point of the
mapping A. We have

e−vpi (Aϵσϵ−σϵ) ≤ esup{−vpi (Aϵσϵ−yn,ϵ),−vpi (yn,ϵ−σϵ)}

≤ e−vpi (Aϵσϵ−yn,ϵ) + e−vpi (yn,ϵ−σϵ).

On the other hand, we have

e−vpi (yn,ϵ−σϵ) ≤ e−λ
(

e− min{vpi (yn,ϵ−yn−1,ϵ),vpi (σϵ−Aϵσϵ)}
)

≤ e−λ sup
{
e−vpi (yn,ϵ−yn−1,ϵ), e−vpi (σϵ−Aϵσϵ)

}
.

Hence,

e−vpi (Aϵσϵ−σϵ) ≤ e−vpi (yn,ϵ−σϵ) + e−βe−vpi (yn,ϵ−yn−1,ϵ) + e−βe−vpi (Aϵσϵ−σϵ).

So,

(1 − e−β)e−vpi (Aϵσϵ−σϵ) ≤ e−vpi (yn,ϵ−σϵ) + e−β e−vpi (yn,ϵ−yn−1,ϵ).

By passing to the limit as n → +∞ we obtained e−vpi (Aϵσϵ−σϵ) = 0, which implies
vpi

(Aϵσϵ − σϵ) = +∞, and thus (Aϵσϵ − σϵ)ϵ ∈ NE. Then, Aσ = σ.
Now, let us prove the uniqueness of fixed point. Assume that there is another fixed

point ϱ of A, Aϱ = ϱ, such that σ ̸= ϱ. So, we can write

e−vpi (σϵ−ϱϵ) = e−vpi (Aϵσϵ−Aϵϱϵ)

≤ e−βesup{−vpi (Aϵσϵ−ϱϵ),−vpi (Aϵσϵ−ϱϵ)}

≤ e−β sup
{
e−vpi (Aϵσϵ−ϱϵ), e−vpi (Aϵϱϵ−ϱϵ)

}
≤ e−β

(
e−vpi (Aϵσϵ−σϵ) + e−βe−vpi (σϵ−ϱϵ)

)
≤
(

e−β

1 − e−β

)
e−vpi (Aϵσϵ−σϵ).

Since, Aσ = σ. Then, vpi
(Aϵσϵ − σϵ) = +∞, that implies e−vpi (Aϵσϵ−σϵ) = 0. Thus,

e−vpi (σϵ−ϱϵ) = 0, then vpi
(σϵ − ϱϵ) = +∞, which meas that (σϵ − ϱϵ)ϵ is a negligible

element. Finally σ = v in GE. □
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5. Application to an Evolution Problem

We consider the standard Cauchy problem

(5.1)

σ′(t) = f(t, σ(t)), t ∈ R+,

σ(0) = σ0 ∈ R̃,

where f : R × R̃ → R̃ and σ ∈ GR.

Proposition 5.1. If fϵ satisfies the following condition

(5.2) |fϵ(s, σϵ) − fϵ(s, ϱϵ)| ≤ kϵ(s) |σϵ(s) − ϱϵ(s)|, for all σ, ϱ ∈ GR,

where kϵ(s) = M(s)ϵλ with 0 < M(s) < 1 and λ > 0.
Then, the problem (5.1) has a unique generalized solution.

Proof. ũ is a solution of the problem (5.1) if and only if it is a fixed point of the
mapping

(5.3)


A : R̃ → R̃,

x 7→ Aσ = σ0 +
∫ t

0
f(s, σ(s))ds.

Let

(5.4)


Aϵ : R → R,

xϵ 7→ Aϵσϵ = σ0ϵ +
∫ t

0
fϵ(s, σϵ(s))ds,

be a representative of A. Since f satisfies condition (5.2) and we defined the following
ultra pseudo-seminorms on R̃ by PT (σ) = e−vpT

(σϵ), where pT (σϵ) = supt∈[0,T ] |σϵ(t)|
and T is a non negative real number. We have

|Aϵσϵ − Aϵϱϵ| =
∣∣∣∣∫ t

0
[fϵ(s, σϵ(s)) − fϵ(s, ϱϵ(s))]ds

∣∣∣∣
⩽
∫ t

0
|fϵ(s, σϵ(s)) − fϵ(s, ϱϵ(s))|ds

⩽
∫ t

0
M ϵk|σϵ(s) − ϱϵ(s)|ds

(
M = sup

t∈[0,T ]
|M(t)|

)
≤ T M ϵλ pT (σϵ − σϵ)
≤ C ϵλ pT (σϵ − σϵ).

So, pT (Aϵσϵ−Aϵσϵ) ≤ C ϵλpT (σϵ−σϵ). Then, the second condition of first Theorem 4.3
is satisfied. Moreover, we have

pT (Aϵσ0ϵ − σ0ϵ) = pT

(∫ t

0
fϵ(s, σ0ϵ)ds

)
≤ T pT (fϵ) = Oϵ→0(ϵc), c ∈ R.
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According to our first theorem there is a generalized solution for the abstract Cauchy
problem. We have to prove now the uniqueness, assume that there is another fixed
point ϱ of A, Aϱ = ϱ, such that σ ̸= ϱ. Then we can write

e−vpT
(σϵ−ϱϵ) = PT (σ − ϱ) = PT (Aσ − Aϱ) = e−vpT

(Aϵσϵ−Aϵϱϵ) ≤ e−k e−vpT
(σϵ−ϱϵ).

Hence, e−vpT
(σϵ−ϱϵ)(1 − e−k) ≤ 0, which gives, e−vPT

(σϵ−ϱϵ) = 0, in other words, v(σϵ −
ϱϵ) = +∞. Therefore, (σϵ −ϱϵ)ϵ ∈ NE. Finally, σ = ϱ in R̃. And the solution is unique
in R̃. □

Example 5.1. Let’s consider the example that inspired the fixed point theorem in
Colombeau algebra. Consider the following problem from [9,15]:

(5.5)


∂2σ(t) = h(σ(t))δ(t) + g(t),
σ(−1) = σ0,

σ′(−1) = σ1,

where δ the Dirac distribution and g, h ∈ C∞(R).
It is a significant differential equation which comes from physics having a product

of the distributions in the first equation, initial conditions are singular generalized
numbers σ0, σ1 and does not allow to use the classical tools to have a solution. In
the references mentioned above we find proof of moderation, other nontrivial steps
implying classical results. Let α be positive constant, L =

∫ 1
−2
∫ 1

−2 |g(τ)|dτds and k
is a Lipschitz constant of h on a compact subset of R containing Ω =] − 1 − α

2 , α
2 [.

The equation (5.5) can be reformulated as the Cauchy problem (5.1) with f = [(f)ϵ],
f(t, ·) = h(·)ρϵ(t) + g(t) is a smooth function and δ = [(δ ∗ ρ)ϵ] is the embedding of
the Dirac measure in GE, E = C∞, where ρϵ(t) = 1

ϵ
ρ( t

ϵ
) and ρ ∈ C∞(R),

∫
R ρ(t)dt = 1,

ρ(t) ≥ 0. We defined the following norm on GE by
PT (σ) = e−vpT

(σϵ),

where pT (σϵ) = supt∈Ω |σϵ(t)| and let
Aϵ : C∞(R) → C∞(R),

σϵ 7→ Aϵσϵ(t) = σ0ϵ + (t + 1)σ1ϵ +
∫ 1

−1

∫ s

−1
f(σϵ(τ))ρϵ(τ)dτds +

∫ t

−1

∫ s

−1
g(τ)dτds.

We have

Aϵσ0ϵ − σ0ϵ =(t + 1)σ1ϵ +
∫ 1

−1

∫ s

−1
f(σϵ(τ))ρϵ(τ)dτds +

∫ t

−1

∫ s

−1
g(τ)dτds

≤(|t| + 1)|σ1ϵ| +
∫ 1

−1

∫ s

−1
|f(σϵ(τ))ρϵ(τ)|dτds +

∫ t

−1

∫ s

−1
|g(τ)|dτds

≤|σ1ϵ|(α/2 + 1) + ∥h∥∞∥ρϵ∥∞
α

4 (α + 2) + L := Mϵ.

So,
pT (Aϵ σ0ϵ − σ0ϵ) ≤ pT (Mϵ) = Oϵ→0(ϵc), c ∈ R.
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On the other hand, we have

Aϵσϵ(t) − Aϵϱϵ(t) =
∫ 1

−1

∫ s

−1
f(σϵ(τ))ρϵ(τ)dτds −

∫ 1

−1

∫ s

−1
f(ϱϵ(τ))ρϵ(τ)dτds

=
∫ 1

−1

∫ s

−1
[f(σϵ(τ)) − f(ϱϵ(τ))]ρϵ(τ)dτds

≤k∥ρϵ∥∞

∫ 1

−1

∫ s

−1
|σϵ(τ) − ϱϵ(τ)|dτds

≤k∥ρϵ∥∞
α

4 (α + 2)pT (σϵ − ϱϵ)

≤kϵpT (σϵ − ϱϵ).

Thus, pT (Aϵσϵ − Aϵϱϵ) ≤ kϵpT (σϵ − ϱϵ). It follows that the mapping A is Lipschitz,
since it is continuous in GE. Moreover, from Theorem 4.3, A has a fixed point which
is a solution for (5.5). Once the Theorem 4.3 is applied.
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