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SOME RESULTS ON NORMAL ALMOST CONTACT MANIFOLDS
WITH B-METRIC

NÜLİFER ÖZDEMIR1, ŞIRIN AKTAY2, AND MEHMET SOLGUN3

Abstract. In this study, normal almost contact manifolds with B-metric are con-
sidered. Almost complex manifolds with Norden metric are obtained by multiplying
almost contact manifolds with B-metric by warped product (by using a function
on real numbers). New examples of normal almost complex manifolds with Norden
metric are derived. Furthermore, curvature properties of the almost complex man-
ifolds with Norden metric obtained from almost contact manifolds with B-metric
are investigated.

1. Introduction

In this work, relations between almost contact manifolds with B-metric and almost
complex manifolds with Norden metric are investigated. An almost contact manifold
with B-metric is obtained from an almost complex manifold with Norden metric using
a method similar to that in [4]. The classifications of almost contact manifolds with
B-metric and almost complex manifolds with Norden metric are made by using the
covariant derivative of their fundamental tensors. Classification of almost contact
manifolds with B-metric and almost complex manifolds with Norden metric can be
found in [2, 3], respectively. Relations between the almost contact manifolds with
B-metric and almost complex manifolds with Norden metric are investigated in [8, 9]
with respect to these classifications.

In this manuscript, we study the warped product of almost contact manifolds with
B-metric and R. After presenting necessary preliminary informations, we obtain an
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almost complex structure on the product of an almost contact manifold with B-metric
with R. Then, we define a metric which is indefinite of signature (n + 1, n + 1) on
the product manifold. The product manifold is an almost complex manifold with
Norden metric. We write the covariant derivative of the metric and the almost complex
structure of the almost complex manifold with Norden metric in terms of the covariant
derivative of the metric of the almost contact manifold with B-metric. We, then, state
the relations between normal classes of almost contact manifolds with B-metric and
almost complex manifolds with Norden manifolds.

2. Preliminaries

A (2n + 1)-dimensional smooth manifold M is said to have an almost contact
structure (φ, ξ, η), if this manifold admits an endomorphism φ of the tangent bundle,
a vector field ξ and its dual 1-form η such that the conditions
(2.1) φ2(X) = −X + η(X)ξ, η(ξ) = 1,

are satisfied for an arbitrary vector field X. If a manifold admits an almost contact
structure, it is called an almost contact manifold. If (M, φ, ξ, η) is an almost contact
manifold endowed with a pseudo-Riemannian metric g of signature (n + 1, n) such
that
(2.2) g(φ(X), φ(Y )) = −g(X, Y ) + η(X)η(Y ),
for all vector fields X, Y , then M is called an almost contact manifold with B-metric.
From equations (2.1) and (2.2), one can easily see that

η(φ(X)) = 0, φ(ξ) = 0, η(X) = g(ξ, X), g(φ(X), Y ) = g(X, φ(Y )),
for all vector fields X, Y . The tensor g̃ given by

g̃(X, Y ) = g(X, φ(Y )) + η(X)η(Y ),
is a B-metric associated with the metric g. Let ∇ be the Levi-Civita connection of
the pseudo-metric g. For all vector fields X, Y, Z on M , we define the structure tensor
α of type (0, 3) as

α(X, Y, Z) = g ((∇Xφ) (Y ), Z) .

It is not difficult to see that the tensor α has following properties:
α(X, Y, Z) = α(X, Z, Y ),

α(X, φ(Y ), φ(Z)) = α(X, Y, Z) − η(Y )α(X, ξ, Z) − η(Z)α(X, Y, ξ),(2.3)
α(X, ξ, ξ) = 0.(2.4)

The following 1-forms are defined as
θ(X) = gijα(Ei, Ej, X), θ∗(X) = gijα(Ei, φ(Ej), X), w(X) = α(ξ, ξ, X),

where {E1, . . . , E2n, ξ} is a local frame, X is a vector field and (gij) is the inverse
matrix of (gij).
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Using the properties above, the space of covariant derivatives of the endomorphism
φ are defined as

F =
{
α ∈ ⊗0

3M : α(X, Y, Z) = α(X, Z, Y ),
α(X, φ(Y ), φ(Z)) = α(X, Y, Z) − η(Y )α(X, ξ, Z) − η(Z)α(X, Y, ξ)}(2.5)

The space F decomposes into eleven subspaces

F = F1 ⊕ · · · ⊕ F11,

which are orthogonal and invariant under the action of G × I where I is the identity
on Span{ξ} and G = GL(n,C) ∩ O(n, n) [2]. An almost contact manifold M is called
normal if the corresponding almost complex structure J on the even dimensional
product manifold M × R is integrable, i.e., the Nijenhuis torsion [J, J ] is identically
zero [1, 7], or equivalently N = [φ, φ] + dη ⊗ ξ = 0, or equivalently

α(X, Y, ξ) = α(Y, X, ξ),(2.6)
SX,Y,Z {α(X, Y, φ(Z)) − α(X, φ(Y ), ξ)η(Z)} = 0,(2.7)

see [10]. In this study, we consider only the classes of normal almost contact manifolds
with B-metric. The class of the normal contact manifolds with B-metric is F1 ⊕ F2 ⊕
F4 ⊕ F5 ⊕ F6 [6], and defining relations of this subspaces are:

F1 :α(X, Y, Z) = 1
2n

{
g(X, φ(Y ))θ(φ(Z)) + g(X, φ(Z))θ(φ(Y ))(2.8)

+ g(φ(X), φ(Y ))θ(φ2(Z)) + g(φ(X), φ(Z))θ(φ2(Y ))
}
,

F2 :α(ξ, Y, Z) = α(X, ξ, Z) = 0, θ = 0,(2.9)
α(X, Y, φ(Z)) + α(Y, Z, φ(X)) + α(Z, X, φ(Y )) = 0,

F4 :α(X, Y, Z) = −θ(ξ)
2n

{g(φ(X), φ(Y ))η(Z) + g(φ(X), φ(Z))η(Y )} ,(2.10)

F5 :α(X, Y, Z) = −θ∗(ξ)
2n

{g(X, φ(Y ))η(Z) + g(X, φ(Z))η(Y )} ,(2.11)

F6 :α(X, Y, Z) = α(X, Y, ξ)η(Z) + α(X, Z, ξ)η(Y ),(2.12)
α(X, Y, ξ) = α(Y, X, ξ) = −α(φ(X), φ(Y ), ξ), θ(ξ) = θ∗(ξ) = 0.

If a smooth manifold N has a tensor field J (almost complex structure) and a
pseudo-Riemannian metric h satisfying the conditions

• J2(X) = −X,
• h(J(X), J(Y )) = −h(X, Y ),

for all vector fields X, Y on N , then the manifold N is called an almost complex
manifold with a Norden metric [3]. The metric h is necessarily indefinite of signa-
ture (n, n). An almost complex manifold with a Norden metric has even dimension
(dimN = 2n) and the structure group of the tangent bundle reduces to the group
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GL(n,C) ∩ O(n, n). The tensor h̃ given by h̃(X, Y ) = h(J(X), Y ) for any vector field
X, Y is symmetric:

h(J(X), Y ) = −h(J2(X), J(Y )) = h(X, J(Y )).
The structure tensor F of type (0, 3) on M is defined as

F (X, Y, Z) = h ((∇XJ) (Y ), Z) .

The tensor F has the following properties:
F (X, Y, Z) = F (X, Z, Y ),

F (X, J(Y ), J(Z)) = F (X, Y, Z).

In addition, for any vector field X on N the 1-form θ̃ associated with F is defined as
θ̃(X) = hijF (Ei, Ej, X),

where {E1, E2, . . . , E2n} is a frame field on N and hij is the inverse matrix of h.
Then the subspace W of ⊗0

3N is defined as follows:

W :=
{
α ∈ ⊗0

3N | α(X, Y, Z) = α(X, J(Y ), J(Z)) = α(X, Z, Y )
}

,

where X, Y, Z are vector fields on N . According to the symmetries of W , this space
splits into the direct sum W = W1 ⊕ W2 ⊕ W3. The subspaces Wi are invariant and
irreducible under the group GL(n,C) ∩ O(n, n). The defining relations for invariant
subspaces are the following.

(a) Kaehler manifolds with a Norden metric:
(2.13) F (X, Y, Z) = 0.

(b) Class W1: Conformally Kaehlerian manifolds with a Norden metric:

F (X, Y, Z) = 1
2n

{
h(X, Y )θ̃(Z) + h(X, Z)θ̃(Y )(2.14)

+h(X, J(Y ))θ̃(J(Z)) + h(X, J(Z))θ̃(J(Y ))
}

.

(c) Class W2: Special complex manifolds with a Norden metric
(2.15) F (X, Y, J(Z)) + F (Y, Z, J(X)) + F (Z, X, J(Y )) = 0,

and θ̃ = 0.
(d) Class W3: Quasi-Kaehlerian manifolds with Norden metric

(2.16) F (X, Y, Z) + F (Y, Z, X) + F (Z, X, Y ) = 0.

(e) Class W1 ⊕ W2: Complex manifolds with Norden metric
F (X, Y, J(Z)) + F (Y, Z, J(X)) + F (Z, X, J(Y )) = 0,

or equivalently N = 0.
(f) Class W2 ⊕ W3: Semi-Kaehlerian manifolds with Norden metric

(2.17) θ̃ = 0.
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(g) Class W1 ⊕ W3:

F (X, Y, Z) + F (Y, Z, X) + F (Z, X, Y ) = 1
n

{
h(X, Y )θ̃(Z) + h(X, Z)θ̃(Y )

+ h(Y, Z)θ̃(X) + h(X, J(Y ))θ̃(J(Z))
+ h(X, J(Z))θ̃(J(Y ))(2.18)

+h(Y, J(Z))θ̃(J(X))
}

.

(h) Class W1 ⊕ W2 ⊕ W3: No relation.

3. Almost Complex Manifolds with a Norden Metric from Almost
Contact Manifolds with B-metric

In this section, first, we define an almost complex structure on the product of an
almost contact manifold with B-metric with R. We write a metric on the product
manifold depending on a function σ where σ : M × R → R only depends on t. Then,
we obtain an almost complex manifold with Norden metric and we give the relations
between covariant derivatives.

Let (M, φ, ξ, η, g) be a (2n + 1)-dimensional almost contact manifold with B-metric
and consider the product manifold M × R. A vector field on the manifold M × R is
of the form

(
X, a d

dt

)
where t is the coordinate of R and a is a smooth function on

M × R. The almost complex structure J on M × R is defined by

(3.1) J

(
X, a

d

dt

)
=
(

φ(X) − ae−σξ, eση(X) d

dt

)
.

Then J2 = −I. In addition, we define a pseudo-Riemannian metric on M × R with
signature (n + 1, n + 1) by

(3.2) h

((
X, a

d

dt

)
,

(
Y, b

d

dt

))
:= e2σg(X, Y ) − ab.

One can easily see that

(3.3) h

(
J

(
X, a

d

dt

)
, J

(
Y, b

d

dt

))
= −h

((
X, a

d

dt

)
,

(
Y, b

d

dt

))
.

Hence (M ×R, J, h) is an almost complex manifold with Norden metric. Let ∇ be the
Levi-Civita covariant derivative of the pseudo-Riemannian metric g on M . Levi-Civita
covariant derivative of the metric h on M ×R is obtained using the Kozsul formula as

∇(X,a d
dt)

(
Y, b

d

dt

)
=
(

∇XY + dσ

dt
(aY + bX),

{
X[b] + a

db

dt
+ e2σ dσ

dt
g(X, Y )

}
d

dt

)
.

Note that the covariant derivative on the product manifold M ×R will also be denoted
with the same symbol ∇. Also, covariant derivative of the almost complex structure
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J is calculated as(
∇(X,a d

dt)J
)(

Y, b
d

dt

)
=
(

(∇Xφ) (Y ) − be−σ∇Xξ − b
dσ

dt
φ(X)

+ eσ dσ

dt
(η(Y )X + g(X, Y )ξ) ,{

−2beσ dσ

dt
η(X) + eσ (∇Xη) (Y ) + e2σ dσ

dt
g(X, φ(Y ))

}
d

dt

)
,

for any vector field
(
X, a d

dt

)
,
(
Y, b d

dt

)
and

(
Z, c d

dt

)
on M × R. It follows that

F
(
X̃, Ỹ , Z̃

)
=h

(
(∇X̃J) (Ỹ ), Z̃

)
=e2σα(X, Y, Z) + 2bceσ dσ

dt
η(X)

− eσ {bg (∇Xξ, Z) + cg (∇Xξ, Y )}(3.4)

+ e3σ dσ

dt
{η(Y )g(X, Z) + η(Z)g(X, Y )}

− e2σ dσ

dt
{bg(X, φ(Z)) + cg(X, φ(Y )} ,

is obtained. If we take X̃ = (ξ, 0), Ỹ = Z̃ =
(
0, d

dt

)
, then F

(
X̃, Ỹ , Z̃

)
= 2eσ dσ

dt
is

different than zero for non-constant σ. Thus, F is not equal to zero for any function
σ. Since

∇(X,a d
dt)(ξ, 0) =

(
∇Xξ + dσ

dt
aξ, e2σ dσ

dt
η(X) d

dt

)
̸= 0,

(ξ, 0) is not parallel even if ξ is parallel. In addition, if ξ is Killing, (ξ, 0) is also Killing:

h

(
∇(X,a d

dt)(ξ, 0),
(

Y, b
d

dt

))
= e2σg(∇Xξ, Y ) + ae2σ dσ

dt
η(Y ) − be2σ dσ

dt
η(Y )

= −h

(
∇(Y,b d

dt)(ξ, 0),
(

X, a
d

dt

))
.(3.5)

Note that

h

(
∇(X,a d

dt)

(
0,

d

dt

)
,

(
Y, b

d

dt

))
= eσ dσ

dt
g(X, Y ) = g

(
∇(Y,b d

dt)

(
0,

d

dt

)
,

(
X, a

d

dt

))
.

Let {e1, . . . , e2n, ξ} be a local pseudo-orthonormal frame field on M . Then one can
obtain an orthonormal frame field on M × R as follows:{(

e−σe1, 0
)

, . . . ,
(
e−σe2n, 0

)
,
(
e−σξ, 0

)
,

(
0,

d

dt

)}
.

Using this frame, the 1-form θ̃, associated with F given in [3], is evaluated as

(3.6) θ̃

(
X, a

d

dt

)
= θ(X) − ae−σθ∗(ξ) + w(X) + 2(n + 1)eσ dσ

dt
η(X).
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In addition, we write the curvature tensor R̃ on the product manifold M × R with
respect to the curvature tensor R on M . Let X̃ =

(
X, a d

dt

)
, Ỹ =

(
Y, b d

dt

)
, Z̃ =

(
Z, c d

dt

)
be vector fields on the product manifold M × R, then we have

R̃(X̃, Ỹ )Z̃ =
R(X, Y )Z + c

(dσ

dt

)2

+ d2σ

dt2

 (aY − bX)(3.7)

+ e2σ

(
dσ

dt

)2

(g(Y, Z)X − g(X, Z)Y ) ,

e2σ

(dσ

dt

)2

+ d2σ

dt2

 g(aY − bX, Z) d

dt

 .

As a result, Ricci curvature can be calculated as

Q̃(X̃, Ỹ ) =Q(X, Y ) − ab(2n + 1)
(dσ

dt

)2

+ d2σ

dt2

(3.8)

+ e2σ

(
dσ

dt

)2

(2n + 1)g(X, Y ) + e2σ d2σ

dt2 g(X, Y ).

In addition, we can evaluate the scalar curvature as

(3.9) s̃ = e−2σs + (2n + 1)(2n + 2)
(

dσ

dt

)2

+ 2(2n + 1)d2σ

dt2 .

Let M be an almost contact manifold with B-metric with zero scalar curvature.
Then we can construct an almost complex manifold with Norden metric with scalar
curvature k > 0 with the appropriate choice of the function σ, see Example (3.1). If
we take s = 0, then the solution of the differential equation

(3.10) k = (2n + 1)(2n + 2)
(

dσ

dt

)2

+ 2(2n + 1)d2σ

dt2 ,

takes the form

(3.11) σ(t) = 1
n + 1 ln

[
cosh

(√
2k

( √
n + 1

2
√

2n + 1
t −

√
(2n + 1)(n + 1)c1

))]
+ c2,

where c1, c2 ∈ R.
If the almost contact manifold with B-metric M is Einstein, that is Q(X, Y ) =

λg(X, Y ), then the almost complex manifold with Norden metric M × R is Einstein
if and only if

(3.12) λ

2n
= e2σ d2σ

dt2 .

If K = (2n + 1)
((

dσ
dt

)2
+ d2σ

dt2

)
, then we have Q̃(X̃, Ỹ ) = Kh(X̃, Ỹ ).
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Differential equation (3.12) has the solution

σ(t) = ln
(

1
2e−√

c1(t+c2)λ + e
√

c1(t+c2)

4nc1

)
,

where c1, c2 ∈ R and c1 > 0. If Einstein constant λ > 0, domain of the function σ
is the set of all real numbers. Hence the product manifold M × R is Einstein with
Einstein constant K = (2n + 1)c1 > 0, since c1 =

((
dσ
dt

)2
+ d2σ

dt2

)
.

If λ < 0, it can be easily seen that domain of the function σ is (t0, +∞), where
t0 = 1

2√
c1

ln(−2nc1λ) − c2. Then the product manifold M × (t0, +∞) is Einstein with
Einstein constant K = (2n + 1)c1 > 0. If λ = 0, then solution of the equation (3.12)
is σ(t) = c1t + c2, where c1, c2 ∈ R. In this case, K = (2n + 1)c2

1 is obtained. Hence,
for all cases, we obtain Einstein product manifold with positive Einstein constant.

Now the relations between classes of the product manifold M × R and the classes
of the almost contact manifold with B-metric M are investigated.

Theorem 3.1. If (M, φ, ξ, η, g) is a cosymplectic almost contact B-metric manifold,
then the product manifold M × R is of the class W1 for all non-constant σ functions.

Proof. Since (M, φ, ξ, η, g) is a cosymplectic almost contact B-metric manifold we
have

θ̃(X̃) = 2(n + 1)eσ dσ

dt
η(X), θ̃(J(X̃)) = −2a(n + 1)dσ

dt
.

Implying that θ̃ ̸= 0 and the product manifold is not of the class W2. Since
α(X, Y, Z) = 0 for all vector fields X, Y, Z from (3.4), we have

F
(
X̃, Ỹ , Z̃

)
=e3σ dσ

dt
{η(Y )g(X, Z) + η(Z)g(X, Y )}

− e2σ dσ

dt
{bg(X, φ(Z)) + cg(X, φ(Y ))} + 2bceσ dσ

dt
η(X),

which is equivalent to the right hand side of the defining relation (2.14) of a conformally
Kaehlerian manifold by direct calculation. Thus for a non-constant function σ, the
product manifold is a conformally Kaehlerian manifold with Norden metric (class
W1). □

Theorem 3.2. If (M, φ, ξ, η, g) is of the class F1, then the product manifold M × R
is of the class W1 ⊕ W2 for all non-constant σ functions.

Proof. Since (M, φ, ξ, η, g) is of the class F1, we have
θ(ξ) = 0, θ∗(ξ) = 0,

for all vector fields X on M and ξ is parallel [6]. Then, we have

θ̃

(
X, a

d

dt

)
= θ(X) + 2(n + 1)eσ dσ

dt
η(X).
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Hence we say that θ̃ ̸= 0 and the product manifold M × R is not of the class W2.
When M is of the class F1, if we take X̃ =

(
0, d

dt

)
, Ỹ = (Y, 0) and Z̃ = (ξ, 0) in

equation (2.14), the left hand side of (2.14) becomes F (X̃, Ỹ , Z̃) = 0, whereas the
right hand side of (2.14) is

− 1
2(n + 1)eσθ(φ(Y )).

Thus, the equation (2.14) is not satisfied and the product manifold M × R is not in
the class W1. Since

F
(
X̃, Ỹ , J(Z̃)

)
=e2σα(X, Y, φ(Z)) − e2ση(Z)g (∇Xξ, Y )

− eσ {cα(X, Y, ξ) − bα(X, Z, ξ)}(3.13)

+ e3σ dσ

dt
{η(Y )g(X, φ(Z)) − η(Z)g(X, φ(Y ))}

− e2σ dσ

dt
{bg(φ(X), φ(Z)) − cg(φ(X), φ(Y ))}

+ 2e2σ dσ

dt
η(X) {bη(Z) − cη(Y )} ,

it can be checked that the normality condition (2.15) is satisfied when the manifold
M belongs to class F1. As a result the product manifold M × R is of the class
W1 ⊕ W2. □

Theorem 3.3. If (M, φ, ξ, η, g) is in F2, then the product manifold M × R is in
W1 ⊕ W2 for all non-constant σ functions.

Proof. Since (M, φ, ξ, η, g) is of the class F2, the equation (2.9) yields

θ(X) = 0, θ∗(X) = 0,

for all vector fields X on M and ξ is parallel [6]. Then,

θ̃

(
X, a

d

dt

)
= 2(n + 1)eσ dσ

dt
η(X).

Hence, θ̃ ̸= 0, as a result M × R is not in W2.
When M is of the class F2, if we take X̃ = Ỹ =

(
0, d

dt

)
and Z̃ = (ξ, 0) in equation

(2.14), the left hand side of equation (2.14) is F (X̃, Ỹ , Z̃) = 0, and the right hand
side of the equation (2.14) is −eσ dσ

dt
. Thus, the equation (2.14) is satisfied if and only

if σ is constant. So, M × R does not belong to W1 for non-constant σ. In addition,
one can easily check that normality condition (2.15) is satisfied when the manifold M
is of the class F2. To sum up M × R is in W1 ⊕ W2 for non-constant σ. □

Theorem 3.4. If (M, φ, ξ, η, g) is of the class F4, then the product manifold M × R
is of the class W1 ⊕ W2 for all non-constant σ functions.
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Proof. Since (M, φ, ξ, η, g) is of the class F4, the equation (2.10) gives

(3.14) θ(X) = η(X)θ(ξ), θ∗(ξ) = 0, ω(X) = 0, ∇Xξ = θ(ξ)
2n

.

From equations (3.4) and (3.14), we get

F (X̃, Ỹ , Z̃) = − e2σ

(
θ(ξ)
2n

+ eσ dσ

dt

)
{η(Y )g(φ(X), φ(Z)) + η(Z)g(φ(X), φ(Y ))}

− eσ

(
θ(ξ)
2n

+ eσ dσ

dt

)
{bg(X, φ(Z)) + cg(X, φ(Y ))}

+ 2e3σ dσ

dt
η(X)η(Y )η(Z) + 2bceσ dσ

dt
η(X)

and

F (X̃, Ỹ , J(Z̃)) =e2σ

(
θ(ξ)
2n

+ eσ dσ

dt

)
{η(Y )g(X, φ(Z)) − η(Z)g(X, φ(Y ))}

− eσ

(
θ(ξ)
2n

+ eσ dσ

dt

)
{bg(φ(X), φ(Z)) − cg(φ(X), φ(Y ))}

− 2e2σ dσ

dt
η(X) (cη(Y ) − bη(Z)) η(Y ).

One can see that the normality condition (2.15) is satisfied. Hence the product
manifold M × R is of the class W1 ⊕ W2. In addition, we have

θ̃

(
X, a

d

dt

)
= η(X)

(
θ(ξ) + 2(n + 1)eσ dσ

dt

)
.

If we take X̃ = (X, 0), Ỹ =
(
Y, d

dt

)
and Z̃ =

(
Z, d

dt

)
, then the equation (2.14) is not

satisfied. Hence M × R is not of the class W1. If θ(ξ) is constant and the function σ
has the property that

eσ dσ

dt
= − θ(ξ)

2(n + 1) ,

then the product manifold M × R is of the class W2. □

Theorem 3.5. If (M, φ, ξ, η, g) is of the class F5, then the product manifold M × R
is of the class W1 ⊕ W2 for all non-constant σ functions.

Proof. If (M, φ, ξ, η, g) belongs to F5, then from (2.11) we have

θ(X) = 0, θ∗(X) = θ∗(ξ)η(X), w(X) = 0,

for all vector fields X on M [6]. Therefore,

θ̃

(
X, a

d

dt

)
= −e−σaθ∗(ξ) + 2(n + 1)eσ dσ

dt
η(X) ̸= 0,
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since θ̃
(
0, d

dt

)
= −e−σθ∗(ξ). Therefore M × R is not in W2. Replacing X̃ =

(
0, d

dt

)
,

Ỹ = (ξ, 0) and Z̃ = (ξ, 0) in defining relation (2.14) of the class W1, we have
θ∗(ξ) = 0.

This is a contradiction since θ∗(ξ) ̸= 0 is in the class F5 for non-constant function
σ. In addition, if the manifold M is of the class F5, then one can easily check that
equation (2.15) is satisfied on M ×R. Hence, if the manifold M is of the class F5, the
product manifold is of the class W1 ⊕ W2. □

Theorem 3.6. If (M, φ, ξ, η, g) is in F6, then the product manifold M × R is in
W1 ⊕ W2 for all non-constant σ functions.

Proof. Since (M, φ, ξ, η, g) is of the class F6, by (2.12) we obtain
θ(X) = 0, θ∗(X) = 0, w(X) = 0,

for all vector fields X on M [6]. Then,

θ̃

(
X, a

d

dt

)
= 2(n + 1)eσ dσ

dt
η(X) ̸= 0,

since, for instance, θ̃ (ξ, 0) = 2(n+1)eσ dσ
dt

is not equal to zero for non-constant function
σ. Choosing X̃ =

(
0, d

dt

)
, Ỹ = (Y, 0) and Z̃ =

(
0, d

dt

)
in the defining relation (2.14)

of the class W1, we have
eσ dσ

dt
η(Y ) = 0.

This is a contradiction for a non-constant function σ. One can also check that if the
manifold M is of the class F6, then the equation (2.15) is satisfied on M × R. Hence,
if the manifold M is of the class F6, the product manifold is of the class W1 ⊕ W2. □

Now we show that if the product manifold M × R is normal, then so is M .

Theorem 3.7. If the product manifold M × R is of the class W1, then the almost
contact manifold with B-metric is cosymplectic.

Proof. If the product manifold M × R is of the class W1, the defining relation (2.14)
is satisfied for all vector fields X̃, Ỹ and Z̃. Take X̃ =

(
0, d

dt

)
and Ỹ = Z̃ = (ξ, 0),

we get θ∗(ξ) = 0. Replace X̃ =
(
0, d

dt

)
and Ỹ = (ξ, 0) and Z̃ = (Z, 0) in (2.14) to get

θ(φ(Z)) = −w(φ(Z)), and hence θ(Z)+w(Z) = η(Z)θ(ξ). For X̃ = (X, 0), Ỹ = (Y, 0)
and Z̃ = (Z, 0), we get

(3.15) α(X, Y, Z) = θ(ξ)
2(n + 1) {η(Y )g(X, Z) + η(Z)g(X, Y )} .

Note that α(X, φ(Y ), φ(Z)) = 0. From the equation (3.15) we have

θ(X) = n

n + 1θ(ξ)η(X),

for all vector field on M . Then, we obtain θ(ξ) = 0. Hence, we get α(X, Y, Z) = 0. □
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Theorem 3.8. If the product manifold M × R is of the class W2, then the almost
contact manifold with B-metric is of the class F2 ⊕ F4 ⊕ F6.

Proof. Since the product manifold M × R is of the class W2, θ̃(X, a d
dt

) = 0 for all
vector fields (X, a d

dt
). We, thus, obtain

θ̃

(
0,

d

dt

)
= −e−σθ∗(ξ) = 0.

Hence, θ∗(ξ) = 0 and

θ̃ (ξ, 0) = θ(ξ) + 2(n + 1)eσ dσ

dt
= 0.

Since equation (2.15) is satisfied in the class W2, if one takes X̃ =
(
0, d

dt

)
, Ỹ = (Y, 0)

and Z̃ = (Z, 0), then the following equation is obtained:

α(Y, Z, ξ) = α(Z, Y, ξ).

Since 0 = α(X, ξ, ξ) = α(ξ, X, ξ) = α(ξ, ξ, X), we have ∇ξξ = 0. In addition, in the
class W2 we get

0 = θ̃

(
X,

d

dt

)
= θ(X) + (2n + 1)eσ dσ

dt
η(X),

and θ(φ(X)) = 0. Moreover, taking X̃ = (X, 0), Ỹ = (Y, 0), Z̃ = (Z, 0) in equation
(2.15), we obtain SXY Z {α(X, Y, φ(Z) − α(X, φ(Y ), ξ)η(Z)} = 0. Thus, equations
(2.6) and (2.7) hold and the manifold M is normal (F1 ⊕F2 ⊕F4 ⊕F5 ⊕F6) [10]. Since
θ∗(ξ) = 0 and θ(φ(X)) = 0, M is in F2 ⊕ F4 ⊕ F6. □

Theorem 3.9. If the product manifold M×R is of the class W1⊕W2, then the manifold
M is normal almost contact manifold with B-metric (the class F1 ⊕F2 ⊕F4 ⊕F5 ⊕F6).

Proof. If the product manifold M × R is of the class W1 ⊕ W2, the defining relation
(2.15) is satisfied for all vector fields X̃, Ỹ and Z̃. If we take X̃ = (X, 0), Ỹ = (Y, 0)
and Z̃ = (Z, 0), we obtain

SXY Z (α(X, Y, φ(Z) − α(X, φ(Y ), ξ)η(Z)) = 0.

In addition, if we take X̃ =
(
0, d

dt

)
, Ỹ = (Y, 0) and Z̃ = (Z, 0), we get

α(Y, Z, ξ) = α(Z, Y, ξ).

Hence, manifold M is normal almost contact manifold with B-metric from (2.6) and
(2.7) [10]. □
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Example 3.1. Consider the Lie group G of dimension 5 with a basis of left-invariant
vector fields {e1, e2, e3, e4, e5} defined by the non-zero brackets

[e1, e5] = λ1e1 + λ2e2 + λ1e3 + λ4e4,

[e2, e5] = −λ2e1 − λ1e2 − λ4e3 − λ1e4,

[e3, e5] = −λ1e1 − λ4e2 + λ1e3 + λ2e4,

[e4, e5] = λ4e1 + λ1e2 − λ2e3 − λ1e4.

One can define an invariant almost contact structure with B-metric on G as

g(e0, e0) = g(e1, e1) = g(e2, e2) = 1,

g(e3, e3) = g(e4, e4) = −1, g(ei, ej) = 0, i ̸= j,

e5 = ξ, φ(e1) = e3, φ(e2) = e4.

This almost contact structure with B-metric on G has zero scalar curvature [5].
Then we can construct an almost complex structure with Norden metric on G × R
having any scalar curvature k > 0 from the equation (3.9).

For example, from (3.11), the function

σ(t) = 1
3 ln

(
cosh

( √
6

2
√

5
t

))
,

satisfies the differential equation (3.10):

1 = 30
(

dσ

dt

)2

+ 10d2σ

dt2 .

Thus the scalar curvature k of the product manifold G × R is k = 1 from (3.9).
Similarly for

σ(t) = 1
3 ln

(
cosh

(√
3√
5

t

))
,

the scalar curvature of G × R is 2.

Example 3.2. Let R2n+1 = {(u1, . . . , un, v1, . . . , vn, t) | ui, vi, t ∈ R}. Consider the
cosymplectic almost contact structure with B-metric given in [2] by

ξ = ∂

∂t
, η = dt,

φ

(
∂

∂ui

)
= ∂

∂vi
, φ

(
∂

∂vi

)
= − ∂

∂ui
, φ

(
∂

∂t

)
= 0,

g(X, X) = −δijλ
iλj + δijµ

iµj + ν2,

where X = λi ∂
∂ui + µi ∂

∂vi + ν ∂
∂t

and δij are the Kronecker’s symbols. We obtain
infinitely many conformally Kaehlerian structure with Norden metric on R2n+1 × R
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from Theorem 3.1 for any non-constant function σ. For instance, choose σ(t) = t.
Then, for

X =xi
∂

∂ui

+ x̃i
∂

∂vi

+ x̄
d

dt
,

Y =yi
∂

∂ui

+ ỹi
∂

∂vi

+ ȳ
d

dt
,

Z =zi
∂

∂ui

+ z̃i
∂

∂vi

+ z̄
d

dt

and X̃ = (X, a d
dt

), Ỹ = (Y, b d
dt

), Z̃ = (Z, c d
dt

), from the proof of Theorem 3.1, we have

F
(
X̃, Ỹ , Z̃

)
=e3t {ȳg(X, Z) + z̄g(X, Y )}

− e2t dσ

dt
{bg(X, φ(Z)) + cg(X, φ(Y ))} + 2bcetx̄,

and θ̃(X̃) = 2(n + 1)etx̄, θ̃(J(X̃)) = −2a(n + 1). Theorem 3.1 implies that F satisfies
the defining relation (2.14) of W1.

Example 3.3. Let R2n+2 = {(u1, . . . , un+1; v1, . . . , vn+1) | ui, vi ∈ R} and consider
R2n+2 as a complex Riemannian manifold with the canonical complex structure J and
the metric g defined by

g(x, x) = −δijλ
iλj + δijµ

iµj,

where x = λi ∂
∂ui + µi ∂

∂vi . Let Z denote the position vector of the point p.
We consider the unit time-like sphere S2n+1 : g(Z, Z) = −1 of the metric g given

in [2]. The characteristic vector field ξ on S2n+1 is given by

ξ = λZ + µJZ, g(Z, ξ) = 0, g(ξ, ξ) = 1.

For each p in S2n+1, setting g(Jξ, Z) = tan t, t ∈ (−π/2, π/2), it is obtained that

ξ = (sin t)Z + (cos t)JZ, Jξ = −(cos t)Z + (sin t)JZ.

For any x ∈ TpS2n+1, let φx be the projection of the vector Jx into TpS2n+1 with
respect to Jξ. Then, one has the unique decomposition Jx = φx + η(x)Jξ, where η is
a 1-form in TpS2n+1. It is shown that (S2n+1, φ, ξ, η, g) is an almost contact manifold
with B-metric in the class F4 ⊕ F5, that is

α(X, Y, Z) = − θ(ξ)
2n

{g(φ(X), φ(Y ))η(Z) + g(φ(X), φ(Z))η(Y )}

− θ∗(ξ)
2n

{g(X, φ(Y ))η(Z) + g(X, φ(Z))η(Y )} .

For any choice of a non-constant function σ, we obtain infinitely many almost
complex manifolds with Norden metrics on S2n+1 × R of the class W1 ⊕ W2 from
Theorem 3.4 and Theorem 3.5.
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For instance, let σ(t) = t. Since (S2n+1, φ, ξ, η, g) is in F4 ⊕ F5, we have θ(X) =
η(X)θ(ξ), and from equation (3.6), we get

θ̃

(
0,

d

dt

)
= −θ∗(ξ)

et
̸= 0,

which implies that the structure is not in W2. Similar to the proof of Theorem (3.4),
by direct calculation, it can be seen that the defining relation (2.14) of the class W1 is
not satisfied and the defining relation of W1 ⊕ W2 holds. Thus the product manifold
S2n+1 × R is in the class W1 ⊕ W2.

The authors declare that no funds, grants, or other support were received during
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