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ON GRADIENT 7-EINSTEIN SOLITONS
A. M. BLAGA!

ABSTRACT. If the potential vector field of an n-Einstein soliton is of gradient type,
using Bochner formula, we derive from the soliton equation a nonlinear second order
PDE. Under certain conditions, the existence of an n-Einstein soliton forces the
manifold to be of constant scalar curvature.

1. INTRODUCTION

In the same way like the Ricci solitons generate self-similar solutions to Ricci flow

0
1.1 —g =25
(1.1) 59 ,
the notion of Finstein solitons, which generate self-similar solutions to Einstein flow
0 scal
1.2 —g=-219 - ==
12) o= -2(5-"3%)

was introduced by G. Catino and L. Mazzieri [4]. The interest in studying this
equation from different points of view arises from concrete physical problems. On
the other hand, gradient vector fields play a central role in Morse-Smale theory [16],
aspects of gradient n-Ricci solitons being discussed in [3].

In what follows, after characterizing the manifold of constant scalar curvature via
the existence of n-Einstein solitons, we focus on the case when the potential vector
field ¢ is of gradient type (i.e., £ = grad(f), for f a nonconstant smooth function on
M) and give the Laplacian equation satisfied by f. Under certain assumptions, the
existence of an 7-Einstein soliton implies that the manifold is quasi-Einstein. Remark
that quasi-Einstein manifolds arose during the study of exact solutions of Einstein
field equations.
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2. n-EINSTEIN SOLITON EQUATION

In the study of the n-Einstein soliton equation we will consider certain assumptions,
one essential condition being V§ = I,(y) — n ® § which naturally arises in different
geometries: Kenmotsu [10], Lorenzian-Kenmotsu [1], para-Kenmotsu [12] etc. Im-
mediate properties of this structure, which will be used later, are given in the next
proposition.

Proposition 2.1. [3] Let (M, g) be an m-dimensional Riemannian manifold and n
be the g-dual 1-form of the nonzero vector field §. If § satisfies V& = Ly — 1 ® &,
where V is the Levi-Civita connection associated to g, then:

(a) Leg =2(9g —n®@n);

(b) R(X,Y)§ =n(X)Y —n(Y)X, for any X, Y € x(M);

(c) S(&,€) = (1 —m)[¢f.

Consider the equation
(2.1) Leg+ 25+ (2N —scal)g+2un®@n =0,

where L¢ is the Lie derivative operator along the vector field £, S is the Ricci curvature
tensor field, scal is the scalar curvature of the Riemannian metric g, and A and p are
real constants. For u # 0, the data (g, £, A\, ) will be called n-Einstein soliton. Remark
that if the scalar curvature scal of the manifold is constant, then the n-Einstein soliton

scal

(9,&, A, 1) reduces to an n-Ricci soliton (g, § N — 555, u) and, moreover, if u = 0, to

a Ricci soliton (g, E N — %iﬂ) Therefore, the two concepts of n-Einstein soliton and
n-Ricci soliton are distinct on manifolds of nonconstant scalar curvature.
Writing now L¢¢g in terms of the Levi-Civita connection V, we obtain

(22) 25(X,Y) = —g(Vx&Y) = g(X, VyE) — (2A —scal)g(X,Y) — 2un(X)n(Y),
for any X, Y € x(M).

An important geometrical object in studying Ricci solitons is a symmetric (0, 2)-
tensor field which is parallel with respect to the Levi-Civita connection [2], [7]. The
existence of such tensors on smooth manifolds carrying different structures such as
contact [14], K-contact [15], P-Sasakian [11], a-Sasakian [8] etc. was investigated by
many authors. The starting point was the Eisenhart problem of finding symmetric
and (skew symmetric) parallel tensors on various spaces. He proved in [9] that if
a positive definite Riemannian manifold admits a second order parallel symmetric
covariant tensor field other than a constant multiple of the metric, then it is reducible.
In our case, we show that if we ask to be satisfied the condition V§ = I, () —n ® ¢,
then any symmetric V-parallel (0, 2)-tensor field must be a constant multiple of the
metric. If we take o := Lgg + 25 4 2un ® n, the above mentioned result leads us
to characterize the existence of the soliton (g,&, A, p) in terms of a scalar curvature
property. Following the ideas of Calin and Crasmareanu [5] we shall study the equation
(2.1), applying similar techniques.
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Let o be such a symmetric (0,2)-tensor field which is parallel with respect to
the Levi-Civita connection (Va = 0). From the Ricci identity VZa(X,Y;Z, W) —
V2a(X,Y; W, Z) = 0, one obtains for any X, Y, Z, W € x(M) [13]

(2.3) a(R(X,Y)Z,W) + a(Z, R(X,Y)W) = 0.
In particular, for Z = W := £ from the symmetry of « follows a(R(X,Y )¢, &) = 0,
for any X, Y € x(M).

If V€ = Ly —n® &, from Proposition 2.1 we have R(X,Y )¢ =n(X)Y —n(Y)X
and replacing this expression in o we get

(2.4) a(Y,§) —n(Y)a(§,§) = 0,
for any Y € x(M), equivalent to
(2.5) a(Y,§) —a(§,§g(Y,§) =0,

for any Y € x(M). Differentiating the equation (2.5) covariantly with respect to the
vector field X € x (M) we obtain

a(VxY, &) +a(Y, Vx§) = a(&, 9g(VxY, §) + g(Y, Vx)],
and substituting the expression of Vx& = X — n(X)¢ we get

(2.6) a(Y, X) = a(§, §)g(Y, X),

for any X,Y € x(M). As a is V-parallel, follows a(&, ) is constant and we conclude
the following.

Proposition 2.2. Under the hypotheses above, any parallel symmetric (0,2)-tensor
field is a constant multiple of the metric.

Applying these results, we conclude the following theorem.

Theorem 2.1. Let n be the g-dual 1-form of the unitary vector field & on the Rie-
mannian manifold (M, g) such that & satisfies VE = I vy —n®¢&, where V is the Levi-
Civita connection associated to g. Assume that the symmetric (0,2)-tensor field o :=
Leg+2542un®mn is parallel with respect to V. Then (g, E N = —%[a(ﬁ, €) — scall, u)
satisfies equation (2.1) if and only if M is of constant scalar curvature.

Proof. Compute a(&,€) and from (2.1) we get
a(§,§) = (Leg) (&, €) +25(8,€) + 2um(§)n(§) = —2X + scal,

and taking into account that Va = 0, we deduce that scal = ¢ (a real constant), so
A= —%[Ox(f,f) - C]'

Conversely, if scal = ¢ (a real constant), from (2.6) and Va = 0 we get a(X,Y) =
a(€,0)g(X,Y) = —(2X — ¢)g(X,Y), for any X, Y € x(M). Therefore, Leg + 25 +
2un ®@n=—(2X —¢c)g, i.e. (g,&, A\, p) satisfies equation (2.1). O
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The above condition we asked to be satisfied by the potential vector field £, namely
Vx& = X—n(X)E, naturally arises if (M, p, &, n, g) is for example, Kenmotsu manifold
[10].

Example 2.1. Let M = {(z,y,2) € R? 2 > 0}, where (z,y,2) are the standard

coordinates in R®. Set

0 0 1
poi=——Qdr+ —Qdy, £:=-—z2 n::—;dz,

oy ox 0z’
1
g := ;(dx@dx—l—dy@dy—i—dz@dz).

Then (¢, &, 7, g) is a Kenmotsu structure on M.
Consider the linearly independent system of vector fields:

0 0 0
Eii=22, B2, Eyi= —2—.
! Z@x’ 2 zay’ 3 z@z

Follows
gOEl = —EQ, QOEQ = El, QOEg = 0,

n(E) =0, n(E:) =0, n(Es) =1,
[Ey, Es] =0, [Es, B3] = E,, [Es E\]=—F,
and the Levi-Civita connection V is deduced from Koszul’s formula
29(VxY, 2) =X(9(Y, 2)) + Y (9(Z, X)) = Z(9(X,Y))
—g(X, [V, Z2]) + (Y, [Z, X]) + 9(Z,[X, Y]),
precisely
Vg b1 =—E3, Vg E,=0, Vg Es=E,
Vg, E1 =0, Vg Ey=—F;, Vpg,FE3=Ey,
Ve, B =0, Vg, Ey =0, Vg FE3=0.
Then the Riemann and the Ricci curvature tensor fields are given by:
R(Ey, Es)Ey = —Fy, R(Fy,E3)E3 =—F,, R(FE) E))E, =—Fs,
R(FEs, E3)Es = —E,, R(Es, E1)Ey = —E3, R(FEs, Ey)Ey = —FEj,
S(FE1, E1) = S(Es, E3) = S(Es5, E3) = —2,

and the scalar curvature scal = —6.
From (2.1) computed in (E;, E;) follows

2[g(Es, Ei) — n(En(Ey)] + 25(Ei, E;) + (24 — scal)g(E;, E;) + 2un(E)n(E;) = 0,
for all i € {1,2,3}, and we have

for all i € {1,2,3}. Therefore, p = 1 and A\ = —2 define an 7-Einstein soliton on
(M, ¢,€n,9).
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The condition Vx¢& = X —n(X)¢ implies Leg = 2(g —n®@n) and the equation (2.2)
becomes

@) sy = (3= S g00) - o= DaConn)

Recall that the manifold is called quasi-Einstein if the Ricci curvature tensor field
S is a linear combination (with real scalars A and p respectively, with p # 0) of g
and the tensor product of a nonzero 1-form 7 satisfying n(X) = g(X, &), for £ a unit
vector field [6] and respectively, Einstein if S is collinear with g. Sufficient conditions
for (M, g) to be quasi-Einstein or Einstein are given in the next two propositions.

Proposition 2.3. Let n be the g-dual 1-form of the nonzero vector field & on the
Riemannian manifold (M, g) such that & satisfies VE = Ly —n ® &, where V is the
Levi-Civita connection associated to g. If (g,&, A\, ) satisfy the equation (2.1), then
(M, g) is quasi-Finstein.

Proof. 1t follows from (2.7). O

If we ask for certain curvature conditions, namely, R(£, X)-S = 0and S(§, X)-R =0,
we deduce that M is either Einstein or get its scalar curvature depending on the
constants (A, 1) that define the n-Einstein soliton on M respectively, where by - we
denote the derivation of the tensor algebra at each point of the tangent space:

o (R(E X)-S)(Y,2) = ((€ArX)-5)(Y. 7) = S(EARX)Y, 2)+S(Y, (EAnX)Z),
for (X AgpY)Z := R(X,Y)Z;

o S((&.X)- R)(Y, 2)W = (EAs X)- R)(Y, Z)W := (€ As X)R(Y, Z)W + R((E As
XY, Z2)W + R(Y, (& Ns X)Z)W + R(Y,Z)(§ hs X)W, for (X As Y)Z =
S(Y,Z)X —S(X,2)Y.

Proposition 2.4. Let n be the g-dual 1-form of the nonzero and nonunitary vector
field & on the Riemannian manifold (M, g) such that & satisfies VE = Ly —n ® &,
where V is the Levi-Civita connection associated to g. If (g,&, \, i) satisfy the equation
(2.1) and R(&,X)-S =0, then (M, g) is Finstein manifold.

Proof. The condition that must be satisfied by S is:
(2.8) S(R(E,X)Y,Z) + S(Y,R(§, X)Z) =0,
forany X, Y, Z € x(M).
Replacing the expression of S from (2.7) and from the symmetries of R we get
(2.9) (b =D(Y)g(X, Z) +n(2)g(X,Y) = 2n(X)n(Y)n(Z)] = 0,
for any XY, Z € x(M).
For X =Y = 7 := ¢ we have

(2.10) (= D)) n(g) — 1] =0,
which implies p = 1. U
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Remark 2.1. Under the hypotheses of Proposition 2.4, there is no Ricci soliton with
the potential vector field &.

Proposition 2.5. Let n be the g-dual 1-form of the nonzero and nonunitary vector
field & on the Riemannian manifold (M, g) such that & satisfies VE = Ly —n ® &,
where V is the Levi-Civita connection associated to g. If (g,&, \, i) satisfy the equation
(2.1) and S(§,X) - R=0, then (\, ) satisfy 2(A+ 1) + |€]*(u — 1) = scal.

Proof. The condition that must be satisfied by S is:

(2.11) S(X, R(Y, Z)W)¢ — S(&, R(Y, Z)W)X + S(X,Y)R(¢, Z)W
—S(§,Y)R(X, Z)W + S(X, Z)R(Y, )W — S(§, Z)R(Y, X)W
+S(X, W)R(Y, Z)¢ — S(€, W)R(Y, Z)X = 0,

for any X, Y, Z, W € x(M).
Taking the inner product with &, the relation (2.11) becomes
(212)  S(X,R(Y.Z)W)[E|* = S(§, R(Y. 2)W)n(X) + S(X,Y)n(R(§, Z2)W
=56 Y)In(R(X, Z)W) + S(X, Z)n(R(Y, )W) — (f Z)n(R(Y, X)W)
+S(X, WIn(R(Y, 2)€) — S, W)n(R(Y, 2)X) =

~—

for any X, Y, Z, W € x(M).
For W := £ and from the symmetries of R we get

(213)  S(X,R(Y,Z)§)IE]* — S(&, R(Y, 2)§)n(X) + S(&,§)g(R(Y, 2)§, X) =0,

for any XY, Z € x(M).
Replacing the expression of S from (2.7), we get

(2.14) 17122 + 2 — scal +(u — D)[EP](Y)g(X, Z) — n(Z)g(X,Y)] = 0,

for any X,Y,Z € x(M).
For Z := ¢ we have

(2.15) [€1°[22 + 2 = scal +(u — DEP](X)n(Y) — [¢]*g(X,Y)] =0,

for any X,Y € x(M) and we obtain

(2.16) 2\ + 2 — scal +(u — 1)[£]* = 0,

which is stated. O

Corollary 2.1. Let n be the g-dual 1-form of the nonzero and nonunitary vector field
& on the Riemannian manifold (M, g) such that § satisfies VE = Iy —n @ &, where
V is the Levi-Civita connection associated to g. If (g,&, A\, 0) satisfy the equation (2.1)

_ €2 4scal
and S(&,X)- R =0, then \ = Lt
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3. GRADIENT 7-EINSTEIN SOLITONS

We are interested in gradient n-Einstein solitons, as solutions of the equation
(3.1) Leg + 25+ (2X —scal)g + 2unp @ n =0,

where ¢ is a Riemannian metric, S is the Ricci curvature, scal is the scalar curvature,
n is a 1-form whose g-dual vector field ¢ is of gradient type, & := grad(f), for f a
smooth function on M, and A and u are real constants (u # 0). The data (g,&, A, )
which satisfy the equation (3.1) is said to be a gradient n-Einstein soliton on M.

Taking the trace of the relation (3.1), applying then V. and observing that if
£ =Y"r, ¢E;, for {E;}1<i<m a local orthonormal frame field with Vg, E; = 0 in a
point,

m

trace(n 1) =3 (BN = 3 ek g(Er, Ey)g(En B) = SO(€)? =

1<4,5,k<m i=1

=1
Z 9(Ei, Ej) = €,
<i,j<m

we get

(32) E(iv(©) + (1 - 5) Velseal) + € (€]*) =

and because L¢g = 2 Hess(f), taking the divergence of the same relation and comput-
ing it in £ we obtain

(3.3) (div(Leg))(&)+2(div(S))(§) —trace(d(scal) ®d(scal))+2u(div(df ®df)) (&) = 0.
From (3.1) we deduce
(3.4 5(6,6) = €€l — MeP + So16l? — e

Multiplying (3.3) by 1%, substracting (3.2), using the fact that V(scal) = 2div(.5),
we get

scal

(3.5) (div(£eg))(€) =A(€) — 2/ VE,

(3.6) A(EP) — 2[VE? =25(£,€) + 26(div(€)),

(3.7) (Av(df ® df)) (&) =3 trace(df @ d(|e]?) + €l div(€),
and with (3.4), we get

(3.8)

(557 adep

=(1— m) Ve + 26067 + Nel? ~ 5 e + (1 ) - race(d(scal) © d(scal))

+adlel = (1= ) - tace(dr @ a(lgl) =2 (1= ) e aiv() + ()}



236 A. M. BLAGA

Theorem 3.1. Let (M, g) be an m-dimensional Riemannian manifold (m > 2) and
n be the g-dual 1-form of the gradient vector field & := grad(f). Assume that (3.1)
defines an n-Einstein soliton on M and § satisfies V§ = I,y —n ® &, where V is
the Levi-Civita connection associated to g. If u = 1, then M is of constant scalar
curvature; if u # 1, then M 1is of constant scalar curvature if and only if £ is of
constant length, and in this case, the Laplacian equation becomes

—1
3.9 A(f) ===
(3.9) (f) .
Proof. We have
(3.10) E(IEP) = 2(I¢* - 1€l*),
and
(3.11) E(IENY) = 4(lel* - 1€1%),
and from (2.7) we get
1
312 (6.9 =~ (3413 leP - o= Dlet
Also from Proposition 2.1:
(3.13) S(&:€) = [¢P — ml¢f,
therefore
(314 5 = (m =12+ 55 e - (- Dl
We obtain
(3.15) 1€ (n — 1) :m—z—A+SC;1.

If 4 =1, then from (3.15) we obtain scal = 2(A + 2 —m), i.e. M is of constant
scalar curvature.

Let p # 1. If the scalar curvature is constant, then || is constant. Conversely,
if ¢ is of constant length, from (3.10) follows |{| = 1 and from (3.15) we obtain
scal = 2(A+ pu+ 1 —m), i.e. M is of constant scalar curvature.

We also have

(3.16) |VE[*:=>_9(VE&, Vr) =D {1+ ([ = 2)[n(E)]} = m+ [€P(I]° - 2),
i=1 i=1
for {E;}1<i<m a local orthonormal frame field with Vg, E; = 0 in a point.
Now using the relations above, (3.8) becomes (3.9). O

Remark that in this case, the soliton (3.1) is completely determined by f, m and
scal.

Example 3.1. The soliton considered in Example 2.1 is a gradient n-Einstein soliton, as
the potential vector field ¢ is of gradient type, & = grad(f), where f(z,y,2) := —Inz.
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