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ON GRADIENT η-EINSTEIN SOLITONS

A. M. BLAGA1

Abstract. If the potential vector field of an η-Einstein soliton is of gradient type,
using Bochner formula, we derive from the soliton equation a nonlinear second order
PDE. Under certain conditions, the existence of an η-Einstein soliton forces the
manifold to be of constant scalar curvature.

1. Introduction

In the same way like the Ricci solitons generate self-similar solutions to Ricci flow

(1.1) ∂

∂t
g = −2S,

the notion of Einstein solitons, which generate self-similar solutions to Einstein flow

(1.2) ∂

∂t
g = −2

(
S − scal

2 g

)
,

was introduced by G. Catino and L. Mazzieri [4]. The interest in studying this
equation from different points of view arises from concrete physical problems. On
the other hand, gradient vector fields play a central role in Morse-Smale theory [16],
aspects of gradient η-Ricci solitons being discussed in [3].

In what follows, after characterizing the manifold of constant scalar curvature via
the existence of η-Einstein solitons, we focus on the case when the potential vector
field ξ is of gradient type (i.e., ξ = grad(f), for f a nonconstant smooth function on
M) and give the Laplacian equation satisfied by f . Under certain assumptions, the
existence of an η-Einstein soliton implies that the manifold is quasi-Einstein. Remark
that quasi-Einstein manifolds arose during the study of exact solutions of Einstein
field equations.
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2. η-Einstein soliton equation

In the study of the η-Einstein soliton equation we will consider certain assumptions,
one essential condition being ∇ξ = Iχ(M) − η ⊗ ξ which naturally arises in different
geometries: Kenmotsu [10], Lorenzian-Kenmotsu [1], para-Kenmotsu [12] etc. Im-
mediate properties of this structure, which will be used later, are given in the next
proposition.

Proposition 2.1. [3] Let (M, g) be an m-dimensional Riemannian manifold and η
be the g-dual 1-form of the nonzero vector field ξ. If ξ satisfies ∇ξ = Iχ(M) − η ⊗ ξ,
where ∇ is the Levi-Civita connection associated to g, then:

(a) Lξg = 2(g − η ⊗ η);
(b) R(X, Y )ξ = η(X)Y − η(Y )X, for any X, Y ∈ χ(M);
(c) S(ξ, ξ) = (1−m)|ξ|2.

Consider the equation
(2.1) Lξg + 2S + (2λ− scal)g + 2µη ⊗ η = 0,
where Lξ is the Lie derivative operator along the vector field ξ, S is the Ricci curvature
tensor field, scal is the scalar curvature of the Riemannian metric g, and λ and µ are
real constants. For µ 6= 0, the data (g, ξ, λ, µ) will be called η-Einstein soliton. Remark
that if the scalar curvature scal of the manifold is constant, then the η-Einstein soliton
(g, ξ, λ, µ) reduces to an η-Ricci soliton

(
g, ξ, λ− scal

2 , µ
)
and, moreover, if µ = 0, to

a Ricci soliton
(
g, ξ, λ− scal

2

)
. Therefore, the two concepts of η-Einstein soliton and

η-Ricci soliton are distinct on manifolds of nonconstant scalar curvature.
Writing now Lξg in terms of the Levi-Civita connection ∇, we obtain

(2.2) 2S(X, Y ) = −g(∇Xξ, Y )− g(X,∇Y ξ)− (2λ− scal)g(X, Y )− 2µη(X)η(Y ),
for any X, Y ∈ χ(M).

An important geometrical object in studying Ricci solitons is a symmetric (0, 2)-
tensor field which is parallel with respect to the Levi-Civita connection [2], [7]. The
existence of such tensors on smooth manifolds carrying different structures such as
contact [14], K-contact [15], P -Sasakian [11], α-Sasakian [8] etc. was investigated by
many authors. The starting point was the Eisenhart problem of finding symmetric
and (skew symmetric) parallel tensors on various spaces. He proved in [9] that if
a positive definite Riemannian manifold admits a second order parallel symmetric
covariant tensor field other than a constant multiple of the metric, then it is reducible.
In our case, we show that if we ask to be satisfied the condition ∇ξ = Iχ(M) − η ⊗ ξ,
then any symmetric ∇-parallel (0, 2)-tensor field must be a constant multiple of the
metric. If we take α := Lξg + 2S + 2µη ⊗ η, the above mentioned result leads us
to characterize the existence of the soliton (g, ξ, λ, µ) in terms of a scalar curvature
property. Following the ideas of Călin and Crasmareanu [5] we shall study the equation
(2.1), applying similar techniques.
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Let α be such a symmetric (0, 2)-tensor field which is parallel with respect to
the Levi-Civita connection (∇α = 0). From the Ricci identity ∇2α(X, Y ;Z,W ) −
∇2α(X, Y ;W,Z) = 0, one obtains for any X, Y , Z, W ∈ χ(M) [13]

(2.3) α(R(X, Y )Z,W ) + α(Z,R(X, Y )W ) = 0.

In particular, for Z = W := ξ from the symmetry of α follows α(R(X, Y )ξ, ξ) = 0,
for any X, Y ∈ χ(M).

If ∇ξ = Iχ(M) − η ⊗ ξ, from Proposition 2.1 we have R(X, Y )ξ = η(X)Y − η(Y )X
and replacing this expression in α we get

(2.4) α(Y, ξ)− η(Y )α(ξ, ξ) = 0,

for any Y ∈ χ(M), equivalent to

(2.5) α(Y, ξ)− α(ξ, ξ)g(Y, ξ) = 0,

for any Y ∈ χ(M). Differentiating the equation (2.5) covariantly with respect to the
vector field X ∈ χ(M) we obtain

α(∇XY, ξ) + α(Y,∇Xξ) = α(ξ, ξ)[g(∇XY, ξ) + g(Y,∇Xξ)],

and substituting the expression of ∇Xξ = X − η(X)ξ we get

(2.6) α(Y,X) = α(ξ, ξ)g(Y,X),

for any X, Y ∈ χ(M). As α is ∇-parallel, follows α(ξ, ξ) is constant and we conclude
the following.

Proposition 2.2. Under the hypotheses above, any parallel symmetric (0, 2)-tensor
field is a constant multiple of the metric.

Applying these results, we conclude the following theorem.

Theorem 2.1. Let η be the g-dual 1-form of the unitary vector field ξ on the Rie-
mannian manifold (M, g) such that ξ satisfies ∇ξ = Iχ(M)−η⊗ξ, where ∇ is the Levi-
Civita connection associated to g. Assume that the symmetric (0, 2)-tensor field α :=
Lξg+2S+2µη⊗η is parallel with respect to ∇. Then

(
g, ξ, λ := −1

2 [α(ξ, ξ)− scal], µ
)

satisfies equation (2.1) if and only if M is of constant scalar curvature.

Proof. Compute α(ξ, ξ) and from (2.1) we get

α(ξ, ξ) = (Lξg)(ξ, ξ) + 2S(ξ, ξ) + 2µη(ξ)η(ξ) = −2λ+ scal,

and taking into account that ∇α = 0, we deduce that scal = c (a real constant), so
λ = −1

2 [α(ξ, ξ)− c].
Conversely, if scal = c (a real constant), from (2.6) and ∇α = 0 we get α(X, Y ) =

α(ξ, ξ)g(X, Y ) = −(2λ − c)g(X, Y ), for any X, Y ∈ χ(M). Therefore, Lξg + 2S +
2µη ⊗ η = −(2λ− c)g, i.e. (g, ξ, λ, µ) satisfies equation (2.1). �



232 A. M. BLAGA

The above condition we asked to be satisfied by the potential vector field ξ, namely
∇Xξ = X−η(X)ξ, naturally arises if (M,ϕ, ξ, η, g) is for example, Kenmotsu manifold
[10].

Example 2.1. Let M = {(x, y, z) ∈ R3, z > 0}, where (x, y, z) are the standard
coordinates in R3. Set

ϕ := − ∂

∂y
⊗ dx+ ∂

∂x
⊗ dy, ξ := −z ∂

∂z
, η := −1

z
dz,

g := 1
z2 (dx⊗ dx+ dy ⊗ dy + dz ⊗ dz).

Then (ϕ, ξ, η, g) is a Kenmotsu structure on M .
Consider the linearly independent system of vector fields:

E1 := z
∂

∂x
, E2 := z

∂

∂y
, E3 := −z ∂

∂z
.

Follows
ϕE1 = −E2, ϕE2 = E1, ϕE3 = 0,
η(E1) = 0, η(E2) = 0, η(E3) = 1,

[E1, E2] = 0, [E2, E3] = E2, [E3, E1] = −E1,

and the Levi-Civita connection ∇ is deduced from Koszul’s formula
2g(∇XY, Z) =X(g(Y, Z)) + Y (g(Z,X))− Z(g(X, Y ))

− g(X, [Y, Z]) + g(Y, [Z,X]) + g(Z, [X, Y ]),
precisely

∇E1E1 = −E3, ∇E1E2 = 0, ∇E1E3 = E1,

∇E2E1 = 0, ∇E2E2 = −E3, ∇E2E3 = E2,

∇E3E1 = 0, ∇E3E2 = 0, ∇E3E3 = 0.
Then the Riemann and the Ricci curvature tensor fields are given by:

R(E1, E2)E2 = −E1, R(E1, E3)E3 = −E1, R(E2, E1)E1 = −E2,

R(E2, E3)E3 = −E2, R(E3, E1)E1 = −E3, R(E3, E2)E2 = −E3,

S(E1, E1) = S(E2, E2) = S(E3, E3) = −2,
and the scalar curvature scal = −6.

From (2.1) computed in (Ei, Ei) follows
2[g(Ei, Ei)− η(Ei)η(Ei)] + 2S(Ei, Ei) + (2λ− scal)g(Ei, Ei) + 2µη(Ei)η(Ei) = 0,

for all i ∈ {1, 2, 3}, and we have
2(1− δi3)− 4 + 2λ+ 6 + 2µδi3 = 0 ⇐⇒ 2λ+ 4 + 2(µ− 1)δi3 = 0,

for all i ∈ {1, 2, 3}. Therefore, µ = 1 and λ = −2 define an η-Einstein soliton on
(M,ϕ, ξ, η, g).
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The condition ∇Xξ = X− η(X)ξ implies Lξg = 2(g− η⊗ η) and the equation (2.2)
becomes

(2.7) S(X, Y ) = −
(
λ+ 1− scal

2

)
g(X, Y )− (µ− 1)η(X)η(Y ).

Recall that the manifold is called quasi-Einstein if the Ricci curvature tensor field
S is a linear combination (with real scalars λ and µ respectively, with µ 6= 0) of g
and the tensor product of a nonzero 1-form η satisfying η(X) = g(X, ξ), for ξ a unit
vector field [6] and respectively, Einstein if S is collinear with g. Sufficient conditions
for (M, g) to be quasi-Einstein or Einstein are given in the next two propositions.

Proposition 2.3. Let η be the g-dual 1-form of the nonzero vector field ξ on the
Riemannian manifold (M, g) such that ξ satisfies ∇ξ = Iχ(M) − η ⊗ ξ, where ∇ is the
Levi-Civita connection associated to g. If (g, ξ, λ, µ) satisfy the equation (2.1), then
(M, g) is quasi-Einstein.

Proof. It follows from (2.7). �

If we ask for certain curvature conditions, namely, R(ξ,X)·S = 0 and S(ξ,X)·R = 0,
we deduce that M is either Einstein or get its scalar curvature depending on the
constants (λ, µ) that define the η-Einstein soliton on M respectively, where by · we
denote the derivation of the tensor algebra at each point of the tangent space:

• (R(ξ,X)·S)(Y, Z) := ((ξ∧RX)·S)(Y, Z) := S((ξ∧RX)Y, Z)+S(Y, (ξ∧RX)Z),
for (X ∧R Y )Z := R(X, Y )Z;
• S((ξ,X) ·R)(Y, Z)W := ((ξ∧SX) ·R)(Y, Z)W := (ξ∧SX)R(Y, Z)W +R((ξ∧S
X)Y, Z)W + R(Y, (ξ ∧S X)Z)W + R(Y, Z)(ξ ∧S X)W , for (X ∧S Y )Z :=
S(Y, Z)X − S(X,Z)Y .

Proposition 2.4. Let η be the g-dual 1-form of the nonzero and nonunitary vector
field ξ on the Riemannian manifold (M, g) such that ξ satisfies ∇ξ = Iχ(M) − η ⊗ ξ,
where ∇ is the Levi-Civita connection associated to g. If (g, ξ, λ, µ) satisfy the equation
(2.1) and R(ξ,X) · S = 0, then (M, g) is Einstein manifold.

Proof. The condition that must be satisfied by S is:
(2.8) S(R(ξ,X)Y, Z) + S(Y,R(ξ,X)Z) = 0,
for any X, Y , Z ∈ χ(M).

Replacing the expression of S from (2.7) and from the symmetries of R we get
(2.9) (µ− 1)[η(Y )g(X,Z) + η(Z)g(X, Y )− 2η(X)η(Y )η(Z)] = 0,
for any X, Y, Z ∈ χ(M).

For X = Y = Z := ξ we have
(2.10) (µ− 1)[η(ξ)]2[η(ξ)− 1] = 0,
which implies µ = 1. �
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Remark 2.1. Under the hypotheses of Proposition 2.4, there is no Ricci soliton with
the potential vector field ξ.

Proposition 2.5. Let η be the g-dual 1-form of the nonzero and nonunitary vector
field ξ on the Riemannian manifold (M, g) such that ξ satisfies ∇ξ = Iχ(M) − η ⊗ ξ,
where ∇ is the Levi-Civita connection associated to g. If (g, ξ, λ, µ) satisfy the equation
(2.1) and S(ξ,X) ·R = 0, then (λ, µ) satisfy 2(λ+ 1) + |ξ|2(µ− 1) = scal.

Proof. The condition that must be satisfied by S is:

S(X,R(Y, Z)W )ξ − S(ξ, R(Y, Z)W )X + S(X, Y )R(ξ, Z)W(2.11)
−S(ξ, Y )R(X,Z)W + S(X,Z)R(Y, ξ)W − S(ξ, Z)R(Y,X)W
+S(X,W )R(Y, Z)ξ − S(ξ,W )R(Y, Z)X = 0,

for any X, Y, Z,W ∈ χ(M).
Taking the inner product with ξ, the relation (2.11) becomes

S(X,R(Y, Z)W )|ξ|2 − S(ξ, R(Y, Z)W )η(X) + S(X, Y )η(R(ξ, Z)W )(2.12)
−S(ξ, Y )η(R(X,Z)W ) + S(X,Z)η(R(Y, ξ)W )− S(ξ, Z)η(R(Y,X)W )
+S(X,W )η(R(Y, Z)ξ)− S(ξ,W )η(R(Y, Z)X) = 0,

for any X, Y, Z,W ∈ χ(M).
For W := ξ and from the symmetries of R we get

(2.13) S(X,R(Y, Z)ξ)|ξ|2 − S(ξ, R(Y, Z)ξ)η(X) + S(ξ, ξ)g(R(Y, Z)ξ,X) = 0,

for any X, Y, Z ∈ χ(M).
Replacing the expression of S from (2.7), we get

(2.14) |ξ|2[2λ+ 2− scal +(µ− 1)|ξ|2][η(Y )g(X,Z)− η(Z)g(X, Y )] = 0,

for any X, Y, Z ∈ χ(M).
For Z := ξ we have

(2.15) |ξ|2[2λ+ 2− scal +(µ− 1)|ξ|2][η(X)η(Y )− |ξ|2g(X, Y )] = 0,

for any X, Y ∈ χ(M) and we obtain

(2.16) 2λ+ 2− scal +(µ− 1)|ξ|2 = 0,

which is stated. �

Corollary 2.1. Let η be the g-dual 1-form of the nonzero and nonunitary vector field
ξ on the Riemannian manifold (M, g) such that ξ satisfies ∇ξ = Iχ(M) − η ⊗ ξ, where
∇ is the Levi-Civita connection associated to g. If (g, ξ, λ, 0) satisfy the equation (2.1)
and S(ξ,X) ·R = 0, then λ = |ξ|2+scal

2 − 1.
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3. Gradient η-Einstein solitons

We are interested in gradient η-Einstein solitons, as solutions of the equation
(3.1) Lξg + 2S + (2λ− scal)g + 2µη ⊗ η = 0,
where g is a Riemannian metric, S is the Ricci curvature, scal is the scalar curvature,
η is a 1-form whose g-dual vector field ξ is of gradient type, ξ := grad(f), for f a
smooth function on M , and λ and µ are real constants (µ 6= 0). The data (g, ξ, λ, µ)
which satisfy the equation (3.1) is said to be a gradient η-Einstein soliton on M .

Taking the trace of the relation (3.1), applying then ∇ξ and observing that if
ξ = ∑m

i=1 ξ
iEi, for {Ei}1≤i≤m a local orthonormal frame field with ∇Ei

Ej = 0 in a
point,

trace(η ⊗ η) =
m∑
i=1

[df(Ei)]2 =
∑

1≤i,j,k≤m
ξjξkg(Ei, Ej)g(Ei, Ek) =

m∑
i=1

(ξi)2 =

=
∑

1≤i,j≤m
ξiξjg(Ei, Ej) = |ξ|2,

we get

(3.2) ξ(div(ξ)) +
(

1− m

2

)
∇ξ(scal) + µξ(|ξ|2) = 0,

and because Lξg = 2 Hess(f), taking the divergence of the same relation and comput-
ing it in ξ we obtain
(3.3) (div(Lξg))(ξ)+2(div(S))(ξ)−trace(d(scal)⊗d(scal))+2µ(div(df⊗df))(ξ) = 0.

From (3.1) we deduce

(3.4) S(ξ, ξ) = −1
2ξ(|ξ|

2)− λ|ξ|2 + scal
2 |ξ|

2 − µ|ξ|4.

Multiplying (3.3) by 1−m
2 , substracting (3.2), using the fact that∇(scal) = 2 div(S),

we get
(div(Lξg))(ξ) =∆(|ξ|2)− 2|∇ξ|2,(3.5)

∆(|ξ|2)− 2|∇ξ|2 =2S(ξ, ξ) + 2ξ(div(ξ)),(3.6)

(div(df ⊗ df))(ξ) =1
2 trace(df ⊗ d(|ξ|2)) + |ξ|2 div(ξ),(3.7)

and with (3.4), we get

(1−m
2

)
∆(|ξ|2)

(3.8)

=(1−m)|∇ξ|2 + 1
2ξ(|ξ|

2) + λ|ξ|2 − scal
2 |ξ|

2 +
(

1− m

2

)
· trace(d(scal)⊗ d(scal))

+ µ
{
|ξ|4 −

(
1− m

2

)
· trace(df ⊗ d(|ξ|2))− 2

(
1− m

2

)
|ξ|2 div(ξ) + ξ(|ξ|2)

}
.
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Theorem 3.1. Let (M, g) be an m-dimensional Riemannian manifold (m > 2) and
η be the g-dual 1-form of the gradient vector field ξ := grad(f). Assume that (3.1)
defines an η-Einstein soliton on M and ξ satisfies ∇ξ = Iχ(M) − η ⊗ ξ, where ∇ is
the Levi-Civita connection associated to g. If µ = 1, then M is of constant scalar
curvature; if µ 6= 1, then M is of constant scalar curvature if and only if ξ is of
constant length, and in this case, the Laplacian equation becomes

(3.9) ∆(f) = m− 1
µ

.

Proof. We have
(3.10) ξ(|ξ|2) = 2(|ξ|2 − |ξ|4),
and
(3.11) ξ(|ξ|4) = 4(|ξ|4 − |ξ|6),
and from (2.7) we get

(3.12) S(ξ, ξ) = −
(
λ+ 1− scal

2

)
|ξ|2 − (µ− 1)|ξ|4.

Also from Proposition 2.1:
(3.13) S(ξ, ξ) = |ξ|2 −m|ξ|2,
therefore

(3.14) |ξ|2 =
(
m− 1− λ+ scal

2

)
|ξ|2 − (µ− 1)|ξ|4.

We obtain

(3.15) |ξ|2(µ− 1) = m− 2− λ+ scal
2 .

If µ = 1, then from (3.15) we obtain scal = 2(λ + 2 − m), i.e. M is of constant
scalar curvature.

Let µ 6= 1. If the scalar curvature is constant, then |ξ| is constant. Conversely,
if ξ is of constant length, from (3.10) follows |ξ| = 1 and from (3.15) we obtain
scal = 2(λ+ µ+ 1−m), i.e. M is of constant scalar curvature.

We also have

(3.16) |∇ξ|2 :=
m∑
i=1

g(∇Ei
ξ,∇Ei

ξ) =
m∑
i=1
{1 + (|ξ|2 − 2)[η(Ei)]2} = m+ |ξ|2(|ξ|2 − 2),

for {Ei}1≤i≤m a local orthonormal frame field with ∇Ei
Ej = 0 in a point.

Now using the relations above, (3.8) becomes (3.9). �

Remark that in this case, the soliton (3.1) is completely determined by f , m and
scal.

Example 3.1. The soliton considered in Example 2.1 is a gradient η-Einstein soliton, as
the potential vector field ξ is of gradient type, ξ = grad(f), where f(x, y, z) := − ln z.
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