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NECESSARY AND SUFFICIENT CONDITION FOR OSCILLATORY
AND ASYMPTOTIC BEHAVIOUR OF SECOND-ORDER

FUNCTIONAL DIFFERENTIAL EQUATIONS

SHYAM SUNDAR SANTRA1,2

Abstract. In this paper, necessary and sufficient conditions are obtained for oscilla-
tory and asymptotic behaviour of solutions of second-order neutral delay differential
equations of the form

d

dt

[
r(t) d

dt
[x(t) + p(t)x(τ(t))]

]
+ q(t)G (x(σ(t))) = 0, for t ≥ t0,

under the assumption
∫∞ 1

r(η)dη = ∞ for various ranges of the bounded neutral
coefficient p. Our main tools are Lebesgue’s dominated convergence theorem and
Banach’s contraction mapping principle. Further, an illustrative example showing
the applicability of the new results is included.

1. Introduction

Consider a class of nonlinear neutral delay differential equations of the form:

(1.1) d

dt

[
r(t) d

dt

[
x(t) + p(t)x(τ(t))

]]
+ q(t)G

(
x(σ(t))

)
= 0,

where
(A1) r, q, τ, σ ∈ C(R+,R+), p ∈ C(R+,R) such that τ(t) ≤ t, σ(t) ≤ t for t ≥ t0,

τ(t)→∞, σ(t)→∞ as t→∞, with invertible τ when necessary;
(A2) G ∈ C(R,R) is nondecreasing with satisfying the property uG(u) > 0 for u 6= 0

and
(A3) R(t) =

∫ t
0

dη
r(η) → +∞ as t→∞.

Key words and phrases. Oscillation, nonoscillation, neutral, delay, nonlinear, Lebesgue’s domi-
nated convergence theorem, Banach’s contraction mapping principle.
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Baculikova et al. [3] have studied the linear counterpart of (1.1),

(1.2) d

dt

[
r(t) d

dt
[x(t) + p(t)x(τ(t))]

]
+ q(t)x(σ(t)) = 0,

when 0 ≤ p(t) ≤ p0 < ∞ and (A3) holds. The authors have obtained sufficient
conditions for oscillation of solutions of (1.2) through some comparison results, where
the comparison results are unpredictable. In [6], Džurina have studied (1.2) when
0 ≤ p(t) ≤ p0 < ∞ and (A3) holds true. He has established sufficient condition for
oscillation of solutions of (1.2) by comparison techniques. In [16], under various ranges
of p, Santra studied oscillatory behaviour of the solutions of the following neutral
differential equations

d

dt
[x(t) + p(t)x(t− τ)] + q(t)G (x(t− σ)) = 0

and

(1.3) d

dt
[x(t) + p(t)x(t− τ)] + q(t)G (x(t− σ)) = f(t).

Also, sufficient conditions are obtained for existence of bounded positive solutions
of (1.3). Tripathy et al. [18] have studied and obtained the sufficient conditions
for oscillation, nonoscillation and asymptotic behavior of solutions of (1.1) provided
G could be linear or nonlinear. The motivation of the present work come from the
above studies. Hence, in this work, an attempt is made to study the more general
form of (1.2) without making any comparison. It seems that this method is the next
alternative to the works [3, 6] when p is bounded.

The neutral differential equations find numerous applications in natural sciences
and technology. For instance, they are frequently used for the study of distributed
networks containing lossless transmission lines (see, for e.g., [8]). In this paper, we
restrict our attention to study (1.1), which includes a class of nonlinear functional
differential equations of neutral type. In this direction we refer the reader to some of
the works (see [1, 4, 5, 10,13,19,20]) and the references cited therein.

By a solution to equation (1.1), we mean a function x ∈ C([Tx,∞),R), where
Tx ≥ t0, such that rz′ ∈ C1([Tx,∞),R), where

(1.4) z(t) := x(t) + p(t)x(τ(t)), for t ≥ Tx,

and satisfies (1.1) on the interval [Tx,∞). A solution x of (1.1) is said to be proper if
x is not identically zero eventually, i.e., sup{|x(t)| : t ≥ T} > 0 for all T ≥ Tx. We
assume that (1.1) possesses such solutions. A solution of (1.1) is called oscillatory
if it has arbitrarily large zeros on [Tx,∞); otherwise, it is said to be nonoscillatory.
(1.1) itself is said to be oscillatory if all of its solutions are oscillatory.

Remark 1.1. When the domain is not specified explicitly, all functional inequalities
considered in this paper are assumed to hold eventually, i.e., they are satisfied for all
t large enough.
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2. Main Results

In this section, necessary and sufficient conditions are obtained for oscillatory
and asymptotic behaviour of solutions of second order nonlinear neutral differential
equations of the form (1.1).

Lemma 2.1. Assume that (A1)-(A3) hold. If x is an eventually positive solution of
(1.1) such that the companion function z defined by (1.4) is also eventually positive,
then z satisfies

(2.1) z′(t) > 0 and (rz′)′(t) < 0, for all large t.

Proof. Suppose that x(t) > 0 and z(t) > 0 for t ≥ t1, where t ≥ t0. By (A1), we may
assume without loss of generality that x

(
σ(t)

)
> 0 for t ≥ t1. From (1.1) and (A2),

it follows that

(2.2) (rz′)′(t) = −q(t)G (x(σ(t))) < 0, for t ≥ t1.

Consequently, rz′ is nonincreasing on [t1,∞) and thus either z′(t) < 0 or z′(t) > 0 for
t ≥ t2, where t2 ≥ t1. If z′(t) < 0, then there exists ε > 0 such that r(t)z′(t) ≤ −ε for
t ≥ t2, which yields upon integration over [t2, t) ⊂ [t2,∞) after dividing through by r
that

(2.3) z(t) ≤ z(t2)− ε
∫ t

t2

1
r(η)dη, for t ≥ t2.

In view of (A3), letting t → ∞ in (2.3) yields z(t) → −∞, which is a contradiction.
Therefore, z′(t) > 0 for t ≥ t2. This completes the proof. �

Remark 2.1. It follows from Lemma 2.1 that limt→∞ z(t) > 0, i.e., there exists ε > 0
such that z(t) ≥ ε for all large t.

Lemma 2.2. Assume that (A1)-(A3) hold. If x is an eventually positive solution of
(1.1) such that the companion function z defined by (1.4) is bounded, then z satisfies
(2.1) for all large t.

Theorem 2.1. Assume that (A1)-(A3) hold and −1 < −a ≤ p(t) ≤ 0, a ≥ 0 for
t ∈ R+. Furthermore, assume that

(A4) G is strictly sublinear, that is, G(u)
uβ ≥ G(v)

vβ , 0 < u ≤ v, β < 1,
holds. Then every unbounded solution of (1.1) oscillates if and only if

(A5)
∫∞
T q(η)G

(
εR(σ(η))

)
dη = +∞, T > 0 for every ε > 0.

Proof. Suppose the contrary that x is a nonoscillatory solution of (1.1). Then, there
exists t1 ≥ t0 such that either x(t) > 0 or x(t) < 0 for t ≥ t1. Assume that x(t) > 0,
x(τ(t)) > 0 and x(σ(t)) > 0 for t ≥ t1. Proceeding as in the proof of Lemma 2.1, we
see rz′ is nonincreasing and z is monotonic on [t2,∞), where t2 ≥ t1. We have the
following two possible cases.



462 S. S. SANTRA

Case 1. Let z(t) < 0 for t ≥ t2. As x is unbounded, there exists T ≥ t2 such that
x(T ) = max{x(η) : t2 ≤ η ≤ T}. Then, from (1.4), we have x(T ) ≤ z(T )+x(τ(T )) <
x(T ), which is a contradiction.

Case 2. Let z(t) > 0 for t ≥ t2. By Lemma 2.1, (2.1) holds for t ≥ t3. Note that
limt→∞ r(t)z′(t) exists. Upon using z(t) ≤ x(t) in (2.2) and then integrating the final
inequality from t to +∞, we obtain∫ ∞

t
q(η)G

(
z(σ(η))

)
dη ≤ r(t)z′(t),

that is,

(2.4) z′(t) ≥ 1
r(t)

∫ ∞
t

q(η)G
(
z(σ(η))

)
dη,

for t ≥ t3. Let t4 > t3 be a point such that

R(t)−R(t4) ≥ 1
2R(t), t ≥ t4.

Then integrating (2.4) from t4 to t(> t4), we get

z(t)− z(t4) ≥
∫ t

t4

1
r(η)

∫ ∞
η

q(ζ)G
(
z(σ(ζ))

)
dζdη

≥
∫ t

t4

1
r(η)

∫ ∞
t

q(ζ)G
(
z(σ(ζ))

)
dζdη,

that is,

z(t) ≥
(
R(t)−R(t4)

) ∫ ∞
t

q(ζ)G
(
z(σ(ζ))

)
dζ

≥1
2R(t)

∫ ∞
t

q(ζ)G
(
z(σ(ζ))

)
dζ, t ≥ t4.(2.5)

Using the fact that r(t)z′(t) is nonincreasing on [t4,∞), we can find a constant ε > 0
and t5 > t4 such that r(t)z′(t) ≤ ε for t ≥ t5 and hence z(t) ≤ εR(t), t ≥ t5. On the
otherhand, (A3) implies that

G
(
z(σ(ζ))

)
=
G
(
z(σ(ζ))

)
zβ
(
σ(ζ)

) zβ
(
σ(ζ)

)

≥
G
(
εR(σ(ζ))

)
εβRβ

(
σ(ζ)

) zβ(σ(ζ)
)
.

Consequently, (2.5) becomes

z(t) ≥ R(t)
2

∫ ∞
t

q(ζ)G
(
εR(σ(ζ))

)
zβ(σ(ζ))

εβRβ(σ(ζ)) dζ,
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for t ≥ t5. If we define

w(t) = 1
2

∫ ∞
t

q(ζ)G
(
εR(σ(ζ))

)
zβ(σ(ζ))

εβRβ(σ(ζ)) dζ,

then z(t) ≥ R(t)w(t) for t ≥ t5. Now,

w′(t) ≤− 1
2
q(t)G

(
εR(σ(t))

)
zβ(σ(t))

εβRβ(σ(t))

≤− 1
2
q(t)G

(
εR(σ(t))

)
εβ

wβ(σ(t)) ≤ 0, t ≥ t5,

implies that w(t) is nonincreasing on [t5,∞) and limt→∞w(t) exists. It is easy to
verify that

[
w1−β(t)

]′
≤ −(1− β)

2 w−β(t)
q(t)G

(
εR(σ(t))

)
εβ

wβ
(
σ(t)

)

≤ −(1− β)
2 w−β(t)

q(t)G
(
εR(σ(t))

)
εβ

wβ(t)

≤ −(1− β)
2εβ q(t)G

(
εR(σ(t))

)
,(2.6)

for t ≥ t5. Integrating (2.6) from t5 to t(> t5), we obtain

(1− β)
2εβ

∫ t

t5
q(η)G

(
εR(σ(η))

)
dη ≤ −

[
w1−β(η)

]t
t5

< w1−β(t5) <∞,

a contradiction to (A5).
If x(t) < 0 for t ≥ t1, then we set y(t) := −x(t) for t ≥ t1 in (1.1). Using (A2), we

find
d

dt

[
r(t) d

dt
[y(t) + p(t)y(τ(t))]

]
+ q(t)H (y(σ(t))) = 0, for t ≥ t1,

where H(u) := −G(−u) for u ∈ R. Clearly, H also satisfies (A2). Then, proceeding
as above, we find the same contradiction.

Next, we suppose that (A5) does not hold. For ε > 0, let us assume that∫ ∞
T

q(η)G
(
εR(σ(η))

)
dη ≤ ε

3 .

Consider

M =
{
x : x ∈ C([t0,∞),R), x(t) = 0 for t ∈ [t0, T ] and
ε

3[R(t)−R(T )] ≤ x(t) ≤ ε[R(t)−R(T )]
}
,
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and define

(Φx)(t) =


(Φx)(T ), t ∈ [t0, T ],
−p(t)x

(
τ(t)

)
+
∫ t

T

1
r(η)

[
ε

3 +
∫ ∞
η

q(ζ)G
(
x(σ(ζ))

)
dζ
]
dη, t ≥ T.

For every x ∈M ,

(Φx)(t) ≥
∫ t

T

1
r(η)

[
ε

3 +
∫ ∞
η

q(ζ)G
(
x(σ(ζ))

)
dζ

]
dη

≥ε3

∫ t

T

dη

r(η) = ε

3[R(t)−R(T )]

and x(t) ≤ εR(t) implies that

(Φx)(t) ≤− p(t)x
(
τ(t)

)
+ 2ε

3

∫ t

T

dη

r(η)

≤aε
[
R(τ(t))−R(T )

]
+2ε

3
[
R(t)−R(T )

]
≤aε

[
R(t)−R(T )

]
+ 2ε

3
[
R(t)−R(T )

]
=
(
a+ 2

3

)
ε
[
R(t)−R(T )

]
≤ε
[
R(t)−R(T )

]
implies that (Φx)(t) ∈M . Define un : [t0,+∞)→ R by the recursive formula

un(t) =
(
Φun−1

)
(t), n ≥ 1,

with the initial condition

u0(t) =

0, t ∈ [t0, T ],
ε
3 [R(t)−R(T )], t ≥ T.

Inductively it is easy to verify that
ε

3
[
R(t)−R(T )

]
≤ un−1(t) ≤ un(t) ≤ ε

[
R(t)−R(T )

]
,

for t ≥ T . Therefore, for t ≥ t0, limn→∞ un(t) exists. By the Lebesgue’s dominated
convergence theorem, u ∈M and (Φu)(t) = u(t), where u(t) is a solution of (1.1) such
that u(t) > 0. Hence, (A5) is necessary. This completes the proof of the theorem. �

Theorem 2.2. Assume that (A1)-(A3) hold and −1 < −a ≤ p(t) ≤ 0, a > 0 for
t ∈ R+. Then every unbounded solution of (1.1) oscillates if and only if (A5) holds
for every ε > 0.

Proof. Without loss of generality, suppose the contrary that x is an eventually positive
unbounded solution of (1.1). Then, there exists t1 ≥ t0 such that x(t) > 0, x

(
τ(t)

)
> 0

and x
(
σ(t)

)
> 0 for t ≥ t1. Proceeding as in the proof of Lemma 2.1, we see rz′ is
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nonincreasing and z is monotonic on [t2,∞), where t2 ≥ t1. We have the following
two possible cases.

Case 1. Let z(t) < 0 for t ≥ t2. The case is same as in proof of Theorem 2.1.
Case 2. Let z(t) > 0 for t ≥ t2. By Lemma 2.1, (2.1) holds for t ≥ t3. Since z(t)

is unbounded and monotonic increasing, then it follows that

lim
t→∞

z(t)
R(t) = lim

t→∞

z′(t)
R′(t) = lim

t→∞
r(t)z′(t) = α <∞.

If α = 0, then limt→∞R(t) = +∞ implies that limt→∞ z(t) < +∞, which is absurd
(because of unbounded z(t)). Hence α 6= 0. Therefore, there exists a constant ε > 0
and a t2 > t1 such that z(t) ≥ εR(t) for t ≥ t2. Consequently, x(t) ≥ z(t) ≥ εR(t) for
t ≥ t2. Using x(t) ≥ εR(t) in (2.2) and then integrating from t2 to +∞, we obtain a
contradiction to (A5) for every ε > 0.

The case where x is eventually negative unbounded solution is very similar and we
omit it here.

The necessary part is same as in Theorem 2.1. This completes the proof of the
theorem. �

Theorem 2.3. Assume that (A1)-(A4) hold and −1 < −a ≤ p(t) ≤ 0, where a > 0,
t ∈ R+. Then every solution of (1.1) oscillates or converges to zero if and only if
(A5) holds for every ε > 0.

Proof. Without loss of generality, suppose the contrary that x is an eventually positive
solution of (1.1). Then, there exists t1 ≥ t0 such that x(t) > 0, x(τ(t)) > 0 and
x(σ(t)) > 0 for t ≥ t1. Proceeding as in the proof of Lemma 2.1, we see rz′ is
nonincreasing and, rz′ and z is monotonic on [t2,∞), where t2 ≥ t1. By Lemma 2.1,
we have the following three possible cases.

Case 1. Let z(t) < 0, r(t)z′(t) < 0 for t ≥ t2. Since z(t) < 0 implies z(t) is
bounded due to Theorem 2.1 and r(t)z′(t) < 0 implies that z(t) is unbounded due to
Lemma 2.1, a contradiction.

Case 2. Assume that z(t) < 0, r(t)z′(t) > 0 holds for t ≥ t2. Therefore,

0 ≥ lim
t→∞

z(t) = lim sup
t→∞

z(t)

≥ lim sup
t→∞

(
x(t)− ax(τ(t))

)
≥ lim sup

t→∞
x(t) + lim inf

t→∞

(
−ax(τ(t))

)
=(1− a) lim sup

t→∞
x(t),

implies that lim supt→∞ x(t) = 0 and hence limt→∞ x(t) = 0.
Case 3. Let z(t) > 0, r(t)z′(t) > 0 for t ≥ t2. The case follows from Theorem 2.1.
Hence, (A5) is a sufficient condition. The case where x is negative solution is similar

and we omit it here.
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The necessary part is same as in the Theorem 2.1. Thus, the proof of the theorem
is complete. �

Theorem 2.4. Assume that (A1)-(A3) hold and −1 < −a ≤ p(t) ≤ 0 such that
r(t) ≥ r

(
σ(t)

)
for a > 0, t ∈ R+. Furthermore, assume that

(A6) G is strictly superlinear, that is, G(u)
uβ ≥ G(v)

vβ , u ≥ v > 0, β > 1,
holds. Then every solution of (1.1) either oscillates or converges to zero if and only if

(A7)
∫∞

0
1
r(η)

[∫∞
η q(ζ)dζ

]
dη = +∞.

Proof. For the sufficient part, we use the same type of argument as in the proof of
Theorem 2.3 for first two cases of the pair z(t) and r(t)z′(t). Let us consider the Case
3 for t ≥ t1. By Remark 2.1, there exists a constant ε > 0 and t2 > t1 such that
z
(
σ(t)

)
≥ ε for t ≥ t2. Consequently,

G
(
z(σ(t))

)
=
G
(
z(σ(t))

)
zβ
(
σ(t)

) zβ
(
σ(t)

)

≥G(ε)
εβ

zβ
(
σ(t)

)
,

for t ≥ t2. Therefore, (2.4) becomes

r(t)z′(t) ≥G(ε)
εβ

∫ ∞
t

q(η)zβ
(
σ(η)

)
dη,

≥G(ε)
εβ

[∫ ∞
t

q(η)dη
]
zβ
(
σ(t)

)
,

that is,

r
(
σ(t)

)
z′
(
σ(t)

)
≥ G(ε)

εβ

[∫ ∞
t

q(η)dη
]
zβ
(
σ(t)

)
,

for t ≥ t2, implies that

z′
(
σ(t)

)
≥ G(ε)
εβr

(
σ(t)

)[∫ ∞
t

q(η)dη
]
zβ
(
σ(t)

)

≥G(ε)
εβ

zβ
(
σ(t)

)
r(t)

[∫ ∞
t

q(η)dη
]
.

Integrating the last inequality from t2 to +∞, we get

G(ε)
εβ

∫ ∞
t2

1
r(η)

[∫ ∞
η

q(ζ)dζ
]
dη ≤

∫ ∞
t2

z′
(
σ(η)

)
zβ
(
σ(η)

)dη <∞,
which is a contradiction to (A7).

The case where x is eventually negative solution is omitted since it can be dealt
similarly.
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Next, we show that (A7) is necessary. Assume that (A7) fails to hold and let

G(ε)
∫ t

T

1
r(η)

[∫ ∞
η

q(ζ)dζ
]
dη ≤ ε

3 , T ≥ T ∗,

where ε > 0 is a constant. Consider

M =
{
x ∈ C([t0,∞),R) : x(t) = ε

3 , t ∈ [t0, T ], ε3 ≤ x(t) ≤ ε, for t ≥ T
}
,

and define

(Φx)(t) =


ε

3 , t ∈ [t0, T ],

−p(t)x
(
τ(t)

)
+ ε

3 +
∫ t

T

1
r(η)

[∫ ∞
η

q(ζ)G
(
x(σ(ζ))

)
dζ

]
dη, t ≥ T,

for every x ∈M , (Φx)(t) ≥ ε
3 and

(Φx)(t) ≤aε+ ε

3 +G(ε)
∫ t

T

1
r(η)

[∫ ∞
η

q(ζ)dζ
]
dη

≤aε+ ε

3 + ε

3 =
(
a+ 2

3

)
ε

≤ε,

implies that Φx ∈M . The rest of the proof follows from Theorem 2.1. This completes
the proof of the theorem. �

Theorem 2.5. Assume that (A1)-(A3), (A6) hold and 0 ≤ p(t) ≤ a < 1 such that
r(t) ≥ r

(
σ(t)

)
for t ∈ R+. Furthermore, assume that G is Lipschitzian on the interval

of the form [c, d], 0 < c < d <∞. Then every solution of (1.1) oscillates if and only
if (A7) holds.

Proof. Suppose the contrary that x is a nonoscillatory solution of (1.1). Then, there
exists t1 ≥ t0 such that either x(t) > 0 or x(t) < 0 for t ≥ t1. Assume that x(t) > 0,
x
(
τ(t)

)
> 0 and x

(
σ(t)

)
> 0 for t ≥ t1. Clearly, z defined by (2.1) is positive on

[t1,∞). By Lemma 2.1 and Remark 2.1, there exists ε > 0 such that z(t) ≥ ε for
t ≥ t2, where t2 ≥ t1. On the other hand, z being increasing implies that

(1− a)z(t) ≤
(
1− p(t)

)
z(t) ≤ z(t)− p(t)z(τ(t))

=x(t)− p(t)p(τ(t))x(τ(τ(t))) ≤ x(t),

for t ≥ t3, where t3 ≥ t2. Consequently, (1.1) becomes(
r(t)z′(t)

)′
+ q(t)G

(
(1− a)z(σ(t))

)
≤ 0,
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for t ≥ t3. Using (A6) it follows that

G
(
(1− a)z(σ(t))

)
=
G
(
(1− a)z(σ(t))

)
(1− a)βzβ

(
σ(t)

) (1− a)βzβ
(
σ(t)

)

≥
G
(
ε(1− a)

)
εβ(1− a)β (1− a)βzβ

(
σ(t)

)
.

The remaining portion of the sufficient part follows from Theorem 2.4.
Conversely, suppose that (A7) fails to hold. Then there exists T ≥ T ∗ such that∫ ∞

T

1
r(η)

[∫ ∞
η

q(ζ)dζ
]
dη <

1− a
5K ,

where K = max{K1, G(1)} and K1 is the Lipschitz constant of G on
[

7(1−a)
10 , 1

]
for

t ≥ t0. Let X = BC([t0,∞),R) be the space of real valued continuous functions on
[t0,∞). Indeed, X is a Banach space with respect to sup norm defined by

‖x‖ = sup{|x(t)| : t ≥ t0}.
Define

S =
{
u ∈ X : 7(1− a)

10 ≤ u(t) ≤ 1, t ≥ t0

}
.

We notice that S is a closed convex subspace of X. Let Φ : S → S be such that

(Φx)(t) =


(Φx)(T ), t ∈ [t0, T ],

−p(t)x
(
τ(t)

)
+ 9 + a

10 −
∫ ∞
t

1
r(η)

[∫ ∞
η

q(ζ)G
(
x(σ(ζ))

)
dζ

]
dη, t ≥ T.

For every x ∈ X, (Φx)(t) ≤ 9+a
10 ≤ 1 and

(Φx)(t) ≥ −a+ 9 + a

10 − 1− a
5 = 7

10(1− a),

implies that Φ(x) ∈ S. Now for x1, x2 ∈ S, we have

|(Φx1)(t)− (Φx2)(t)| ≤a|x1
(
τ(t)

)
− x2

(
τ(t)

)
|

+
∫ ∞
t

1
r(η)

[∫ ∞
η

q(ζ)|G
(
x1(σ(ζ))

)
−G

(
x2(σ(ζ))

)
|dζ
]
dη,

that is,

|(Φx1)(t)− (Φx2)(t)| ≤a‖x1 − x2‖+ ‖x1 − x2‖K1

∫ ∞
t

1
r(η)

[∫ ∞
η

q(ζ)dζ
]
dη

≤
(
a+ 1− a

5

)
‖x1 − x2‖

=1 + 4a
5 ‖x1 − x2‖.
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Therefore, ‖Φx1 − Φx2‖ ≤ 1+4a
5 ‖x1 − x2‖ implies that Φ is a contraction. By using

Banach’s contraction mapping principle, it follows that Φ has a unique fixed point
x(t) in

[
7(1−a)

10 , 1
]
. Hence, (A7) is the necessary condition for oscillation of (1.1). This

completes the proof of the theorem. �

Theorem 2.6. Assume that (A1)-(A3) hold and 0 ≤ p(t) ≤ a < 1 for t ∈ R+.
Furthermore, assume that G be Lipschitzian on intervals of the form [c, d], 0 < c <
d <∞. Then every bounded solutions of (1.1) oscillates if and only if (A7) holds.

Proof. Proceeding as in proof of the Theorem 2.5 we have obtained x(t) ≥ (1−a)z(t) ≥
(1− a)ε = ε1. Consequently, (1.1) becomes(

r(t)z′(t)
)′

+ q(t)G(ε1) ≤ 0.

Twice integration on last inequality yields a contradiction to (A7). The necessary
part is same as in the proof of Theorem 2.5. Hence the details are omitted. Thus the
proof of theorem is complete. �

Theorem 2.7. Assume that (A1)-(A3) hold and −∞ < −a1 ≤ p(t) ≤ −a2 < −1
such that 3a2 > a1 for t ∈ R+ where a1, a2 > 0. Let G be Lipschitzian on intervals of
the form [c, d], 0 < c < d < ∞. Then every bounded solution of (1.1) oscillates or
tends to zero if and only if (A7) holds.

Proof. Without loss of generality, suppose the contrary that x is an eventually positive
solution of (1.1). Then, there exists t1 ≥ t0 such that x(t) > 0, x(τ(t)) > 0 and
x(σ(t)) > 0 for t ≥ t1. Proceeding as in the proof of Lemma 2.1, we see rz′ is
nonincreasing and, rz′ and z is monotonic on [t2,∞), where t2 ≥ t1. Since x(t) is
bounded, then by (1.4), z(t) is bounded and hence limt→∞ z(t) exists. It is easy to
see that the case z(t) < 0, r(t)z′(t) < 0 is not possible. Using the proof of Lemma
2.2, we conclude that the case z(t) > 0, r(t)z′(t) < 0 does not arise. Therefore, we
have following two cases.

Case 1. Let z(t) > 0, r(t)z′(t) > 0 for [t3,∞), t3 > t2. Then we can find a constant
ε > 0 and t4 > t3 such that z

(
σ(t)

)
≥ ε for t ≥ t4, that is, x

(
σ(t)

)
≥ z

(
σ(t)

)
≥ ε for

t ≥ t4. Hence, (1.1) becomes(
r(t)z′(t)

)′
+G(ε)q(t) ≤ 0, t ≥ t4.

Twice integration on last inequality gives a contradiction to (A7).
Case 2. Let z(t) < 0, r(t)z′(t) > 0 for [t3,∞), t3 > t2. We claim that limt→∞ z(t) =

0. If not, there exist α < 0 and t4 > t3 such that z
(
τ−1(σ(t))

)
< α for t ≥ t4.

Hence, z(t) ≥ −a1x
(
τ(t)

)
implies that x(t) ≥ −a−1

1 z
(
τ−1(t)

)
, that is, x

(
σ(t)

)
≥

−a−1
1 z

(
τ−1(σ(t))

)
≥ −a−1

1 α for t ≥ t4. Consequently, (1.1) reduces to(
r(t)z′(t)

)′
+G

(
−a−1

1 α
)
q(t) ≤ 0,
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for t ≥ t4. Using the same type of argument as in the former case, we get a contra-
diction to (A7). Thus, our claim holds and hence

0 = lim
t→∞

z(t) = lim inf
t→∞

(
x(t) + p(t)x(τ(t))

)
≤ lim inf

t→∞

(
x(t)− a2x(τ(t))

)
≤ lim sup

t→∞
x(t) + lim inf

t→∞

(
−a2x(τ(t))

)
=(1− a2) lim sup

t→∞
x(t),

implies that lim supt→∞ x(t) = 0 [∵ 1− a2 < 0]. Therefore, limt→∞ x(t) = 0.
The case where x is negative bounded solution is very similar and we omit it here.
For the necessary part, it is possible to find T ≥ T ∗ such that

∫ ∞
T

1
r(η)

[∫ ∞
η

q(ζ)dζ
]
dη <

a2 − 1
3K ,

where K = max{K1, G(1)} and K1 is the Lipschitz constants of G on [a, 1], where
a = (a2−1)(3a2−a1)

3a1a2
. Let X = BC([t0,∞),R) be the space of real valued continuous

functions defined on [t0,∞). Indeed, X is a Banach space with the sup norm defined
by

‖x‖ = sup{|x(t)| : t ≥ t0}.

Define

S = {u ∈ X : a ≤ u(t) ≤ 1, t ≥ t0}

and we note that S is a closed convex subspace of X. Let Φ : S → S be such that

(Φx)(t) =



(Φx)(T ), t ∈ [t0, T ],

−
x
(
τ−1(t)

)
p
(
τ−1(t)

) − a2 − 1
p
(
τ−1(t)

)
+ 1
p
(
τ−1(t)

) ∫ τ−1(t)

T

1
r(η)

[∫ ∞
η

q(ζ)G
(
x(σ(ζ))

)
dζ

]
dη, t ≥ T.

For every x ∈ S,

(Φx)(t) ≤ −
x
(
τ−1(t)

)
p
(
τ−1(t)

) − a2 − 1
p
(
τ−1(t)

) ≤ 1
a2

+ a2 − 1
a2

= 1
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and

(Φx)(t) ≥− a2 − 1
p
(
τ−1(t)

) + 1
p
(
τ−1(t)

) ∫ τ−1(t)

T

1
r(η)

[∫ ∞
η

q(ζ)G
(
x(σ(ζ))

)
dζ

]
dη

≥− a2 − 1
a1

+ G(1)
p
(
τ−1(t)

) ∫ τ−1(t)

T

1
r(η)

[∫ ∞
η

q(ζ)dζ
]
dη

≥− a2 − 1
a1

− G(1)
a2

∫ ∞
T

1
r(η)

[∫ ∞
η

q(ζ)dζ
]
dη

≥− a2 − 1
a1

− a2 − 1
3a2

= a,

implies that Φx ∈ S. Now for x1, x2 ∈ S, we have

|(Φx1)(t)− (Φx2)(t)| ≤ 1∣∣∣p(τ−1(t)
)∣∣∣ |x1

(
τ−1(t)

)
− x2

(
τ−1(t)

)
|+ K1∣∣∣p(τ−1(t)

)∣∣∣
×
∫ τ−1(t)

T

1
r(η)

[∫ ∞
η
|x1
(
σ(ζ)

)
− x2

(
σ(ζ)

)
|q(ζ)dζ

]
dη

≤ 1
a2
‖x1 − x2‖+ a2 − 1

3a2
‖x1 − x2‖

=γ‖x1 − x2‖,

implies that
‖Φx1 − Φx2‖ ≤ γ‖x1 − x2‖,

where γ = 1
a2

(1 + a2−1
3 ) < 1. Therefore, Φ is a contraction. Hence by the Banach’s

contraction mapping principle Φ has a unique fixed point x ∈ S. It is easy to see that
limt→∞ x(t) 6= 0. This completes the proof of the theorem. �

3. Discussion and Example

It is worth observation that we could succeed partially to establish the oscillation
of all solutions of the nonlinear equation (1.1), when |p(t)| <∞. We failed to obtain
the necessary and sufficient conditions in the range 1 ≤ p(t) < ∞ and p(t) ≡ −1.
Therefore, the undertaken problem is incomplete for all range of p(t).

Remark 3.1. In Theorems 2.2, 2.6 and 2.7, G could be linear, sublinear or superlinear.

We conclude this section with the following examples to illustrate our main results:

Example 3.1. Consider the delay differential equations
d

dt

[
t
d

dt
[x(t)− 3x(e−πt)]

]
+ 4
t
x(t) = 0, for t ≥ 1,(3.1)

where r(t) := t, p(t) :≡ −3, τ(t) := e−πt, q(t) := 4
t2
, σ(t) := t and G(u) := u for

t ≥ 1 and u ∈ R. It can be easily shown that Theorem 2.7 applies to (3.1). Thus,
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every bounded solution oscillates or converges to zero asymptotically. Obviously,
x(t) = sin(ln(t2)) for t ≥ 1 is an oscillating solution.
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