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LOWER BOUNDS FOR ENERGY OF MATRICES AND ENERGY
OF REGULAR GRAPHS

MOHAMMAD REZA OBOUDI1

Abstract. Let A = [aij ] be an n × n real symmetric matrix with eigenvalues
λ1, . . . , λn. The energy of A, denoted by E(A), is defined as |λ1| + · · · + |λn|. We
prove that if A is non-zero and |λ1| ≥ · · · ≥ |λn|, then

E(A) ≥
n|λ1||λn|+

∑
1≤i,j≤n a

2
ij

|λ1|+ |λn|
.(0.1)

In particular, we show that Ψ(A)E(A) ≥
∑

1≤i,j≤n a
2
ij , where Ψ(A) is the maximum

value of the sequence
∑n

j=1 |a1j |,
∑n

j=1 |a2j |, . . . ,
∑n

j=1 |anj |. The energy of a simple
graph G, denoted by E(G), is defined as the energy of its adjacency matrix. As an
application of inequality (0.1) we show that if G is a t- regular graph (t 6= 0) of order
n with no eigenvalue in the interval (−1, 1), then E(G) ≥ 2tn

t+1 and the equality holds
if and only if every connected component of G is the complete graph Kt+1 or the
crown graph K?

t+1.

1. Introduction

Throughout this paper the matrices are complex and the graphs are simple (that
is graphs are finite and undirected, without loops and multiple edges). The conjugate
transpose of a complex matrix A is denoted by A∗. We recall that a Hermitian matrix
(or self-adjoint matrix) is a complex square matrix that is equal to its own conjugate
transpose. If A is a real matrix, then A is Hermitian if and only if A is symmetric. It is
well known that the eigenvalues of Hermitian matrices (in particular, the eigenvalues
of real symmetric matrices) are real. A complex square matrix A is called normal if
it commutes with its conjugate transpose, that is AA∗ = A∗A. For example, every
real symmetric matrix is normal. For every complex square matrix A, the trace of A,
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denoted by tr(A), is defined to be the sum of the entries on the main diagonal of A.
The energy of a square complex matrix A, denoted by E(A), is defined as the sum of
the absolute values of its eigenvalues. In other words, if A is an n×n complex matrix
with eigenvalues λ1, . . . , λn, then

E(A) = |λ1|+ · · ·+ |λn|.(1.1)

Nikiforov [9] defined the energy of any complex matrix A by considering the singular
values. This definition of energy of matrices coincides with the previous definition of
energy of matrices if and only if the matrix is normal [1].

Let G = (V (G), E(G)) be a simple graph. The order of G denotes the number of
vertices of G. For two vertices u and v by e = uv we mean the edge e between u and
v. For a vertex v of G, the degree of v is the number of edges incident with v. A
k–regular graph is a graph such that every vertex of that has degree k. Let B ⊆ V (G)
(B ⊆ E(G)). By G \ B we mean the graph that obtained from G by removing the
vertices of B (the edges of B). The complement of G, denoted by G, is the simple
graph with vertex set V (G) such that two distinct vertices of G are adjacent if and
only if they are not adjacent in G. For two disjoint graphs G1 and G2, the disjoint
union of G1 and G2 denoted by G1 ∪G2 is the graph with vertex set V1 ∪ V2 and edge
set E1 ∪ E2. The graph rG denotes the disjoint union of r copies of G. A matching
in G is a set of edges of G without common vertices. A perfect matching of G is a
matching in which every vertex of G is incident to exactly one edge of the matching.
The edgeless graph (empty graph), the complete graph and the cycle of order n, are
denoted by Kn, Kn and Cn, respectively. The complete bipartite graph with part sizes
m and n is denoted by Km,n. Let t ≥ 0 be an integer and M be a perfect matching
of Kt+1,t+1. By K?

t+1 we mean the t–regular graph Kt+1,t+1 \M . The graph K?
t+1

is called the crown graph of order 2t + 2. For example K?
1 = 2K1, K?

2 = 2K2 and
K?

3 = C6.
Let G be a simple graph with vertex set {v1, . . . , vn}. The adjacency matrix of

G, denoted by A(G), is the n × n matrix such that the (i, j)-entry is 1 if vi and vj
are adjacent, and otherwise is 0. Since A(G) is symmetric, all of the eigenvalues of
A(G) are real. By the eigenvalues of G we mean those of its adjacency matrix. By
Spec(G) we mean the multiset of all eigenvalues of G. The energy of G, denoted
by E(G), is defined as the energy of the adjacency matrix of G. In other words,
the energy of G is the sum of the absolute values of all eigenvalues of G. More
precisely, E(G) = |λ1| + · · · + |λn|, where Spec(G) = {λ1, . . . , λn}. The energy of
graphs was defined by Ivan Gutman in 1978. For example, since the eigenvalues of the
complete graph Kn are n− 1 (with multiplicity 1) and −1 (with multiplicity n− 1),
so E(Kn) = 2n− 2. See [4, 5] for more details. Many papers are devoted to studying
the properties of the spectra of adjacency matrix, in particular studying the energy
of graphs. For instance see [1–20] and the references therein. There are many other
matrices associated to graphs such as Laplacian matrix, signless Laplacian matrix [20]
and distance matrix [18]. For instance the Laplacian matrix of a graph G, denoted
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by L(G), is defined as D(G) − A(G), where A(G) and D(G) are respectively the
adjacency matrix and the diagonal matrix of vertex degrees of G.

We note that the definition (1.1) for energy of matrices is significant for square
real symmetric matrices whose trace are equal to zero. In other words, this definition
maybe not notable for matrices with non-zero trace. For instance consider the Lapla-
cian matrix of a graph G of order n. It is well known that the eigenvalues of Laplacian
matrix of graphs are real and non-negative. Let µ1 ≥ · · · ≥ µn be the eigenvalues of
the Laplacian matrix of G (in fact µn = 0). By definition (1.1), the energy of L(G) is
E(L(G)) = µ1 + · · ·+µn = tr(L(G)) = 2m, where m is the number of edges of G. We
remark that in [7] the authors define the Laplacian energy of graphs in another way.

In this paper first we obtain a new lower bound for energy of real symmetric
matrices. Let A = [aij] be an n×n real symmetric matrix with eigenvalues λ1, . . . , λn.
If A = 0, then clearly E(A) = 0. We show that if A 6= 0, then

E(A) ≥
n|λ1||λn|+

∑
1≤i,j≤n a

2
ij

|λ1|+ |λn|
,(1.2)

where |λ1| ≥ · · · ≥ |λn|. By studying the lower bound (1.2) we obtain a simple lower
bound for energy of matrices. Let Ψ(A) be the maximum value of the sequence of real
numbers ∑n

j=1 |a1j|,
∑n
j=1 |a2j|, . . . ,

∑n
j=1 |anj|. In other words, Ψ(A) is the maximum

value of the sum of the absolute values of the entries of rows of A. We prove that if
A 6= 0, then

E(A) ≥
∑

1≤i,j≤n a
2
ij

Ψ(A) .

Finally we study the energy of regular graphs. Let G be a t–regular graph of order
n and t 6= 0. In [6] (see also [4]) it was shown that E(G) ≥ n. By applying the
lower bound (1.2) we improve this result and prove that if G has no eigenvalue in
the interval (−1, 1), then E(G) ≥ 2tn

t+1 . In addition we show that the equality holds if
and only if every connected component of G is the complete graph Kt+1 or the crown
graph K?

t+1.

2. Energy of Matrices

In this section we obtain some lower bounds for the energy of matrices. At first
similar to Lemma 1 of [19] we prove the inequality (1.2).

Theorem 2.1. Let n ≥ 2 be an integer and A = [aij] 6= 0 be an n× n real symmetric
matrix. Assume that λ1, . . . , λn are the eigenvalues of A such that |λ1| ≥ · · · ≥ |λn|.
Then

E(A) ≥
n|λ1||λn|+

∑
1≤i,j≤n a

2
ij

|λ1|+ |λn|
.

Moreover, the equality holds if and only if for some r ∈ {1, . . . , n}, |λ1| = · · · = |λr|
and |λr+1| = · · · = |λn|.
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Proof. We note that for every j ∈ {1, . . . , n}, |λ1| ≥ |λj| ≥ |λn|. Thus, for j = 1, . . . , n,
(|λ1| − |λj|)(|λj| − |λn|) ≥ 0. In addition, the equality holds if and only if |λj| = |λ1|
or |λj| = |λn|. On the other hand

|λj|(|λ1|+ |λn|)− (|λj|2 + |λ1||λn|) = (|λ1| − |λj|)(|λj| − |λn|).
Hence, |λj|(|λ1| + |λn|) − (|λj|2 + |λ1||λn|) ≥ 0 and the equality holds if and only if
|λj| = |λ1| or |λj| = |λn|. So, for every j ∈ {1, . . . , n}
(2.1) |λj|(|λ1|+ |λn|) ≥ |λj|2 + |λ1||λn|,
and the equality holds if and only if |λj| = |λ1| or |λj| = |λn|. Now by summing the
sides of (2.1) for j = 1, . . . , n, we find that

(|λ1|+ |λn|)
(
|λ1|+ · · ·+ |λn|

)
≥ |λ1|2 + · · ·+ |λn|2 + n|λ1||λn|,(2.2)

and the equality holds if and only if for some r ∈ {1, . . . , n}, |λ1| = · · · = |λr| and
|λr+1| = · · · = |λn|. On the other hand E(A) = |λ1|+ · · ·+ |λn| and

|λ1|2 + · · ·+ |λn|2 = λ2
1 + · · ·+ λ2

n = tr(A2) =
∑

1≤i,j≤n
a2
ij.(2.3)

We note that because of A is symmetric, we have tr(A2) = ∑
1≤i,j≤n a

2
ij. Since A 6= 0,

clearly ∑1≤i,j≤n a
2
ij 6= 0. Thus, by (2.3), A has at least one non-zero eigenvalue. Thus,

|λ1| > 0. So, |λ1| + |λn| 6= 0. Now by dividing the sides of (2.2) by |λ1| + |λn| and
using (2.3) the result follows. �

Remark 2.1. We note that in Theorem 2.1 the equality holds for some family of
matrices. For example for diagonal matrices such as diag(a, . . . , a, b, . . . , b), where a
and b are real. Since the eigenvalues of the complete bipartite graph Kp,q are −

√
pq

(with multiplicity 1), 0 (with multiplicity p + q − 2) and √pq (with multiplicity 1),
the adjacency matrix of Kp,q also satisfying in the equality of Theorem 2.1.

We are interested in to obtain a suitable estimation for the lower bound of Theo-
rem 2.1 in terms of the entries of the matrix. First we prove the following lemma.

Lemma 2.1. Let a and b be some positive real numbers. Let α, β, x and y be some
non-negative real numbers such that β ≥ y ≥

√
a
b
≥ x ≥ α. Then

a+ bxy

x+ y
≥ a+ bαβ

α + β
,

and the equality holds if and only if x = α =
√

a
b
or x = β =

√
a
b
or y = β =

√
a
b
or

x = α and y = β.

Proof. Let d be a positive real number and fd(t) = a+bdt
d+t be the one-variable function

on t, where t ≥ 0. So the derivative of fd(t) with respect to t is

f ′d(t) = bd2 − a
(d+ t)2 .
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This shows that if d >
√

a
b
, then fd(t) is strictly increasing on the interval [0,∞) and

if d <
√

a
b
, then fd(t) is strictly decreasing on the interval [0,∞). We note that if

d =
√

a
b
, then for every t ≥ 0, fd(t) = a

d
=
√
ab.

Since y ≤ β and fx(t) is strictly decreasing on the interval [0,∞), if x <
√

a
b
,

fx(y) ≥ fx(β) (ifβ > y and x 6=
√
a

b
, then fx(y) > fx(β)).(2.4)

On the other hand, since x ≥ α and fβ(t) is strictly increasing on the interval [0,∞),
if β >

√
a
b
,

fβ(x) ≥ fβ(α) (if x > α and β 6=
√
a

b
, then fβ(x) > fβ(α)).(2.5)

Since fx(β) = fβ(x), (2.4) and (2.5) show that fx(y) ≥ fβ(α). In other words, we
obtain that a+bxy

x+y ≥
a+bαβ
α+β .

Now we consider the equality. Assume that a+bxy
x+y = a+bαβ

α+β . So, fx(y) = fβ(α).
Hence, by (2.4) and (2.5) we find that fx(y) = fx(β) and fβ(x) = fβ(α). Using (2.4)
and (2.5) one can easily obtain the result. �

Let A = [aij] be a complex n × n matrix, where n ≥ 1 be an integer. As we
mentioned before, Ψ(A) denotes the maximum value of the sequence of real numbers∑n
j=1 |a1j|,

∑n
j=1 |a2j|, . . . ,

∑n
j=1 |anj|. We need the following result.

Theorem 2.2 ([8]). Let A be a complex square matrix and λ be an eigenvalue of A.
Then |λ| ≤ Ψ(A).

Now we obtain a lower bound for the energy of matrices in terms of their entries.

Theorem 2.3. Let n ≥ 2 be an integer and A = [aij] 6= 0 be an n× n real symmetric
matrix. Then

E(A) ≥
∑

1≤i,j≤n a
2
ij

Ψ(A) .

Proof. Assume that λ1, . . . , λn are the eigenvalues of A such that |λ1| ≥ · · · ≥ |λn|.
We note that the eigenvalues of A are real. Since A is symmetric, tr(A2) = ∑

1≤i,j≤n a
2
ij.

On the other hand λ2
1 + · · ·+ λ2

n = tr(A2) and
n|λn|2 ≤ |λ1|2 + · · ·+ |λn|2 ≤ n|λ1|2.(2.6)

Therefore,
n|λn|2 ≤

∑
1≤i,j≤n

a2
ij ≤ n|λ1|2.(2.7)

Hence,

|λn| ≤

√∑
1≤i,j≤n a

2
ij

n
≤ |λ1|.(2.8)
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Let α = 0, β = Ψ(A), a = ∑
1≤i,j≤n a

2
ij, b = n, x = |λn| and y = |λ1|. We note that

since A 6= 0, a > 0. Using Theorem 2.2 and (2.8) we deduce that

β ≥ y ≥
√
a

b
≥ x ≥ α.

Thus by applying Theorem 2.1 and Lemma 2.1 we obtain that

E(A) ≥ a+ bxy

x+ y
≥ a+ bαβ

α + β
= a

β
=
∑

1≤i,j≤n a
2
ij

Ψ(A) .

This completes the proof. �

3. Energy of Regular Graphs

In [6] it was proved that if G is a t-regular graph of order n where t 6= 0, then
E(G) ≥ n. In this section by applying Theorem 2.1 we improve this result and show
that if G has no eigenvalue in the interval (−1, 1), then E(G) ≥ 2tn

t+1 . Two examples of
this kind of regular graphs are the cycle C6 (with spectrum {2, 1, 1,−1,−1,−2}) and
the Petersen graph (with spectrum {3, 1, 1, 1, 1, 1,−2,−2,−2,−2}). First we recall
some results.

Theorem 3.1 ([2]). Let G be a graph and ρ(G) be the largest eigenvalue (the spectral
radius) of G. Then the following hold:

(i) if G is connected, then the multiplicity of ρ(G) is one;
(ii) for every eigenvalue λ of G, |λ| ≤ ρ(G).

Theorem 3.2. [2] Let G be a graph. Then the following hold:
(i) G is bipartite if and only if for every eigenvalue λ of G, also −λ is an eigenvalue

of G, with the same multiplicity.
(ii) If G is connected with largest eigenvalue θ, then G is bipartite if and only if
−θ is an eigenvalue of G.

Lemma 3.1 ([19]). Let H be a connected t-regular graph where t ≥ 2. Assume that
Spec(H) = {t, 1, . . . , 1︸ ︷︷ ︸

b

,−1, . . . ,−1︸ ︷︷ ︸
c

},

where b and c are some non-negative integers. Then H is the complete graph Kt+1.

Lemma 3.2 ([19]). Let H be a connected bipartite t-regular graph where t ≥ 2.
Assume that

Spec(H) = {t, 1, . . . , 1︸ ︷︷ ︸
b

,−1, . . . ,−1︸ ︷︷ ︸
c

,−t},

where b and c are some non-negative integers. Then H is the crown graph K?
t+1.

Lemma 3.3 ([19]). Let t ≥ 0 be an integer. Then
Spec(K?

t+1) = {t, 1, . . . , 1︸ ︷︷ ︸
t

,−1, . . . ,−1︸ ︷︷ ︸
t

,−t}.
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Now we prove the main result of this section.

Theorem 3.3. Let G be a t–regular graph of order n where t 6= 0. Suppose that G
has no eigenvalue in the interval (−1, 1). Then

E(G) ≥ 2tn
t+ 1 .(3.1)

In particular, if t ≥ 2, then E(G) ≥ 4n
3 . Moreover in (3.1) the equality holds if and

only if every connected component of G is the complete graph Kt+1 or the crown graph
K?
t+1.

Proof. Note that if H is a 0-regular graph, then E(H) = 0. Let A = A(G) = [aij]
be the adjacency matrix of G. Assume that λ1, . . . , λn be the eigenvalues of G (the
eigenvalues of A) such that |λ1| ≥ · · · ≥ |λn|. Thus, |λ1| ≥ |λi|, for i = 1, . . . , n.
Since Aj = tj (j is the vector of size n such that all of its entries are equal to 1), t
is one of the eigenvalues of G. Hence, |λ1| ≥ t. On the other hand Ψ(A) = t. So,
by Theorem 2.2, |λ1| ≤ t. Thus, |λ1| = t. In fact t is the largest eigenvalue of G.
Since G has no eigenvalue in the interval (−1, 1), |λn| ≥ 1. As we see in the proof of
Theorem 2.3

|λn| ≤

√∑
1≤i,j≤n a

2
ij

n
≤ |λ1|.(3.2)

Let α = 1, β = t, a = ∑
1≤i,j≤n a

2
ij, b = n, x = |λn| and y = |λ1|. Since t 6= 0, A 6= 0.

Therefore, a > 0. In fact a = nt. By (3.2) we find that

β ≥ y ≥
√
a

b
≥ x ≥ α.

Now, by applying Theorem 2.1 and Lemma 2.1 ,we find that

E(G) = E(A) ≥ a+ bxy

x+ y
≥ a+ bαβ

α + β
= 2tn
t+ 1 .(3.3)

Hence,

E(G) ≥ 2tn
t+ 1 .(3.4)

If t ≥ 2, then 2t
t+1 ≥

4
3 and so (3.4) implies that E(G) ≥ 4n

3 .
Now we investigate the equality of (3.4). We note that for every disjoint graphs

G1 and G2, E(G1 ∪ G2) = E(G1) + E(G2). Since E(Kt+1) = 2t and E(K?
t+1) = 4t

(by Lemma 3.3), it is easy to check that if G = pKt+1 ∪ qK?
t+1, where p and q are

some non-negative integers, then the equality holds. Hence, it remains to consider the
converse. Thus, assume that t 6= 0 and G is a t-regular graph of order n such that G
has no eigenvalue in the interval (−1, 1) and E(G) = 2tn

t+1 . Using (3.3) we obtain that

E(A) = a+ bxy

x+ y
and a+ bxy

x+ y
= a+ bαβ

α + β
.(3.5)
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Thus, the equality hold in Theorem 2.1 and in Lemma 2.1. By Theorem 2.1, there
exists r ∈ {1, . . . , n} such that |λ1| = · · · = |λr| and |λr+1| = · · · = |λn| (we note that
|λ1| = t). On the other hand, by Lemma 2.1, we deduce that |λ1| =

√
a
b
or |λn| =

√
a
b

or |λn| = 1. If |λ1| =
√

a
b
or |λn| =

√
a
b
, then by (2.6) we obtain that |λ1| = · · · = |λn|.

By combining these conditions, we find that there are two following cases.
(I) |λ1| = · · · = |λn| = t. Hence, every eigenvalue of G is t or −t. By the fact that

λ2
1 + · · ·+ λ2

n = 2m, where m is the number of edges of G, we conclude that nt2 = nt.
Thus, t = 1. Since G is t–regular, this shows that every connected component of G is
K2.

(II) |λ1| = · · · = |λr| = t and |λr+1| = · · · = |λn| = 1. Thus, every eigenvalue of G
is t or −t or 1 or −1. If t = 1, then every connected component of G is K2. Thus
assume that t ≥ 2. Let H be a connected component of G. Since H is t-regular, t is
the largest eigenvalue of H (we note that since H is connected, by the first part of
Theorem 3.1, the multiplicity of t as an eigenvalue of H is one). First suppose that H
is bipartite. Thus, by the first part of Theorem 3.2, −t is also one of the eigenvalues
of H with multiplicity one. Thus Spec(H) is consist of one t, one −t and the other
elements are 1 or −1. Thus, by Lemma 3.2, H is K?

t+1. Now assume that H is not
bipartite. Since t is the largest eigenvalue of H, by the second part of Theorem 3.2,
−t is not an eigenvalue of H. Therefore, Spec(H) is consist of one t and the other
elements are 1 or −1. Hence, by Lemma 3.1, H is Kt+1. The proof is complete. �
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