KRAGUJEVAC JOURNAL OF MATHEMATICS
VOLUME 51(3) (2027), PAGES 505-525.

ENERGY AND SOMBOR ENERGY OF HYPERGRAPHS VIA A
MATRIX
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ABSTRACT. Due to the limited availability of tools for analyzing the spectral prop-
erties of hypermatrices associated with hypergraphs, recent research has focused
on studying these properties through related matrices derived from the hypergraph
structure. To extend the concept of the degree-based extended adjacency matrix
of graphs, we introduce a new definition of the (pairwise) Sombor index for hyper-
graphs. In this work, we characterize the extremal hypergraph that achieves the
maximum Sombor spectral radius among all hypertrees. Additionally, we present
preliminary results on computing the Sombor index and Sombor spectrum for spe-
cific classes of hypergraphs. Finally, we establish sharp bounds for energy and the
Sombor energy of hypergraphs.

1. INTRODUCTION

The energy of a graph, defined [13] as the sum of the absolute values of the eigen-
values of its adjacency matrix, originated in theoretical chemistry to approximate the
total m-electron energy in conjugated hydrocarbons.

Over time, this concept has found broader applications, notably in network analysis
[1,11,12], where it aids in assessing structural properties like robustness and connec-
tivity. Also, the application of energy in the context of macromolecular theory [9,23],
analysis of protein sequences [28,31], pattern identification [32], and face recognition
[27] is noteworthy. Additionally, areas like computer science [7], science and technol-
ogy [24], biology [11], medicine [8], and many more could find application of energy in
their respective fields. Thus, graph energy serves as a bridge between mathematical
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theory and practical applications across various scientific domains. A recent survey
on the energy of graphs can be found in [15].

A hypergraph H is determined by the ordered pair (V,€). Here, the vertex set
V is non-empty, and the edge set € is a subset of the power set P*(V) (set of all
non-empty subsets) of the vertex set. The order of the hypergraph is the number of
vertices (|'V]), and the size of the hypergraph is the number of hyperedges (|€]) in the
hypergraph. The rank (resp. co-rank) of a hypergraph H is defined as the maximum
(resp. minimum) number of vertices in a hyperedge of H. A hypergraph is said to be
a k-uniform hypergraph if every hyperedge contains exactly k vertices. The degree of
a vertex u in a hypergraph H is the number of hyperedges containing u in H. The
maximum degree and minimum degree of the hypergraph H are denoted by A(H)
and §(H) (or simply A and §), respectively. A vertex of degree one is called a pendant
vertex. The hyperedge containing only one non-pendant vertex is called a pendant
hyperedge, and if it has more than one, then it is called a non-pendant hyperedge.

Codegree of two vertices u and v is the number of hyperedges containing both
u and v, denoted by d,,. A walk of length ¢ is an alternating sequence of vertices
and hyperedges viejvsesvs ... vi 10y such that v, # v; and v;, v, € e; for all
1 =1,...,t. A path is a walk where all the vertices and hyperedges are distinct.
The cycle is a closed path with initial and terminal vertices that are the same. The
hypergraph X is said to be connected if there exists a path between two vertices. A
hypertree T is a connected hypergraph with no cycle.

Several attempts have been made to encode hypergraphs using matrices [2,20] and
hypermatrices [6] (or tensors) to study their spectral properties. Recently, many
authors have associated various (Laplacian, Seidel, and incidence) matrices with
hypergraphs in order to analyze their spectral properties.

In this article, we consider the following definition of the adjacency matrix of the
hypergraph that is defined by A. Banerjee [2].

Definition 1.1 ([2]). Let H be a general hypergraph and €, = {e € € : u € e}. The
adjacency matrix of the hypergraph H of order n, denoted by A(H) = (ay,) is an
n X n matrix (whose rows and columns correspond to vertices of the hypergraph) and
the wv-th entry of which is given by

o ifu~o(ie, E,NE, #0),
= GE(EHOEU)

0, otherwise.

auv

For a k-uniform hypergraph, if u and v are adjacent, then uwv-th entry of the
adjacency matrix reduces to %.

Similar to the case of graphs, the energy of a hypergraph is defined as the sum of
the absolute eigenvalues of the adjacency matrix of the hypergraph. Developments
in the study of energy of hypergraphs [4,5,18,33] in the literature is based on the
(non-normalized) adjacency matrix defined in [20].
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In 2021, Gutman proposed [14] the definition of the Sombor index, a topological
index based on vertex degrees. It has become well-known in molecular graph theory
because of its capacity to predict the physicochemical properties of chemical com-
pounds just based on its structural information (modeling via graphs). A review on
the extremal results of the Sombor index of graphs can be found in [21].

An introductory work on the Sombor index of hypergraphs and the definitions of
the vertex-degree-based (VDB) topological indices for hypergraphs have been listed
in [25]. A very few studies addressing the VDB topological indices of hypergraphs
can be found [10,19,26,29]. A further generalization of the definition of the Sombor
index of hypergraphs is studied in [30]. In this study, we consider the pairwise Sombor
index of the hypergraph H, that is defined as

PSO(H) = S J&2+d

w,veV(H):
{u,v}Cecl(H)
The real motivation behind defining the pairwise Sombor index is to generalize the
extended adjacency matrix to hypergraphs. Now, from the definition of the pairwise
Sombor index and the adjacency matrix of the hypergraph, it is straightforward to
define the pairwise Sombor matrix (or simply the Sombor matrix) of the hypergraph.

Definition 1.2. The Sombor matrix of the hypergraph H of order n, denoted by
Apso(H) = (buy) is an n x n matrix (whose rows and columns correspond to vertices
of the hypergraph) and the uv-th entry of which is given by
2 +d> ¥ ‘€|171, if u~w,
byy = e€(Eunéy)
0, otherwise.

For all other terminologies, the reader can refer to [3| for the theory of hypergraphs
and [16] for the theory of matrices.

Section 2 discusses the computation of the pairwise Sombor index and Sombor spec-
trum of specific classes of hypergraphs. The problem of characterizing the extremal
hypertree attaining the maximum Sombor spectral radius, along with some bounds
for the same, is considered in Section 3. Section 4 is dedicated to some sharp bounds
for the Sombor energy of hypergraphs.

2. PRELIMINARY RESULTS

The expressions for the Sombor index and Sombor spectrum of some classes of
hypergraphs that follow from direct computations are stated in this section.

Definition 2.1. e A sunflower hypergraph 8(m, ¢, k) is a k-uniform hypergraph with
m hyperedges, where each hyperedge contain exactly ¢ vertices of degree m and k — ¢
vertices of degree one.

e A complete hypergraph K, is a hypergraph on the vertex set V (|V| = n) with
edge set as the set of all possible non-empty subsets of V.
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e A k-uniform (k > 2) complete hypergraph K(¥) is a hypergraph on the vertex set
V (|V| = n) with edge set as the set of all possible k-subsets of V.

e A hypergraph H is said to be bipartite if its vertex set can be partitioned into
two non-empty subsets V; and V5 such that every hyperedge of H has a non-empty
intersection with both V; and V5. A bipartite hypergraph (V = V; U V5, €) with
|Vi| = p and |V5| = ¢ is said to be a complete bipartite hypergraph K, ,, if € contain
all possible subsets of V such that every hyperedge has a non-empty intersection with
both V; and V5.

e A k-uniform complete bipartite hypergraph is a bipartite hypergraph with edge
set as the set of all possible k-subsets of the vertex set such that each of which has a
non-empty intersection with both partite sets.

e Let G = (V(G), E(G)) be a simple graph. For an integer r > 3, the r power
hypergraph of G is an r-uniform hypergraph, G" = (V, £), where V(G") = V(G) U
(Uee B(G) Ve), where V, = {uge), o ’ufi)z} is a newly added vertices corresponding to
each edge of G, and E(G") = {eUV, : e € E(G)}. Figure 1 presents an example of
the graph G and its 4-power hypergraph.

G

FIGURE 1. The graph G and corresponding 4-power hypergraph.

e A k-uniform hyperstar, hypercycle, and hyperpath are respectively, the power
hypergraph of star, cycle, and path.

Figures 2 to 5 represent pictorial depiction of hyperpath P4, hyperstar 82, sunflower
hypergraph 8(5, 3,5) and 4-uniform hypercycle, respectively.

In the following proposition, the expressions for the pairwise Sombor index of the
above mentioned class of hypergraphs are discussed.
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e e e e TDe oo

FIGURE 2. The hyperpath Pi.

e/ o o o

FIGURE 5. 4-uniform hypercycle.

F1GURE 4. The sunflower
hypergraph 8(5, 3,5).
Proposition 2.1. Let H be a hypergraph of order n and size m.
e The pairwise Sombor index of a single hyperedge (i.e., € = {V}) is given by
(5)v2.

The pairwise Sombor index of the sunflower hypergraph 8(m, c, k) is given by
E—
PSO(8(m, ¢, k)) = @ V2m? + me(k — )VmZ + 1 + m( , C) NG

e The pairwise Sombor index of the linear hyperpath P* (k power hypergraph of the
path) is given by

PSO(TZ)=<2<]€§1> +(m—2)<kg2>>\/§
+2(mk — k —2m +3) V5 + (m — 2)V/3,

_ n—1
where m = 7=,

e The pairwise Sombor index of the hypercycle C* (k power hypergraph of the cycle)
is given by

PSO(GF) = (m(k;2>) V2 +2m (k —2) V5 + mV/8,
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— n
where m = 5.

o The pairwise Sombor index of the complete bipartite hypergraph X, ,, p,q > 2 is

given by
PSO(X,q) = (g) DiV2 + <(2]>D2\/§+PQ\/ Dt + D3,

where Dy = 2P71(27 — 1) and Dy = 2971(2P — 1).
e The pairwise Sombor index of the complete hypergraph I, (hyperedge of size one
is allowed) is given by

P, = () VET

e The pairwise Sombor index of the k-uniform (k > 2) complete hypergraph K*) is
given by

PSO(K®) = (g) (Z B D V2.

2.1. Sombor Spectrum of Hypergraphs. In the following results, we obtain the
Sombor spectrum of some classes of hypergraphs.

Theorem 2.1. Let X be the hypergraph obtained from XK, by removing all hyperedges
of size 1, be a complete hypergraph on n vertices. Then,

(a) Spec(Apso(K:) = (\/5(2”—1 — i)Dn(n -1) —\/5((27:__1 1—) 1)Dn> 7
(b) &(Apso(K;) =2v2(2"1 —1)D,,(n — 1),
where D,, = Y77 %

Proof. The Sombor matrix of the complete hypergraph can be expressed as,
Apgo(fK:;) = \/5(2n—1 - l)Dn(J'rL - In>7
from which the proof follows. O

Theorem 2.2. Let 8(m, ¢, k) be a k-uniform sunflower hypergraph with m hyperedges.
Then,

(a) spec<Apso<s<m,c,k>>>=<“1 e PR VA k”‘)

1 1 n—m-c m—1 c—1

(b) E(Apso(S(m, e, k) = 22 ((m(c—1)+k—c—2m+n—k+1+6),

where

(m2(c—1)+(k—c—1))+ \/(mQ(cf D+ (k—c—1))2—-2(2m2(c—1)(k—c—1) — mc(k — c)(m? + 1))
V2(k —1) ’

and 01 = /(m2(c— 1)+ (k—c—1))2 =22m2(c — 1)(k — c — 1) — mc(k — ¢)(m? + 1)).

M1, g2 =
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Proof. Let the Sombor matrix of the k-uniform sunflower hypergraph be expressed as
a block matrix as follows:

ApsolS(m. e.k)) = .ﬂm(xa) = i
PSO y &y m2+ J (k—c).c ]m ® k\(lA(:K:k—c)

) -t

<u+k\/_1>n C(u 1) (p = p2),

where 1 and ps are the remaining two eigenvalues of the matrix that can be obtained
from the quotient matrix

By performing row operations, we get

[ul — Apso(8(m, ¢, k)| = (

m2(c—=1)v2  m(k—c)vm?2+1
Q(APSO (S(m7 ¢, k))) = c\/% (kflzill)\/i
k—1 k—1

O

It is direct from the definition of the hyperstar that the Sombor spectrum of which
can be obtained by putting ¢ = 1 in the expression for the Sombor spectrum of the
sunflower hypergraph.

Corollary 2.1. Let 8%) be a k-uniform hyperstar with m hyperedges. Then,
=2 V2(E=2)
A (F))) = (M1 K2 k-1 h—1
(a) Sp€C< PSO(Sm )) (1 1 n—m-—1 m—1 3
(b) &(Apso(8%)) = 22 ((m — D)k +n —3m+ 1+ 6y),

1

where iy, ftg = (k72)i\/(kfj);(ig(kfl)(mzﬂ) and 0y = \/(k —2)24+2m(k —1)(m?+1).

Theorem 2.3. Given k> 3 and p,q > 2, let 5{]()’2 be a k-uniform complete bipartite
hypergraph with m hyperedges. Then,

* V261D, —2taDy iy po
(a) Spec(Apso(Xy))) = ( p—1 g—1 1 1)

(b) &(Apso(XE)) = V2(tiDi(p — 1) + taDa(q — 1) +m1),
where D1 = f:()2 (pil) <k2 i 1) DQ f;g (k—?—l) (q;l), ty = ﬁ Zf;g (pf) (k—3—2>a

ty — 1 k—3 D q
2 7 =1 £ei=0 \k—i—2 i )

((p— DDy + (¢ — 1)t2Da) £/ ((p — Dt Dy + (g — 1)t2D2)? + 2pgt3(D3 + D3)
M1, 2 = )
V2
m = (0 — DDy + (g — VDo) + 2pgt3(DF + D3), ts = 125 Y57 (77) (L 510),
provided (Z) =0ifr<s.
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Proof. Let the Sombor matrix of a k-uniform complete bipartite hypergraph be ex-
pressed as a block matrix as follows:

/)2 2
Apso JCZ()@ V20 DA (2 ») Dit Dadyg :
ts\/D? + D3J,, \/_thQ (%y)
By performing row operations, we get
-1
ul — Apso(KIN)| = (M + \/_tlDl) (M + \/§t2D2>q (1 — pa) (@ — p2),

where p; and ps are the remaining two eigenvalues that can be obtained from the
quotient matrix,

\/§(p — ]_)Dltl D2 + D ptg
(k) V
Q(Apso(Kyy)) = ( D7+ Digts v2(q— 1)D2t2) -
U

Theorem 2.4. Given p,q > 2, let K, , be the complete bipartite hypergraph with m
hyperedges. Then,
—V2fiR1 —V2f:R
(a) Spec(Apso(Kpy)) ( g__fll ! ;/__fi ? /111 Mf);

(b) €(Apso(Kyg)) = V2(fiRi(p — 1) + faRa(q — 1) + n2),
where Ry = 2<p—1>(2q —1), Ry =21 (27 — 1),

CEEC) )
S L))

((P — iR+ (¢ —1)f2R2) + \/((p —1)fiR1 + (¢ — 1) f2R2)? + 2pqf2 (R} + R3)

M1, 2 = \/i ’
72 Z\/(( — 1) fiR1 + (¢ — 1) f2R2)? + 2pq f3 (R} + R3),

EEC) )

provided (2) =0ifr<s.

Proof. Let the Sombor matrix of a complete bipartite hypergraph be expressed as the
block matrix as follows:

Apso(Kpq) = V2R A(K,) f3\/mjp’q
"\ R, VIRRAK,) )

Suppose that |ul — Apso(XK, )| is the characteristic polynomial of the matrix
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Apso(K,,), and by performing row operations, we get

1L = Apso(Kpg)l = (u+ V2AR)T (1 +V2fRa)" (= o) (1 — o),

where 1 and ps are the remaining two eigenvalues that are obtained from the quotient

matrix,
(Ve -DAR R+ Rpfy
Q(APSO(:Kp,q)) - ( \/mqf3 \/5((] - 1)f2R2) .

3. SOMBOR SPECTRAL RADIUS

This section deals with the Sombor spectral radius of hypergraphs, and in later
parts, we attempt to characterize the extremal hypertree that attains the maximum
Sombor spectral radius.

Throughout this article p;(H) denotes the largest eigenvalue of Apgo(H), and
A1(H) denotes the largest (adjacency) eigenvalue of H. We have that if A; < Ay,
then p(A;) < p(Az). By using this, we get the following simple result.

Lemma 3.1. Let H = (V,E) be a hypergraph and e & E. Then, py(H + e) > puy (H).

By using the above lemma, we have the following upper bound for the spectral
radius of a hypergraph.

Theorem 3.1. For a general hypergraph H with co-rank(H) > 2, we have

11 (Apso(H)) < Dp(n —1)(2" ' = 1)v2,  where D, = nz:l}

t=1

and the equality is attained by the hypergraph K, that is obtained from X,, by removing
all hyperedges of size 1.

Theorem 3.2. Let H = (V, E) be a non-trivial connected hypergraph of rank(H) = p
and co-rank(H) = q. Then,

V202 (g 1) _ - V2A%p-1)

-1 =M=

Proof. Let x be the Perron vector of Apso(H), and z, and x,, respectively be the
component of x corresponding to the vertices u and v of H, such that x, = max;cy z;
and x, = min;ey x;.

We know that, (Apso(F0)X)y = Xuuw Zee(cunts) V‘j‘ulcp Ty = p1%,. Therefore,

\/§A2<p — 1>xv
(q - 1)xv .

(3.1) p <
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Equality in (3.1) holds for uniform and regular hypergraphs. Since H is connected,
we have x > 0, and hence z, = mi\:gl x; > 0 and
1€

V28 (g — 1)
(3.2) p 2 W
O

Corollary 3.1. Let H be a k-uniform linear hypergraph on n vertices with m hyper-
edges. Then, V26 < 1 < V/2A2

Theorem 3.3. Let H be a linear hypergraph of rank(H) = p and co — rank(H) = q.
Then,

V24(g = 1)om

n(p—1)

v

21

Proof. Let 1 := (1,...,1) be a all-one vector of length n and p; be the spectral radius
of the matrix Apgo(H). Then,

1ApgolT 1 n
> _ 2 g2
iz O - ;;j\/dz T
25 2q(q — 1
> V2§ g1y 5 Y2ala = Dom,
n(p - 1) i=1 n(p - 1)

O

Corollary 3.2. Let H be a k-uniform linear hypergraph on n vertices and m hyper-
edges. If A\ and py are the adjacency and Sombor spectral radius of I, respectively,
then

V2kms and M\ > k—m
n

p1 >
n

In the following, we state a couple of transformation of a hypergraph that are used
to maximize the spectral radius.

Definition 3.1 (Edge moving operation). Suppose that H = (V, ) be a k-uniform
hypergraph with u € V and ey, ...,e; € €, such that u ¢ e; for i = 1,...,t. Further-
more, suppose that v; € e; be the non-pendant vertex. Construct e, = (e;\{v;}) U u.
Let H' = (V, &) be the hypergraph with & = (E\{ey,...,e;}) U {e, ..., e,}. Then
we say that HTis obtained from H by moving the edges {ey,..., e} from (vy,...,v;)
to u (all e;’s are distinct but v;, 1 <1 <t need not be distinct).

An example of moving edges (eq, s, e3) from (vy,ve,v) to u has been pictorially
depicted in Figure 6.
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FIGURE 6. Moving of edges (e, €9, e3) from (v, v9,v9) to u.

Definition 3.2 (Edge-releasing operation). Suppose that H = (V, €) be a k-uniform
hypergraph and e be a non-pendant edge with u € e. Let {ej,...,e;} be all the
edges of H adjacent to the edge e. Also let eNe; = v; for i = 1,...,t. Let H* be
the hypergraph obtained from H by moving edges {ey,...,e;} from (vq,...,v;) to u.
Then, H* is said to be obtained from H by edge-releasing operation on e at u.

Figure 7 depicts the edge-releasing of e at v; and v,.

FIGURE 7. Edge-releasing of e at vy (in (a)) and vs (in (b)).

Lemma 3.2. Suppose that e is a non-pendant edge of T and u € e. Then, py (T') >
(7).

Proof. (Incomplete) Let us consider u € e such that =, = max{z, : v € e} for the
principal eigenvector x of T, and e be a non-pendant edge with u € e, also {ey, ..., e}
be all the edges of T adjacent to the edge e, and eUe; = {v;} fori=1,... ¢.
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Suppose T’ is the hypergraph obtained from T by moving edges {ey,...,e;} from
(v1,...,v;) to u. Consider,

(T = 1 (T) = xTApso(T)x — pu (7)
:XTAPSO (‘I’)X — XTAPSO (‘J')X

=ml_1( S 2+ dpr - Y QW)

inj in T’ inj in T

2 t
:m—l(z( > A+ dima - ) \/dﬁﬁd?%xj)

i=1 \j€e;;j#v; JEeijFv;

—|—< > A+ ey — ) \/dﬁ%—djzxuxj)

urj;jte,e; u~j;jge.e;

i~jii,J€e

VENISE

=1 \jeesj#v

(3.4) - ( > o (Jdz+ -2+ a2 )xuwj)

ur~jij¢e,ei

(3.5) + ( > (\/d;Z +d? — \/cll2 + d3 > xzx])> :

i~vjii,jee

Our aim is to prove that, 1 (7") — p1(T) > 0. Since x,, > x,,, we have ,,/d2 + df —

Lo\ [ A2, + d5 = 2/ (dy + )2 + d5 =, /d2 + dF > Ofor each j € e;,j # v;. Hence, the

summand in (3.3) is strictly positive. Also, the summand (3.4) \/d;f + dZ— \/d% + dz =

\/(du +1)2 4 d7 — \/dg +di, u~ j,j ¢ e, e strictly positive. The last summand in

(3.5), > <\/d;2 +d? — \/df + d? ) x;x; is correspond to the hyperedge that is edge
i~jiinjEe

released. Unfortunately, we couldn’t prove that the summand (3.5) is greater than or

equal to zero. O

Theorem 3.4. Let T be a k-uniform hypertree with m hyperedges. Also, let pui(T)
be the Sombor spectral radius of T. If Lemma 3.2 holds good, then uy(T) < iy (8%)).
Equality holds if and only if T = 8.

Proof. Let x be the Perron vector of Apso(T) and up be its corresponding eigenvalue.
Suppose T contains ¢t non-pendant hyperedges (¢t > 2). Let us assume that T has a
maximum Sombor spectral radius. Let u € e be such that z, = max{z, : v € e}.
Suppose J; denotes the hypertree obtained from T by edge releasing e at u. By
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using Lemma 3.2, we have p(T1) > u1(7), a contradiction to the assumption that
T has maximum Sombor spectral radius. Therefore, by repeatedly performing the
edge-releasing operation on the non-pendant hyperedges of the hypertree, we finally
arrive at a hypergraph that does not contain non-pendant hyperedges. But we know
that hyperstar is the unique hypertree without any non-pendant hyperedges.
Suppose there exist a hypertree T, % 8% with 1 (T2) = p1(8F). Since T, % 8W),
the existence of the non-pendant hyperedge in 75 is guaranteed, and hence by a similar
argument as above, we arrive at the contradiction. 0

4. BOUNDS FOR ENERGY OF HYPERGRAPHS

In this section, we have obtained sharp bounds for the energy of linear hypergraphs
and the Sombor energy of (general) hypergraphs in terms of order, size, rank, co-rank,
maximum and minimum degree of the vertices of the hypergraph.

Lemma 4.1. Let H be a k-uniform linear hypergraph with m hyperedges. Then,

S dy = km. Also, Tr(A(H)?) = (:inl).
ueV(JH)

Proof. Note that, if H is a linear hypergraph, then co-degree of any pair of adjacent
vertices v and v in H is d,, = 1. O

For the case of simple graphs, McClelland [22] proved that the energy is upper
bounded by v/2mn.

Theorem 4.1 (McClelland-type bound for linear uniform hypergraphs). Let H be a
k-uniform linear hypergraph on n wvertices with m hyperedges. If E(H) denotes the
(adjacency) energy of H, then

kmn
E(H) < .
(FO) <y/3 3
Proof. It Ay, ..., \, denotes the eigenvalues of the adjacency matrix of H, then
0< Z Z (|)‘T| - |)‘8|)2 = nz |)‘7‘|2 + TLZ |)‘S|2 - 22 Z |)‘7"| : |)‘S|
r=1s=1 r=1 s=1 r=1s=1

=2 AP - 2B(H)2.

s=1

Now, using Lemma 4.1, we have Y7 |As[* = £2 from which the result follows. [

Initially, the following upper bound for simple graphs was proved [17] by Koole and
Moulton.

Theorem 4.2 (Koolen-Moulton type bound for linear uniform hypergraphs). Let
H be a k-uniform (k > 2) linear hypergraph on n vertices and m hyperedges, with
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km > n. If the spectral radius of H is upper bounded (strictly) by /km/(k — 1), then

E(%)<T+J(n1) (lﬁ’ll_ (’T)?)

For k =2, equality case is same as that of simple graphs.

Proof. Let Ay > --- > A, be the eigenvalues of the adjacency matrix of the k-uniform
linear hypergraph H. If s1,...,s, denotes the row sum of the adjacency matrix of
H, then we know that

im1 8 _ X ((k=1)dy)/(k—1) _ km

)\12 - = —,
n n n

Using Lemma 4.1, we have

7_2
SN = A

=2
Now, using the Cauchy-Schwarz mequahty, we have

) =0 (i)

E(H)§A1+J(n—1) (l{:—l_)\%)

Let g(y) ==y + \/(n — 1)((km/(k —1)) —y?). Then, g(y) decreases in the interval

[\/(k:m)/n, \/(km)/(k - 1)) Also, for km > n, \/km/n < km/n < \;. Therefore, for
A < /km/(k—1), we have

90) < glkm/m) = " J (n—1) (,f_””‘l - (T) )

Hence,

4.1. Sombor energy of hypergraphs.

Definition 4.1. For a hypergraph H, the Zagreb index of H is denoted by M;(H)
and is defined as the sum of the squares of the degrees of its vertices. Also, the
forgotten index of the hypergraph H, denoted by F(H), is defined as the sum of the
cubes of the degree of all the vertices of the hypergraph.

- Y & and FH) = Y &

vEV(H) veV(K)
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Theorem 4.3. Let H be a hypergraph on n vertices and m hyperedges. If rank(H) is
p and co-rank(H) is q, then

A A?
Epso(H \/Qn - 1)F )q 1 Qnmp(p—l)q_l.

The equality holds if and only if H is a 2-graph with isolated edges and no isolated
vertices, or if H is a trivial hypergraph (edgeless).

Proof. Suppose 1, ..., p, are the eigenvalues of Apgo(H). Then,

iM?ZTT(A?DSO(J{)): Z Z (di+d3)< Z : )

i=1 UGV(}C) u€N (v) e€(EuNEy) |6| -1

(4.1) < Y. Y (di+d)d

( ) veEV(H) ueN (v)
(4.2) ok Y (d+d)

(q - 1) vEV(H)  ueN(v)

2A2(p
(4.3) < d,

(q - 1) vg%: )
2(n

(4.4) <280 =) g

~ (g 1)?

The equality in (4.1) holds for a uniform hypergraph, (4.2) holds if for any two vertices
w and v, N(u) = N(v) holds. But this can happen only in a hypergraph made of
isolated hyperedges. Therefore,

Srso(3 < (3 qu-|>2 <n (3] < 20D P,

The above equality holds if all the eigenvalues have the same absolute value. For
uniform hypergraphs made of isolated edges, this only happens when there is no
isolated vertex and the edges have size 2. We have,

Yo di< Y Adp < APpm,
vEV(H) vEV(H)

and the equality holds if the hypergraph is both uniform and regular. Hence,

2
(gopso \/271 —1 )Al < \/anp( - 1) A .

qg—1

All the equalities happen only if H is a 2-graph with isolated edges and no isolated
vertices or if JH is trivial. O
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Theorem 4.4. Let H be a hypergraph with n vertices and m hyperedges. If rank(H)
is p and co-rank(H) is q, then

Epso(H) < u + J (n—1) (mp ) ) u%).

(¢ —1)?
Equality holds if and only if H is a 2-graph with isolated edges and no isolated vertices
or if H is an edgeless hypergraph.

Proof. From Theorem 4.3, we have

uf+§n:m Zm < QAZ<_1)2>F(9{),

=2
equality holding only on uniform hypergraphs made of isolated edges and possibly
some isolated vertices. Therefore,

(6ps0(50) - )" = (3] w)Q

n 2A%(p —1
S-SR (1) (WF«H) —/ﬁ) |
i=2 (¢—1)
Equality holds when |us| = |us| = - -+ = |ptn|. Uniform hypergraphs made of isolated
edges can only occur when all the edges are size two and there are no isolated
vertices. 0

Corollary 4.1. Let H be a k-uniform and r-reqular hypergraph. Then,

Epso(H0) < r2V/2 <1+\/(n— 1) (kr_”l - 1) ) .

Lemma 4.2. Let H be a hypergraph with n vertices and m hyperedges. Then,

gpso(j{)Q 2 2 Zu?

™=

Proof. First, notice that 0 = (

2 n
ui> = E 2+ 2% pp;. Therefore,

i=1 =1 1<j

(4.5) Youi =2 s,
i=1

i<j
1 n

(4.6) o lpipg| > | >0 pip| = 52/%2
i<y i<y i=1

Then,

(4.7) E250(H) = (z |ui|) zw ST 2zuz.

1<j
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Notice that equality in (4.6) and consequently in (4.7) occurs only if every non-zero
eigenvalue has the same sign. If H has at least three non-zero eigenvalues (not
necessarily distinct), it is impossible for this to happen. Therefore, H must have at
most one 2-uniform complete bipartite connected component and possibly isolated
vertices. U
Theorem 4.5. Let H be a hypergraph with n vertices and m hyperedges. If rank(H)
is p, co-rank(H) is ¢ and average degree of H is d(H), then
20

Equality holds if and only if H is the 2-uniform, regular hypergraph with at most one
complete bipartite connected component.

Proof. By the above lemma, we have

2
1
Greof 223022 B ¥ ‘Mz( > ||—1)
)

veEV(H) ueN (v) e€(Eunéy

ooy (d+d)d

(p 1)? vEV(I0) ueN (v)

Yo > (B +d)du,
(p— ) vEV(I) ueN (v)
- 4nd*(q — 1)d(H)

- (p—1)

O

Theorem 4.6. Let H be a hypergraph with n vertices and m hyperedges. If rank(H)
is p and co-rank(H) is q, then

20(q —1) [ M;(H)

p—1 n
Equality holds if and only if H is the 2-uniform, reqular hypergraph with only one edge
and no isolated vertices, or if H is trivial.

Proof. Note that,

Epso(H) >

Epso(H)* >

Yoo > (E+d)d

(p 1)? VEV(H) ueN (v)

(4.8) > _21)2 > 1( 3 (di+d§)duv)

(p veEV(H) n uEN (v)
46%(q — 1)*My(H)
nlp— 1)

Equality in (4.8) holds only d,, is constant for each w. O
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Theorem 4.7. Let H be a hypergraph with n vertices and m hyperedges. Then,

2n
n—1

Epso(H) > 1y

Equality holds if and only if H is the 2-uniform hypergraph with one edge and two
vertices, or if H is trivial.

Proof. We have

n

22_2n2>2 1 n.Q_TW%
R D = it e guz = :

i—1 i—2 n—1

Equality holds in above inequality, whenever |us| = |us| = - -+ = |pn|. For complete
bipartite graph, this only holds when J = ngQ). Therefore,
$ 2y

Epso(H)? > 2> i > :
= n—1

O

Lemma 4.3. Let H = (V, &) be a hypergraph with n vertices and m hyperedges. If
rank(H) is p and co-rank(H) is q. Then,

2 2002 (g—1)d(H)
1) 3 pf > e,
n 262 (q—1)2M; () .
2) igl /”LZZ Z ?@(p_l)Ql ’
n nu2
8) ¥ iz

Lemma 4.4. Let H = (V, &) be a hypergraph with n vertices and m hyperedges. If
rank(H) is p and co-rank(H) is q, then

n

Epso(30)* > Y i +n(n — 1) det(Apso(30))[7.

=1

3

Equality holds if |j;| = |u;| for every i # j, that is, if H is the graph with one edge
and two vertices.

Proof. Suppose,
1 S B 2 2
ey 2wl = T 7070 = T il = [ det(Apso(FO))| 7,
n(n—1) 7 i#j i=1

where the above inequality is the arithmetic mean of non-negative numbers is greater
than or equal to the geometric mean, and equality holds if and only if |u;| = |u;| for
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every i # j. Therefore,

Epso(H)* = (i |m|> - i/ﬁ + > ]

i=1 i£j

S

> zn: 13+ n(n — 1) det(Apso(H))| U

By using Lemma 4.3 and Lemma 4.4, we found some lower bounds for the Sombor
energy of a hypergraph, depending on the determinant of its Sombor matrix.

Theorem 4.8. Let H = (V, &) be a hypergraph with n vertices and m hyperedges. If
rank(H) is p and co-rank(H) is q, then

Erso(30) > 222U =V 4(30) 4 n(n — 1)) det(Apso(30)]F,
(p—1)
Epso(H) > ?22?;i£@2ﬂfdﬂf)+-n(n-—1)|det@4pso(9fﬂli,

2
n

Enso(30) z\/ i+ n(n— D] det(Apso(30)[

Proof. Combining Lemma 4.4 and the inequalities in Lemma 4.3, we get the above
results. 0

5. CONCLUSION

In this article, the Sombor index of the graph has been extended to the pairwise
Sombor index of hypergraphs with the motive of studying the spectra of the Som-
bor matrix of the hypergraph. Similar to this work, one can study the spectra of
degree-based extended adjacency matrices corresponding to many VDB topological
indices, as well as their application in predicting the physico-chemical properties of
the compounds (which can be modeled through hypergraphs). We have obtained
some bounds for the Sombor spectral radius and characterized the hypertree attaining
the maximum Sombor spectral radius. We present some lower and upper bounds for
energy and the Sombor energy of a hypergraph in terms of maximum (or minimum)
degree, size, order, rank, co-rank and uniformity of the hypergraph.
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