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CERTAIN PROPERTIES ON MEROMORPHIC FUNCTIONS
DEFINED BY A NEW LINEAR OPERATOR INVOLVING THE

MITTAG-LEFFLER FUNCTION

AQEEL KETAB AL-KHAFAJI1 AND ABBAS KAREEM WANAS2

Abstract. Our paper introduces a new linear operator using the convolution
between a Mittag–Leffler Function and basic hypergeometric function. Use of the
linear operator creates a new class of meromorphic functions defined in the punctured
open unit disk. Consequently, the paper examines different aspects Apps and assets
like, extreme points, coefficient inequality, growth and distortion. In conclusion, the
work discusses modified Hadamard product and closure theorems.

1. Introduction

Let Σ indicate the class of type functions

(1.1) h (z) = z−1 +
∞∑
j=1

ajz
j, j ∈ N = {1, 2, 3, . . . } ,

which are analytic in the punctured open unit disk U∗ = {z ∈ C : 0 < |z| < 1} =
U\ {0}.

Denote by Σi (δ) and Σ∗ (δ) the subclasses of Σ that are meromorphically convex
function of order δ, and meromorphically starlike of order δ, respectively. Function
h ∈ Σ of the type (1.1), is in the class Σi (δ), if it meets

Re
{
−
(

1 + zh′′ (z)
h′ (z)

)}
> δ, z ∈ U∗,
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and h is in the class Σ∗ (δ), if it meets

Re
{
−zh

′ (z)
h (z)

}
> δ, z ∈ U∗.

The Hadamard product (or convolution) h ∗ k for two analytic functions h given by
(1.1) in U∗ and

k (z) = z−1 +
∞∑
j=1

bjz
j,

is define by

(h ∗ k) (z) = z−1 +
∞∑
j=1

ajbjz
j.

For complex components q, bk, ai, bk ∈ C\ {0,−1,−2, . . . }, k = 1, . . . , r, i =
1, . . . ,m, the basic hypergeometric function or (q-hypergeometric function) ψmr is
defined by:
(1.2)

ψmr (a1, . . . , am; b1, . . . , br; q, z) =
∞∑
j=0

(a1, q)j · · · (am, q)j
(q, q)j (b1, q)j · · · (br, q)j

[
(−1)jq

j(1−j)
2

]1+r−m
zj,

where q 6= 0, when m > r + 1, m, r ∈ N0 = N ∪ {0}, and (a, q)j is q-analogue of the
Pochhammer symbol (a)j is defined by

(a, q)j =

(1− a) (1− aq) (1− aq2) · · · (1− aqj−1) , j = 1, 2, 3, . . . ,
1, j = 0.

Initially, the function ψmr given by (1.2), was introduced and referred to by Heine
in 1846, as the series of Heine. For readers to refer to further q-theory information
can be found in (see [9] and [11]).

Now, for |q| < 1, m = r + 1 and z ∈ U = {z ∈ C : |z| < 1}, the q-hypergeometric
function [25] defined in Equation (1.2), takes the form below

ψmr (a1, . . . , am; b1, . . . , br; q, z) =
∞∑
j=0

(a1, q)j · · · (am, q)j
(q, q)j (b1, q)j · · · (br, q)j

zj

that absolutely converges in the open unit disk U.
With regard to the function ψmr (a1, . . . , am; b1, . . . , br; q, z), for meromorphic func-

tion h ∈ Σ that includes functions in shape of (1.1) (see work of [1] and [18]), which
is shown below, have successfully introduced the q-analogue of the Liu–Srivastava
operator

Gmr (a1, . . . , am; b1, . . . , br; q, z)h (z) = z−1
l ψmr (a1, . . . , am; b1, . . . , br; q, z) ∗ h (z)

= z−1 +
∞∑
j=1

∏m
i=1 (ai, q)j+1

(q, q)j+1
∏r
k=1 (bk, q)j+1

ajz
j.
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Before we continue moving on, the Mittag-Leffler function Eδ (z), suggested by
Mittag-Leffler (see [16] and [17]) and defined by

Eα (z) =
∞∑
j=0

zj

Γ (αj + 1) , z ∈ U, α ∈ C,Re (α) > 0,

where Γ (δ) denotes the Gamma function.
Also, Wiman [26], studied another function Eδ,µ (z) have numerous similarities of

Eδ (z), and given by

(1.3) Eα,µ (z) =
∞∑
j=0

zj

Γ (αj + µ) , z ∈ U, α, µ ∈ C, Re (α) > 0, Re (µ) > 0.

In recent years, there has been growing interest in Mittag-Leffler for application
problems including, electric network, fluid flow, probability, statistical distribution
theory, etc. (see [2, 4, 8, 12, 15, 19, 22–24] and [27] for more information about this
function and its applications). Bansal and Prajapat recently investigated geometric
characteristics in [5] for the function Eα,µ (z) , like starlikeness, convexity and closed
to convex. In addition, certain results were obtained in [21] for the partial sum of the
Mettag-Leffler function.

We note that, the function given by (1.3), is not part of class Σ. Therefore, the
function Eα,µ (z), is then normalized on the basis of the following:

(1.4) Eα,µ (z) = Γ (µ) z−1Eα,µ (z) = z−1 +
∞∑
j=1

Γ (µ)
Γ (α (j + 1) + µ)z

j.

Application of the function Eα,µ (z) defined by (1.4), a new operator Jα,µ : Σ→Σ,
is defined in terms of Hadamard product as follows

Jα,µh (z) = Eα,µ (z) ∗ Gmr (a1, . . . , am; b1, . . . , br; q, z)h (z)

= z−1 +
∞∑
j=1

∆(j+1,α,µ) (am, br)ajzj,

where

δ(j+1,α,µ) (am, br, q) =
∏m
i=1 (ai, q)j+1

(q, q)j+1
∏r
k=1 (bk, q)j+1

(
Γ (µ)

Γ (α (j + 1) + µ)

)
.

Remark 1.1. You can see that when the parameters are defined r,m, α, µ, q, a1, . . . , am
and b1, . . . , br, it’s here noted that the operator defined Jα,µh (z), performs different
operators. For further explanation, examples are given.

(a) For α = 0, µ = 1, ai = qai , bk = qbk , ai > 0, bk > 0, i = 1, . . . ,m, k = 1, . . . , r,
m = r + 1 and q → 1, we obtain the operator defined in [14].

(b) For m = 2, r = 1, α = 0, µ = 1, a2 = q and q → 1, we obtain the operator
defined in [13].

(c) For m = 1, r = 0, α = 0, µ = 1, a1 = λ+ 1 and q → 1, we obtain the operator
defined in [10], and it was then generalized through [29].
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Some other authors have studied various classes of meromorphic univalent functions,
such as, see [3, 6, 7, 20, 28] and [30]). Such works encouraged us to create the new
class Tτα,µ (am, br, d) of Σ, that includes the operator Jα,µh (z), and it is presented as
follows.

Definition 1.1. For d ≥ 1, τ > 0, the function h ∈ Σ is in the class Tτα,µ (am, br, d) if
it satisfies the inequality

(1.5)

∣∣∣∣∣∣∣
z2(Jα,µh(z))′′+z(Jα,µh(z))′

Jα,µh(z) − 1
z2(Jα,µh(z))′′+z(Jα,µh(z))′

Jα,µh(z) + d

∣∣∣∣∣∣∣ < τ.

Denote by Σ∗ the subclass of Σ composed of the form functions

(1.6) h (z) = z−1 +
∞∑
j=1
|aj| zj.

Define the class Tτ ,∗α,µ (am, br, d) by

Tτ,∗α,µ (am, br, d) = Tτα,µ (am, br, d) ∩ Σ∗.

2. Main Results

This section introduces work to obtain sufficient conditions for the function h given
by (1.6), in the class Tτ ,∗α,µ (am, br, d) , it also shows that for functions belonging to this
class, this requirement is necessary, as well as growth and distortion bounds, extreme
points and linear combinations are submitted for the class Tτ ,∗α,µ (am, br, d) .

Theorem 2.1. A function h given by (1.6) is in the class Tτ ,∗α,µ (am, br, d) if and only
if

(2.1)
∞∑
j=1

[
j2 (1− τ)− (1 + τd)

]
∆

(j+1,α,µ)
(am, br) |aj| ≤τ (1 + d) .

Proof. Assume that the inequality (1.6) holds true. We have∣∣∣∣∣∣∣
z2(Jα,µh(z))′′+z(Jα,µh(z))′

Jα,µh(z) − 1
z2(Jα,µh(z))′′+z(Jα,µh(z))′

Jα,µh(z) + d

∣∣∣∣∣∣∣
=

∣∣∣∣∣∣ z2(Jα,µh (z))′′+z(Jα,µh (z))′− Jα,µh (z)
τ
[
z2(Jα,µh (z))′′+z(Jα,µh (z))′+dJα,µh (z)

]
∣∣∣∣∣∣

=

∣∣∣∣∣∣
∑∞
j=1 [j2 − 1] ∆(j+1,α,µ) (am, br) |aj| zj

(1 + d) +∑∞
j=1 [j2 + d] ∆(j+1,α,µ) (am, br) |aj| zj

∣∣∣∣∣∣ < τ, z ∈ U∗.

So, we have h ∈ Tτ ,∗α,µ (am, br, d) (by the maximum modulus theorem).
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Conversely, let h ∈ Tτ ,∗α,µ (am, br, d) where h given by (1.6), then we obtain from
inequality (1.5), ∣∣∣∣∣ z2(Jα,µh (z))′′+z(Jα,µh (z))′− Jα,µh (z)

z2(Jα,µh (z))′′+z(Jα,µh (z))′+dJα,µh (z)

∣∣∣∣∣
=

∣∣∣∣∣∣
∑∞
j=1 [j2 − 1] ∆(j+1,α,µ) (am, br) |aj| zj

(1 + d) +∑∞
j=1 [j2 + d] ∆(j+1,α,µ) (am, br) |aj| zj

∣∣∣∣∣∣ < τ,(2.2)

since the last inequality is real for all z ∈ U∗, choose values of z on the real axis.
Following explanation, the denominator in (2.2) and letting z→1− through real values,
we obtain

∞∑
j=1

[
j2 (1− τ)− (1 + τd)

]
∆

(j+1,α,µ)
(am, br) |aj| ≤τ (1 + d) .

Therefore, we get the required inequality (2.1) of Theorem 2.1. �

Corollary 2.1. If the function h given by (1.6) is in the class Tτ,∗α,µ (am, br, d), then

(2.3) |aj| ≤
τ (1 + d)

[j2 (1− τ)− (1 + τd)] ∆(j+1,α,µ) (am, br)
, j ≥ 1,

the result is sharp of the function

h (z) = z−1 + τ (1 + d)
[j2 (1− τ)− (1 + τd)] ∆(j+1,α,µ) (am, br)

zj, j ≥ 1.

Theorem 2.2. Let ho (z) = z−1 and

hj (z) = z−1 + τ (1 + d)
[j2 (1− τ)− (1 + τd)] ∆(j+1,α,µ) (am, br)

zj.

Then, h ∈ Tτ ,∗α,µ (am, br, d) if and only if it can be expressed form

(2.4) h (z) = z−1 +
∞∑
j=0

vjhj (z) ,

where

vj ≥ 0 and
∞∑
j=0

vj = 1.

Proof. Using the function h which is defined in (2.4), then

h (z) = z−1 +
∞∑
j=0

vj
τ (1 + d)

[j2 (1− τ)− (1 + τd)] ∆(j+1,α,µ) (am, br)
zj,
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and for last function, we get
∞∑
j=1

[
j2 (1− τ)− (1 + τd)

]
∆

(j+1,α,µ)
(am, br)

× vj
τ (1 + d)

[j2 (1− τ)− (1 + τd)] ∆(j+1,α,µ) (am, br)

=
∞∑
j=1

vjτ (1 + d) = τ (1 + d) (1− vo) = τ (1 + d) ,

that is, condition (2.1) is met. Therefore, h ∈ Tτ ,∗α,µ (am, br, d).
Conversely, we assume that h ∈ Tτ ,∗α,µ (am, br, d) , from equation (2.3), we have:

|aj| ≤
τ (1 + d)

[j2 (1− τ)− (1 + τd)] ∆(j+1,α,µ) (am, br)
, j ≥ 1,

we set

vi =
[j2 (1− τ)− (1 + τd)] ∆(j+1,α,µ) (am, br)

τ (1 + d) |aj| , j ≥ 1,

and

v0 = 1−
∞∑
j=1

vj.

That is the result

h (z) =
∞∑
j=0

vjfj.

The declaration of Theorem 2.2, is thus complete. �

Theorem 2.3. If a function h defined by (1.6), is in the class Tτ,∗α,µ (am, br, d) , then
for |z| = r, we have

1
r
− τ (1 + d)

[(1− τ)− (1 + τd)] ∆(2,α,µ) (am, br)
r

≤ |h (z)| ≤ 1
r

+ τ (1 + d)
[(1− τ)− (1 + τd)] ∆(2,α,µ) (am, br)

r

and
1
r2 −

τ (1 + d)
[(1− τ)− (1 + τd)] ∆(2,α,µ) (am, br)

≤ |h′ (z)| ≤ 1
r2 + τ (1 + d)

[(1− τ)− (1 + τd)] ∆(2,α,µ) (am, br)
.
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Proof. By Theorem 2.1, we have

[(1− τ)− (1 + τd)] ∆(2,α,µ) (am, br)
∞∑
j=1
|aj|

≤
∞∑
j=1

[
j2 (1− τ)− (1 + τd)

]
∆

(j+1,α,µ)
(am, br) |aj|

≤τ (1 + d) ,

which results
∞∑
j=1
|aj|≤

τ (1 + d)
[(1− τ)− (1 + τd)] ∆(2,α,µ) (am, br)

.

Therefore,

|h (z)| ≤ 1
|z|

+ |z|
∞∑
j=1
|aj|≤

1
|z|

+ τ (1 + d)
[(1− τ)− (1 + τd)] ∆(2,α,µ) (am, br)

|z|

and

|h (z)| ≥ 1
|z|
− |z|

∞∑
j=1
|aj|≥

1
|z|
− τ (1 + d)

[(1− τ)− (1 + τd)] ∆(2,α,µ) (am, br)
|z| .

On the other hand, for (1.6), differentiating both sides with respect to z, we get:

|h′ (z)| ≤ 1
|z|2

+
∞∑
j=1
|aj|≤

1
|z|

+ τ (1 + d)
[(1− τ)− (1 + τd)] ∆(2,α,µ) (am, br)

and

|h′ (z)| ≥ 1
|z|2
−
∞∑
j=1
|aj|≥

1
|z|
− τ (1 + d)

[(1− τ)− (1 + τd)] ∆(2,α,µ) (am, br)
.

Define the functions hi, i = 1, 2, by

�(2.5) hi (z) = z−1 +
∞∑
j=1
|aj,i| zj, z ∈ U∗.

Theorem 2.4. Let the functions hi, i = 1, 2, which are defined in (2.5), be in the
class Tτ,∗α,µ (am, br, d). Then for 0 ≤ s ≤ 1, the function h (z) = sh1 (z) + (1− s)h2 (z),
in the class Tτ,∗α,µ (am, br, d).

Proof. Using

hi (z) = z−1 +
∞∑
j=1
|aj,i| zj, i = 1, 2,

we have:

h (z) = z−1 +
∞∑
j=1
{s |aj,1|+ (1− s) |aj,2|} zj, 0 ≤ s ≤ 1.
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Now, by Theorem 2.1, we obtain
∞∑
j=1

[
j2 (1− τ)− (1 + τd)

]
∆

(j+1,α,µ)
(am, br) {s |aj,1|+ (1− s) |aj,2|}

=s
∞∑
j=1

[
j2 (1− τ)− (1 + τd)

]
∆

(j+1,α,µ)
(am, br) |aj,1|

+ (1− s)
∞∑
j=1

[
j2 (1− τ)− (1 + τd)

]
∆

(j+1,α,µ)
(am, br) |aj,2|

≤sτ (1 + d) + (1− s) τ (1 + d) = τ (1 + d) ,
that demonstrates h(z) ∈ T

τ ,∗
α,µ (am, br, d). �

Theorem 2.5. Let the function hi, i = 1, 2, which are defined in (2.5), be in the class
Tτ ,∗α,µ (am, br, d). Then h1 ∗ h2 ∈ Tδ,∗α,µ (am, br, d), where

δ≤
(j2 − 1) ∆(j+1,α,µ) (am, br)

τ (1 + d) + (j2 + d) ∆(j+1,α,µ) (am, br)
.

Proof. It’s enough to find the Littlest δ, such that
∞∑
j=1

[j2 (1− δ)− (1 + δd)] ∆(j+1,α,µ) (am, br)
δ (1 + d) aj,1aj,2 ≤ 1.

Since hi∈Tτ ,∗α,µ (am, br, d), i = 1, 2, then
∞∑
j=1

[j2 (1− τ)− (1 + τd)] ∆(j+1,α,µ) (am, br)
τ (1 + d) aj,1aj,2≤1.

By Cauchy-Schwarz inequality, we get

(2.6)
∞∑
j=1

[j2 (1− τ)− (1 + τd)] ∆(j+1,α,µ) (am, br)
τ (1 + d)

√
aj,1aj,2≤1.

We just want to demonstrate that
∞∑
j=1

[j2 (1− δ)− (1 + δd)] ∆(j+1,α,µ) (am, br)
δ (1 + d) aj,1aj,2

≤
∞∑
j=1

[j2 (1− τ)− (1 + τd)] ∆(j+1,α,µ) (am, br)
τ (1 + d)

√
aj,1aj,2,

or equivalent to
√
aj,1aj,2≤

[j2 (1− δ)− (1 + δd)] τ
[j2 (1− τ)− (1 + τd)] δ .

From (2.6), we get
√
an,1an,2≤

τ (1 + d)
[j2 (1− τ)− (1 + τd)] ∆(j+1,α,µ) (am, br)

.
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Therefore, it is sufficient to show that
τ (1 + d)

[j2 (1− τ)− (1 + τd)] ∆(j+1,α,µ) (am, br)
≤ [j2 (1− δ)− (1 + δd)] τ

[j2 (1− τ)− (1 + τd)] δ .

Finally, we have

δ≤
(j2 − 1) ∆(j+1,α,µ) (am, br)

τ (1 + d) + (j2 + d) ∆(j+1,α,µ) (am, br)
. �

Theorem 2.6. If the function hi, i = 1, 2, given by equation (2.5) is in the class
Tτ ,∗α,µ (am, br, d), then h1 ∗ h2 ∈ Tτ ,∗α,µ (am, br, d).

Proof. Because h1 ∈ Tτ ,∗α,µ (am, br, d), by Theorem 2.1, we obtain
∞∑
j=1

[
j2 (1− τ)− (1 + τd)

]
∆

(j+1,α,µ)
(am, br) |aj| ≤τ (1 + d) .

Since
∞∑
j=1

[
j2 (1− τ)− (1 + τd)

]
∆

(j+1,α,µ)
(am, br) |aj,1aj,2|

=
∞∑
j=1

[
j2 (1− τ)− (1 + τd)

]
∆

(j+1,α,µ)
(am, br) |aj,1| |aj,2|

≤
∞∑
j=1

[
j2 (1− τ)− (1 + τd)

]
∆

(j+1,α,µ)
(am, br) |aj,1|

≤1,

we have h1 ∗ h2 ∈ Tτ ,∗α,µ (am, br, d). �
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