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SOME RESULTS ON NORMAL ALMOST CONTACT MANIFOLDS
WITH B-METRIC

NULIFER OZDEMIR!, SIRIN AKTAY?, AND MEHMET SOLGUN?®

ABSTRACT. In this study, normal almost contact manifolds with B-metric are con-
sidered. Almost complex manifolds with Norden metric are obtained by multiplying
almost contact manifolds with B-metric by warped product (by using a function
on real numbers). New examples of normal almost complex manifolds with Norden
metric are derived. Furthermore, curvature properties of the almost complex man-
ifolds with Norden metric obtained from almost contact manifolds with B-metric
are investigated.

1. INTRODUCTION

In this work, relations between almost contact manifolds with B-metric and almost
complex manifolds with Norden metric are investigated. An almost contact manifold
with B-metric is obtained from an almost complex manifold with Norden metric using
a method similar to that in [4]. The classifications of almost contact manifolds with
B-metric and almost complex manifolds with Norden metric are made by using the
covariant derivative of their fundamental tensors. Classification of almost contact
manifolds with B-metric and almost complex manifolds with Norden metric can be
found in [2, 3], respectively. Relations between the almost contact manifolds with
B-metric and almost complex manifolds with Norden metric are investigated in [8,9]
with respect to these classifications.

In this manuscript, we study the warped product of almost contact manifolds with
B-metric and R. After presenting necessary preliminary informations, we obtain an
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almost complex structure on the product of an almost contact manifold with B-metric
with R. Then, we define a metric which is indefinite of signature (n + 1,n + 1) on
the product manifold. The product manifold is an almost complex manifold with
Norden metric. We write the covariant derivative of the metric and the almost complex
structure of the almost complex manifold with Norden metric in terms of the covariant
derivative of the metric of the almost contact manifold with B-metric. We, then, state
the relations between normal classes of almost contact manifolds with B-metric and
almost complex manifolds with Norden manifolds.

2. PRELIMINARIES

A (2n 4 1)-dimensional smooth manifold M is said to have an almost contact
structure (@, &, n), if this manifold admits an endomorphism ¢ of the tangent bundle,
a vector field £ and its dual 1-form 7 such that the conditions

(2.1) (X)) =X +n(X)E, n(§) =1,

are satisfied for an arbitrary vector field X. If a manifold admits an almost contact
structure, it is called an almost contact manifold. If (M, ¢, £, n) is an almost contact
manifold endowed with a pseudo-Riemannian metric g of signature (n 4+ 1,n) such
that

(2.2) g(e(X),p(Y)) = —g(X,Y) + n(X)n(Y),

for all vector fields X, Y, then M is called an almost contact manifold with B-metric.
From equations (2.1) and (2.2), one can easily see that

n(e(X)) =0, @) =0, nX)=g(&X), g(p(X),Y)=yg(X o)),
for all vector fields X,Y. The tensor § given by

9(X.Y) = g(X,0(Y)) + n(X)n(Y),
is a B-metric associated with the metric g. Let V be the Levi-Civita connection of
the pseudo-metric g. For all vector fields X, Y, Z on M, we define the structure tensor
a of type (0,3) as
a(X,Y,Z) =g ((Vxp) (Y), Z).
It is not difficult to see that the tensor « has following properties:
(XY, Z)=a(X,Z,Y),
(2.3) a(X,¢(Y),0(2)) = a(X,Y, Z) = n(Y)a(X, £, Z) = n(Z)a(X,Y,§),
(2.4) a(X,€,€) =0.
The following 1-forms are defined as
Q(X) :gija(Ei7Ej7X)v 0*(X) :gija(EiaSO(Ej>’X)7 U}(X) :Of(g,g,X),

where {F}, ..., Ey,, &} is a local frame, X is a vector field and (g%) is the inverse
matrix of (g;;).
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Using the properties above, the space of covariant derivatives of the endomorphism
@ are defined as

F={ae@M:a(X,Y,2)=a(X,2,Y),
(2.5) a(X, oY), 0(2)) = (X, Y, Z) = n(Y)a(X, &, Z) = n(Z)a(X, Y, £)}
The space F decomposes into eleven subspaces
F=F® @ Fn,

which are orthogonal and invariant under the action of G x I where [ is the identity
on Span{¢} and G = GL(n,C)NO(n,n) [2]. An almost contact manifold M is called
normal if the corresponding almost complex structure J on the even dimensional
product manifold M x R is integrable, i.e., the Nijenhuis torsion [J, J] is identically
zero [1,7], or equivalently N = [p, ¢| + dn ® £ = 0, or equivalently

(2.6) a(X,Y,§) = (Y, X, ),
(2.7) Sxyz{a(X,Y,¢0(2)) — (X, 0(Y), §)n(2)} = 0,
see [10]. In this study, we consider only the classes of normal almost contact manifolds

with B-metric. The class of the normal contact manifolds with B-metric is F; @ F5 P
F1® Fs @ F 6], and defining relations of this subspaces are:

(28) 1 :a(X,Y.2) = o {o(X,p(V)(e(2)) + 9(X, 0(2))B(e(Y)

+9(p(X),e(V)0(¥*(2)) + g(p(X), SD(Z))Q(QOQ(Y))},
(2.9) F:alY.Z)=a(X,£,2)=0, 6=0,
a(X,Y,¢(2)) + oY, Z, (X)) + a(Z, X, o(Y)) = 0,

(2.10) Fy:(X,Y,2) = —02(2) {9(0(X), (Y))n(Z) + g(p(X), o(Z)n(Y)},

211) Tya(X,¥.2) =~ (g o )n(2) + g (2D}
(2.12) F6:a(X,Y,Z) = a(X,Y,E(Z) + a(X, Z,En(Y),
0(X,Y,6) = al¥, X.€) = ~a(p(X).0(Y).6), 0(€) = 0°(6) =0

If a smooth manifold N has a tensor field J (almost complex structure) and a
pseudo-Riemannian metric h satisfying the conditions
b JQ(X) - _XJ

for all vector fields X,Y on N, then the manifold N is called an almost complex
manifold with a Norden metric [3]. The metric h is necessarily indefinite of signa-
ture (n,n). An almost complex manifold with a Norden metric has even dimension
(dimN = 2n) and the structure group of the tangent bundle reduces to the group
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GL(n,C)NO(n,n). The tensor h given by h(X,Y) = h(J(X),Y) for any vector field
X,Y is symmetric:

h(J(X),Y) = —h(J*X),J(Y)) = h(X, J(Y)).

The structure tensor F' of type (0,3) on M is defined as

F(X,Y,Z) = h((VxJ) (Y), Z).
The tensor F' has the following properties:

F(X,Y,Z)=F(X,Z,)Y),

F(X,J(Y),J(Z))=F(X,Y,Z).

In addition, for any vector field X on N the 1-form 6 associated with F' is defined as
0(X) = h"F(E;, E;, X),

where {E), Es, ..., FEy,} is a frame field on N and h% is the inverse matrix of h.
Then the subspace W of @JN is defined as follows:

Wi={ae@N|a(X,Y,2) = (X, J(Y),](Z) = a(X, Z,Y)},

where X, Y, Z are vector fields on N. According to the symmetries of W, this space
splits into the direct sum W = W; & Wy @& W3. The subspaces W; are invariant and
irreducible under the group GL(n,C) N O(n,n). The defining relations for invariant
subspaces are the following.

(a) Kaehler manifolds with a Norden metric:

(2.13) F(X,Y,Z) = 0.
(b) Class Wi: Conformally Kaehlerian manifolds with a Norden metric:
1 ~ -
(2.14) P(X,Y.Z) =5~ {M(X,Y)0(2) + h(X, 2)6(Y)
n

+h(X, J(YV)O(J(Z)) + (X, J(Z)0(J(V))} .

(c) Class Wy: Special complex manifolds with a Norden metric

(2.15) F(X, Y, J(Z)) + F(Y, Z, J(X)) + F(Z, X, J(Y)) =0,
and 0 = 0.
(d) Class W3: Quasi-Kaehlerian manifolds with Norden metric
(2.16) FX,Y,Z)+ F(Y,Z,X) + F(Z,X,Y) = 0.

(e) Class W @ Wy: Complex manifolds with Norden metric
FX.Y, J(Z)+ F(Y, 2, ](X)) + F(Z, X, J(Y)) =0,

or equivalently N = 0.
(f) Class Wy @ Ws5: Semi-Kaehlerian manifolds with Norden metric

(2.17) 0=0.
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(g) Class Wp @ Ws:
F(X,Y,Z)+ F(Y,Z,X)+ F(Z,X,Y) :711{ (X, Y)0(Z) + h(X,Z)0(Y)
+ (Y, 2)0(X) + h(X, J(Y))0(J(2))
(2.18) + (X, J(2))0(J(Y))
+h(Y, J(2))0(J (X))}
(h) Class Wy @ W, @ Ws: No relation.

3. ALMOST COMPLEX MANIFOLDS WITH A NORDEN METRIC FROM ALMOST
CONTACT MANIFOLDS WITH B-METRIC

In this section, first, we define an almost complex structure on the product of an
almost contact manifold with B-metric with R. We write a metric on the product
manifold depending on a function o where o : M x R — R only depends on ¢. Then,
we obtain an almost complex manifold with Norden metric and we give the relations
between covariant derivatives.

Let (M, ¢,&,1m,g) be a (2n + 1)-dimensional almost contact manifold with B-metric
and consider the product manifold M x R. A vector field on the manifold M x R is
of the form (X , a%) where t is the coordinate of R and a is a smooth function on
M x R. The almost complex structure J on M x R is defined by

d d
1 X,a— | = X) —
3.1) 7(xag) = (w00 - e ).
Then J? = —1. In addition, we define a pseudo-Riemannian metric on M x R with
signature (n +1,n + 1) by
(3.2) hilX, d de = e¥g(X,Y) —ab
. yao | o)) =eralX, ab.

One can easily see that

o ao(ned)os(i02) s (222)-(02))

Hence (M xR, J, h) is an almost complex manifold with Norden metric. Let V be the
Levi-Civita covariant derivative of the pseudo-Riemannian metric g on M. Levi-Civita
covariant derivative of the metric h on M X R is obtained using the Kozsul formula as

d do b ,,do d
V(X,a%) (Y bdt) = <ny+dt(aY+bX), {X[b] —f-a%—f—e dt (X’Y)} dt) .

Note that the covariant derivative on the product manifold M x R will also be denoted
with the same symbol V. Also, covariant derivative of the almost complex structure
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J is calculated as
(Vi) (05) = ((vm ) = bV~ b o()
"7 (n(Y)X + g(X,Y)E),

+
e Sy 4 (V) )+ 2 Fatx o) ).

for any vector field (X —) (Y b<: ) and (Z,cdt) on M x R. It follows that

aq
F(X,Y,2)=h((Vg])(Y), 2)
=¥ a(X,Y, Z) + 2bce” Cclin(X)
(3.4) —e7{bg (Vx¢&, Z) +¢g (VxEY)}

+ flj (Y)g(X, Z) + 1(2)g(X,Y)}

_ CZ {bg(X, 9(2)) + cg(X, p(Y)} |

is obtained. If we take X = (£,0), Y = Z = (0 d) then F(X,ff7 Z) — 9e0do g

' dt dt
different than zero for non-constant ¢. Thus, F' is not equal to zero for any function

o. Since
do da d
V(X,a%)(f,()) = (fo + Eaf, " n(X )dt> 0,

(£,0) is not parallel even if £ is parallel. In addition, if £ is Killing, (£, 0) is also Killing:

h (v(X,ai)(g,O), <Y, bi)) = 2 g(Vx€,Y) + ae’ ‘fl‘z (¥) = be =l (Y)

(3.5) _ (v(yﬁbi)(g, 0), (X, acjt)) |

Note that

(S (1) 038)) -0 2 (33)

Let {e1,...,e9,,&} be a local pseudo-orthonormal frame field on M. Then one can
obtain an orthonormal frame field on M x R as follows:

{(e"el, 0),..., (e 7€, 0), (e77¢,0), (o, CZ) } .

Using this frame, the 1-form 6, associated with F' given in [3], is evaluated as

(3.6) 0 <X, ajt> = 0(X) — ae 0" (€) + w(X) + 2(n + 1)e” Cf; (X).
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In addition, we write the curvature tensor R on the product manifold M x R with
respect to the curvature tensor R on M. Let X = (X adt), Y = (Y, bdt) Z = (Z, cdt>
be vector fields on the product manifold M x R, then we have

(3.7) R(X,Y)Z = (R(X Y)Z +c ((CZ) + CZ‘;) (aY —bX)

v (%) @2 - ax 2v),

oo [ (do\® &% d
((dt) +dt2> (CLY—bX Z)d)

As a result, Ricci curvature can be calculated as

(3.8) Q(X,Y) =Q(X,Y) — ab(2n + 1) ((Cj;) N ccl:;)

do\’ 2
20 2
+e <dt> 2n+1)g(X,Y)+e ﬁg(X,Y).
In addition, we can evaluate the scalar curvature as
do\* 2
(3.9) §=e ¥ s+ (2n+1)(2n+2) (;) +2(2n +1) dtj

Let M be an almost contact manifold with B-metric with zero scalar curvature.
Then we can construct an almost complex manifold with Norden metric with scalar
curvature k > 0 with the appropriate choice of the function o, see Example (3.1). If
we take s = 0, then the solution of the differential equation

do\* d*o
(3.10) k=2n+1)(2n+2) <dt> +2(2n + 1)ﬁ’
takes the form

(3.11)  o(t) = 7141— . In lcosh (\/ﬁ (2\/7217;_71 \/(Qn +1)(n+ 1)cl>>1 + ca,

where ¢1,c9 € R.

If the almost contact manifold with B-metric M is Einstein, that is Q(X,Y) =
Ag(X,Y), then the almost complex manifold with Norden metric M x R is Einstein
if and only if

A d*o

12 =¥
(3.12) 2n ¢ dt?

If K = (2n + 1) ((Zif + fﬁg) then we have Q(X,Y) = Kh(X,Y).
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Differential equation (3.12) has the solution

1 e\/a(t‘i‘CQ)
t)=In (e vValteyp -
oft) =In (26 + 4ney ’

where ¢1,c5 € R and ¢; > 0. If Einstein constant A > 0, domain of the function o
is the set of all real numbers. Hence the product manifold M x R is Einstein with

Einstein constant K = (2n + 1)¢; > 0, since ¢ = ((fg)Q + CZE’).

If A < 0, it can be easily seen that domain of the function o is (g, +00), where
ty = ﬁ In(—2nc;A) — co. Then the product manifold M X (ty,4+00) is Einstein with
Einstein constant K = (2n + 1)¢; > 0. If A = 0, then solution of the equation (3.12)
is o(t) = c1t + ¢y, where ¢y, ¢y € R. In this case, K = (2n + 1)c? is obtained. Hence,
for all cases, we obtain Einstein product manifold with positive Einstein constant.

Now the relations between classes of the product manifold M x R and the classes

of the almost contact manifold with B-metric M are investigated.

Theorem 3.1. If (M, p,&,n,g) is a cosymplectic almost contact B-metric manifold,
then the product manifold M x R is of the class Wy for all non-constant o functions.

Proof. Since (M, p,£,n,¢g) is a cosymplectic almost contact B-metric manifold we
have

0(X) = 20+ Ve Tn(X), BI(X)) = ~2a(n + 1)2‘;.

Implying that § # 0 and the product manifold is not of the class W,. Since
a(X,Y, Z) =0 for all vector fields X, Y, Z from (3.4), we have

F(X,Y/,Z) = 7{U<Y)Q(X7Z)+77(Z>9(X7Y)}

2797 19X, (2) + eql(X. (V) + 2bee” (),

which is equivalent to the right hand side of the defining relation (2.14) of a conformally
Kaehlerian manifold by direct calculation. Thus for a non-constant function o, the

product manifold is a conformally Kaehlerian manifold with Norden metric (class
Wh). O

Theorem 3.2. If (M, ¢,£,n,q) is of the class Fy, then the product manifold M x R
is of the class Wy @& Wy for all non-constant o functions.

Proof. Since (M, ¢,£,n, g) is of the class F, we have

0(&) =0, 07 =0,
for all vector fields X on M and ¢ is parallel [6]. Then, we have

0 <X, ai) =0(X)+2(n+ 1)606277()().
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Hence we say that § # 0 and the product manifold M x R is not of the class W.

When M is of the class 7y, if we take X = (O, i&) Y = (Y,0) and Z = (£,0) in

0
equation (2.14), the left hand side of (2.14) becomes F(X,Y,Z) = 0, whereas the
right hand side of (2.14) is

1 ag
—me 0(p(Y)).

Thus, the equation (2.14) is not satisfied and the product manifold M x R is not in
the class W;. Since

F(X.Y.1(2)) = a(X.Y.0(2)) = n(Z)g (VxE.Y)
(3.13) —e’ {ca(X Y, €) —ba(X, Z,&)}

+e3crf {n(Y)g(X,0(2)) —n(2)g(X,¢(Y))}
— ez"* {bg((X),0(Z)) = cg(p(X), 0(Y))}

+ 2% fzt n(X) {bn(2) —en(Y)},

it can be checked that the normality condition (2.15) is satisfied when the manifold
M belongs to class F;. As a result the product manifold M x R is of the class
W, @ Ws. O

Theorem 3.3. If (M,p,&,n,9) is in Fa, then the product manifold M x R is in
W1 & Wy for all non-constant o functions.

Proof. Since (M, ¢, &, n, g) is of the class Fs, the equation (2.9) yields
6(X)=0, 60"(X)=0,
for all vector fields X on M and ¢ is parallel [6]. Then,

d ,do
0 (X adt) =2(n+1)e’ dt n(X).

Hence, 6 # 0, as a result M x R is not in Wh.

When M is of the class Fs, if we take X =Y = (O, dt) and Z = (£,0) in equation
(2.14), the left hand side of equation (2.14) is F(X,Y,Z) = 0, and the right hand
side of the equation (2.14) is —e”%2. Thus, the equation (2.14) is satisfied if and only
if o is constant. So, M x R does not belong to W; for non-constant ¢. In addition,
one can easily check that normality condition (2.15) is satisfied when the manifold M
is of the class F5. To sum up M x R is in Wy @& W, for non-constant o. OJ

Theorem 3.4. If (M, ¢,£,n,q) is of the class Fy, then the product manifold M x R
is of the class W1 & Wy for all non-constant o functions.
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Proof. Since (M, ¢,&,n, g) is of the class Fy, the equation (2.10) gives

Bl HX) =X, O =0, w(X)=0 Vie=")
From equations (3.4) and (3.14), we get
F(X)Y,Z)=—-¢" @(i) + 6"2?) {n(Y)g(o(X), 0(Z)) + n(Z)g(p(X), p(Y))}

o (02%) N fg) (bg(X, 9(Z)) + cg(X, p(Y))}

do do
+ QeBUan(X)n(Y)n(Z) + 2bce"$n(X)

and

POT0(2) = (5 4 ) (o X, 2) = (219X, )

e (92@ i Cf;’) {bg((X), (2)) - eg(p(X), p(Y)}

do

- 262"577()() (en(Y) = bn(Z))n(Y).

One can see that the normality condition (2.15) is satisfied. Hence the product
manifold M x R is of the class W7 @& Ws. In addition, we have

0 (X, ai) = n(X) (0(@ +2(n + 1)60‘2‘;) .

If we take X = (X,0), Y = (Y, %) and Z = (Z, %), then the equation (2.14) is not
satisfied. Hence M x R is not of the class Wi. If 0(&) is constant and the function o
has the property that

o do 0(¢)
ef— = ———
dt 2(n+1)
then the product manifold M x R is of the class Wj. O

Theorem 3.5. If (M, p,&,n,9) is of the class Fs, then the product manifold M x R
is of the class Wy @ Wy for all non-constant o functions.

Proof. If (M, p,&,m, g) belongs to Fs, then from (2.11) we have
0(X) =0, 0°(X)=0"(nX), wX)=0,
for all vector fields X on M [6]. Therefore,

_ d d
0 (X, adt) =—e %abf* (&) +2(n + 1)e“d—in(X) # 0,
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since 5(0, %) = —e 70*(€). Therefore M x R is not in Ws. Replacing X = (O, i),

Y = (£,0) and Z = (£,0) in defining relation (2.14) of the class W7, we have

0*(&) = 0.
This is a contradiction since 0*(§) # 0 is in the class F5 for non-constant function
o. In addition, if the manifold M is of the class F5, then one can easily check that

equation (2.15) is satisfied on M x R. Hence, if the manifold M is of the class F, the
product manifold is of the class W7 & Ws. O

Theorem 3.6. If (M,p,&,n,9) is in Fg, then the product manifold M x R is in
W1 & Wy for all non-constant o functions.

Proof. Since (M, p,&,1,g) is of the class Fg, by (2.12) we obtain
0(X)=0, 0(X)=0, w(X)=0,
for all vector fields X on M [6]. Then,

~ d L, do
7 (X’adt> =2(n+1)e EU(X) # 0,

since, for instance, 6 (€,0) = 2(n+ 1)e” % is not equal to zero for non-constant function

o. Choosing X = (O, %), Y = (Y,0) and Z = (O, %) in the defining relation (2.14)
of the class Wi, we have

e”—n(Y) =
This is a contradiction for a non-constant function o. One can also check that if the

manifold M is of the class Fg, then the equation (2.15) is satisfied on M x R. Hence,
if the manifold M is of the class Fg, the product manifold is of the class W, & W,. O

Now we show that if the product manifold M x R is normal, then so is M.

Theorem 3.7. If the product manifold M x R is of the class W7y, then the almost
contact manifold with B-metric is cosymplectic.

Proof. If the product manifold M x R is of the class W7, the defining relation (2.14)

is satisfied for all vector fields X,Y and Z. Take X = (O, %) and Y = Z = (£,0),

we get 6*(€) = 0. Replace X = (0, %) and Y = (£,0) and Z = (Z,0) in (2.14) to get
0(¢(Z)) = —w(p(Z)), and hence 8(Z) +w(Z) = n(Z)0(€). For X = (X,0), Y = (Y,0)

and Z = (Z,0), we get

315 a(nY.2)= 5 S (X 2) + D)X ).
Note that a(X, p(Y),¢(Z)) = 0. From the equation (3.15) we have
0(X) = 2 0(E(X),

for all vector field on M. Then, we obtain 6(¢) = 0. Hence, we get (X, Y, Z) =0. O



608 N. OZDEMIR, S. AKTAY, AND M. SOLGUN

Theorem 3.8. If the product manifold M x R is of the class W5, then the almost
contact manifold with B-metric is of the class Fo ® F; & Fs.

Proof. Since the product manifold M x R is of the class Ws, 6(X, adt) = 0 for all
vector fields (X, a2). We, thus, obtain

N dt
N d —o ¥ .

Hence, 6*(¢) = 0 and

é@ﬁy:ma+mn+nfﬁzza

Since equation (2.15) is satisfied in the class Wh, if one takes X = (0, %) Y = (Y,0)

and Z = (Z,0), then the following equation is obtained:
a(Y,Z, &) =a(Z,Y,§).

Since 0 = (X, &,&) = a(§, X, §) = a(&, €, X), we have V£ = 0. In addition, in the
class Wy we get

a
dt

)zQ(X) (2n +1)e” Ogllj (X),

0:§<X,
and 0(p(X)) = 0. Moreover, taking X = (X,0), Y = (Y,0), Z = (Z,0) in equation
(2.15), we obtain Sxyz{a(X,Y,¢o(Z) — a(X,o(Y),{)n(Z)} = 0. Thus, equations
(2.6) and (2.7) hold and the manifold M is normal (F1 & Fo & F41 & F5 ® Fg) [10]. Since
0*(€) = 0 and O(p(X)) = 0, M is in Fo & T4 & T O

Theorem 3.9. If the product manifold M xR is of the class W1@®Ws,, then the manifold
M is normal almost contact manifold with B-metric (the class F1 B Fo B Fy B F5DFg).

Proof. 1f the product manifold M x R is of the class Wy @ W5, the defining relation
(2.15) is satisfied for all vector fields X,Y and Z. If we take X = (X,0), Y = (Y,0)
and Z = (Z,0), we obtain

6XYZ (Oé(X, Yva (p(Z) o Oé(X, @(Y)a f)’?(Z)) =0.
In addition, if we take X = (0, %) Y = (Y,0) and Z = (Z,0), we get

a(Y, Z,€) = a(Z,Y,§).

Hence, manifold M is normal almost contact manifold with B-metric from (2.6) and
(2.7) [10]. O
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Example 3.1. Consider the Lie group G of dimension 5 with a basis of left-invariant
vector fields {eq, es, 3, €4, €5} defined by the non-zero brackets

[e1, e5] = Arer + Aaea + Aes + Ageq,
2, 5] = —Ager — Ajea — A\gez — Ajey,
e, e5] = —Arer — Agea + Ares + Aoy,
leq, €5) = Ager + Ajea — Ages — Ajey.
One can define an invariant almost contact structure with B-metric on G as

g(eo, e0) = gler, e1) = glea, e2) = 1,

gles,e3) = glea,eq) = =1, glese5) =0, i # ],

es =&, pler) =es, plex) =eu.

This almost contact structure with B-metric on G has zero scalar curvature [5].
Then we can construct an almost complex structure with Norden metric on G x R
having any scalar curvature k£ > 0 from the equation (3.9).

For example, from (3.11), the function

o(t) = 31 (cosh (ﬁgt)) 7

satisfies the differential equation (3.10):

do\? d*o
1=30(— 10—

Thus the scalar curvature k of the product manifold G x R is k = 1 from (3.9).

Similarly for
o(t) = zl))ln <cosh (ﬁt)) :

the scalar curvature of G x R is 2.

Example 3.2. Let R* 1 = {(u!,... u™ vt ... ;0" 1) | u',v',t € R}. Consider the
cosymplectic almost contact structure with B-metric given in [2] by

= — =dt
5 at7 77 9

9\_ 90 o\ __ 9 9\
P\owi) " ov P\ovi)~ “ow T\oat)

where X = )\ 6?”. + ut a?;i + I/% and ¢;; are the Kronecker’s symbols. We obtain

infinitely many conformally Kaehlerian structure with Norden metric on R?"*! x R
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from Theorem 3.1 for any non-constant function o. For instance, choose o(t) = t.
Then, for

X = - 52 458
Z@ui Z@vi dt’

0 0 d

Y PR i —— 7 —
yl@ui + yz@vi + ydt’

0 0 d

J =z — S 5
=i 8ul t 4 avi * Zdt

and X = (X, a%), Y = (Y, b%), Z = (Z, c%), from the proof of Theorem 3.1, we have

F(X,Y,Z) =" {5g(X, Z) + z9(X,Y)}
— %7 (bg(X,(2)) + cg(X, $(V))} + e’z

and §(X) = 2(n+1)e'z, 6(J(X)) = —2a(n +1). Theorem 3.1 implies that F satisfies
the defining relation (2.14) of Wj.

Example 3.3. Let R*"™2 = {(u!, ... w0l ... 0o") | v 0" € R} and consider
R?"*2 a5 a complex Riemannian manifold with the canonical complex structure J and
the metric ¢ defined by
g, ) = =6 NN + 6" 1
where 2 = \! a(zi + a?ﬂ-. Let Z denote the position vector of the point p.
We consider the unit time-like sphere S*"*1 : ¢(Z, Z) = —1 of the metric g given

in [2]. The characteristic vector field £ on S*"*! is given by
§=M+pJZ, g(Z,§) =0, g(&&=1
For each p in S*"*1 setting g(J¢, Z) = tant, t € (—7/2,7/2), it is obtained that
£ = (sint)Z + (cost)JZ, J&= —(cost)Z + (sint)JZ.

For any = € T,5*"*! let ¢x be the projection of the vector Jx into T,S**! with
respect to JE. Then, one has the unique decomposition Jx = px + n(z)JE, where 7 is
a 1-form in 7,S*"*1. Tt is shown that (S, ¢, &, n, g) is an almost contact manifold
with B-metric in the class &, @& F5, that is

a(X,Y,Z) =~ 02(? 19(0(X), p(Y))n(Z) + g((X), 0(Z2))n(Y)}

0 (&)
=, X e(Y)n(2) + 9(X,0(Z))n(Y)}.
For any choice of a non-constant function o, we obtain infinitely many almost
complex manifolds with Norden metrics on S?"* x R of the class W; @ W, from
Theorem 3.4 and Theorem 3.5.
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For instance, let o(t) = t. Since (S, ¢,&,n,g) is in F; & F5, we have (X) =

n(X)0(§), and from equation (3.6), we get

(o d)_ 0
9<O’dt>__et7é0’

which implies that the structure is not in Ws. Similar to the proof of Theorem (3.4),
by direct calculation, it can be seen that the defining relation (2.14) of the class W is
not satisfied and the defining relation of W; & W5 holds. Thus the product manifold
S2ntl % R is in the class Wy @ Wh.
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