KRAGUJEVAC JOURNAL OF MATHEMATICS VOLUME 46(6) (2022), PAGES 905–917.

STABILITY OF CAUCHY-JENSEN TYPE FUNCTIONAL EQUATION IN $(2, \alpha)$ -BANACH SPACES

KHALED YAHYA NAIF SAYAR^{1,2} AND AMAL BERGAM¹

ABSTRACT. In this paper, we investigate some stability and hyperstability results for the following Cauchy-Jensen functional equation

$$f\left(\frac{x+y}{2}\right) + f\left(\frac{x-y}{2}\right) = f(x)$$

in $(2, \alpha)$ -Banach spaces using Brzdęk and Ciepliński's fixed point approach.

1. INTRODUCTION

Throughout this paper, we will denote the set of natural numbers by \mathbb{N} , $\mathbb{N}_0 := \mathbb{N} \cup \{0\}$ and the set of real numbers by \mathbb{R} . By \mathbb{N}_m , $m \in \mathbb{N}$, we will denote the set of all natural numbers greater than or equal to m.

Let $\mathbb{R}_+ = [0, \infty)$ be the set of nonnegative real numbers. We write B^A to mean the family of all functions mapping from a nonempty set A into a nonempty set B and we use the notation E_0 for the set $E \setminus \{0\}$.

The method of the proof of the main result corresponds to some observations in [12] and the main tool in it is a fixed point. The problem of the stability of functional equations was first raised by Ulam [30]. This included the following question concerning the stability of group homomorphisms.

Let $(G_1, *_1)$ be a group and let $(G_2, *_2)$ be a metric group with a metric $d(\cdot, \cdot)$. Given $\varepsilon > 0$, does there exist a $\delta > 0$ such that if a mapping $h : G_1 \to G_2$ satisfies the inequality

$$d(h(x *_1 y), h(x) *_2 h(y)) < \delta,$$

Key words and phrases. Stability, hyperstability, $(2, \alpha)$ -Banach space, Cauchy-Jensen functional equation.

²⁰¹⁰ Mathematics Subject Classification. Primary: 39B82. Secondary: 39B52, 47H10. Received: December 02, 2019.

Accepted: May 18, 2020.

for all $x, y \in G_1$, then there exists a homomorphism $H : G_1 \to G_2$, with $d(h(x), H(x)) < \varepsilon$ for all $x \in G_1$?

If the answer is affirmative, we say that the equation of homomorphism

$$h(x *_1 y) = h(x) *_2 H(y)$$

is stable.

Hyers [19] provided the first partial answer to Ulam's question and obtained the result of stability where G_1 and G_2 are Banach spaces.

Aoki [5], Bourgin [7] considered the problem of stability with unbounded Cauchy differences. Later, Rassias [25,26] used a direct method to prove a generalization of Hyers result (cf. Theorem 1.1).

The following theorem is the most classical result concerning the Hyers-Ulam stability of the Cauchy equation

$$T(x+y) = T(x) + T(y).$$

Theorem 1.1. Let E_1 be a normed space, E_2 be a Banach space and $f : E_1 \to E_2$ be a function. If f satisfies the inequality

(1.1)
$$\|f(x+y) - f(x) - f(y)\| \le \theta \left(\|x\|^p + \|y\|^p \right),$$

for some $\theta \ge 0$, for some $p \in \mathbb{R}$, with $p \ne 1$, and for all $x, y \in E_1 - \{0_{E_1}\}$, then there exists a unique additive function $T : E_1 \rightarrow E_2$ such that

(1.2)
$$||f(x) - T(x)|| \le \frac{2\theta}{|2 - 2^p|} ||x||^p$$

for each $x \in E_1 - \{0_{E_1}\}$.

It is due to Aoki [5] (for 0 , see also [24]), Gajda [17] (for <math>p > 1) and Rassias [26] (for p < 0, see also [27, page 326] and [7]). Also, Brzdęk [8] showed that estimation (1.2) is optimal for $p \ge 0$ in the general case. Recently, Brzdęk [10] showed that Theorem 1.1 can be significantly improved. Namely, in the case p < 0, each $f : E_1 \to E_2$ satisfying (1.1) must actually be additive, and the assumption of completeness of E_2 is not necessary.

Regrettably, if we restrict the domain of f, this result will not remain valid (see the further detail in [14]). Nowadays, a lot of papers concerning the stability and the hyperstability of the functional equation in various spaces have been appeared (see in [1,2,4,9,11,22,28,29] and references therein).

Let us recall first (see, for instance, [16]) some definitions.

We need to recall some basic facts concerning 2-normed spaces and some preliminary results.

Definition 1.1. By a linear 2-normed space, we mean a pair $(X, \|\cdot, \cdot\|)$ such that X is at least a two-dimensional real linear space and

$$\|\cdot,\cdot\|:X\times X\to\mathbb{R}_+$$

is a function satisfying the following conditions:

906

- (a) ||x, y|| = 0 if and only if x and y are linearly dependent;
- (b) ||x, y|| = ||y, x|| for $x, y \in X$;
- (c) $||x, y + z|| \le ||x, y|| + ||x, z||$ for $x, y, z \in X$;
- (d) $\|\lambda x, y\| = |\lambda| \|x, y\|, \lambda \in \mathbb{R}$, and $x, y \in X$.

A generalized version of a linear 2-normed spaces is the $(2, \alpha)$ -normed space defined in the following manner.

Definition 1.2. Let α be a fixed real number with $0 < \alpha \leq 1$, and let X be a linear space over K with dim X > 1. A function

$$\|\cdot,\cdot\|_{\alpha}: X \cdot X \to \mathbb{R}$$

is called a $(2, \alpha)$ -norm on X if and only if it satisfies the following conditions:

- (a) $||x, y||_{\alpha} = 0$ if and only if x and y are linearly dependent;
- (b) $||x, y||_{\alpha} = ||y, x||_{\alpha}$ for $x, y \in X$;
- (c) $||x, y + z||_{\alpha} \le ||x, y||_{\alpha} + ||x, z||_{\alpha}$ for $x, y, z \in X$;
- (d) $\|\beta x, y\|_{\alpha} = |\beta|^{\alpha} \|x, y\|_{\alpha}$ for $\beta \in \mathbb{R}$ and $x, y \in X$.

The pair $(X, \|\cdot, \cdot\|_{\alpha})$ is called a $(2, \alpha)$ -normed space.

Example 1.1. For $x = (x_1, x_2)$, $y = (y_1, y_2) \in E = \mathbb{R}^2$, the Euclidean $(2, \alpha)$ -norm $||x, y||_{\alpha}$ is defined by

$$||x, y||_{\alpha} = |x_1y_2 - x_2y_1|^{\alpha}$$

where α is a fixed real number with $0 < \alpha \leq 1$.

Definition 1.3. A sequence $\{x_k\}$ in a $(2, \alpha)$ -normed space X is called a *convergent* sequence if there is an $x \in X$ such that

$$\lim_{k \to \infty} \|x_k - x, y\|_{\alpha} = 0,$$

for all $y \in X$. If $\{x_k\}$ converges to x, write $x_k \to x$, with $k \to \infty$ and call x the limit of $\{x_k\}$. In this case, we also write $\lim_{k\to\infty} x_k = x$.

Definition 1.4. A sequence $\{x_k\}$ in a $(2, \alpha)$ -normed space X is said to be a *Cauchy* sequence with respect to the $(2, \alpha)$ -norm if

$$\lim_{k,l\to\infty} \|x_k - x_l, y\|_{\alpha} = 0,$$

for all $y \in X$. If every Cauchy sequence in X converges to some $x \in X$, then X is said to be *complete* with respect to the $(2, \alpha)$ -norm. Any complete $(2, \alpha)$ -normed space is said to be a $(2, \alpha)$ -Banach space.

Next, it is easily seen that we have the following property.

Lemma 1.1. If X is a linear $(2, \alpha)$ -normed space, $x, y_1, y_2 \in X$, y_1, y_2 are linearly independent, and $||x, y_1||_{\alpha} = ||x, y_2||_{\alpha} = 0$, then x = 0.

Let us yet recall a lemma from [23].

Lemma 1.2. If X is a linear $(2, \alpha)$ -normed space and $\{x_n\}_{n \in \mathbb{N}}$ is a convergent sequence of elements of X, then

$$\lim_{n \to \infty} \|x_n, y\|_{\alpha} = \|\lim_{n \to \infty} x_n, y\|_{\alpha} = 0, \quad y \in X.$$

Let E, Y be normed spaces. A function $f: E \to Y$ is Cauchy-Jensen provided it satisfies the functional equation

(1.3)
$$f\left(\frac{x+y}{2}\right) + f\left(\frac{x-y}{2}\right) = f(x),$$

and we can say that $f: E \to Y$ is Cauchy-Jensen on E_0 if it satisfies (1.3) for all $x, y \in E_0$ such that $\frac{x+y}{2} \neq 0$ and $\frac{x-y}{2} \neq 0$. Recently, interesting results concerning the Cauchy-Jensen functional equation (1.3) have been obtained in [3, 6, 18, 20, 21].

In 2018, Brzdęk and Ciepliński [12] proved a new fixed point theorem in 2-Banach spaces and showed its applications to the Ulam stability of some single-variable equations and the most important functional equation in several variables. And they extended the fixed point result to the n-normed spaces in [13].

The main purpose of this paper is to establish the stability result concerning the functional equation (1.3) in $(2, \alpha)$ -Banach spaces using fixed point theorem which was prove by Brzdęk and Ciepliński [12]. Before approaching our main results, we present the fixed point theorem concerning $(2, \alpha)$ -Banach spaces which is given in [15]. To present it, we use the following three hypotheses.

(H1) E is a nonempty set, $(Y, \|\cdot, \cdot\|_{\alpha})$ is a $(2, \alpha)$ -Banach space, Y_0 is a subset of Y containing two linearly independent vectors, $j \in \mathbb{N}$, $f_i : E \to E$, $g_i : Y_0 \to Y_0$, and $L_i: E \times Y_0 \to \mathbb{R}_+ \text{ for } i = 1, \dots, j.$

(H2) $\mathcal{T}: Y^E \to Y^E$ is an operator satisfying the inequality

$$\left\| \Im \xi(x) - \Im \mu(x), y \right\|_{\alpha} \leq \sum_{i=1}^{j} L_i(x, y) \left\| \xi \left(f_i(x) \right) - \mu \left(f_i(x) \right), g_i(y) \right\|_{\alpha},$$

for all $\xi, \mu \in Y^E, x \in E, y \in Y_0.$ (H3) $\Lambda : \mathbb{R}^{E \times Y_0}_+ \to \mathbb{R}^{E \times Y_0}_+$ is an operator defined by

$$\Lambda\delta(x,y) := \sum_{i=1}^{j} L_i(x,y)\delta\Big(f_i(x),g_i(y)\Big), \quad \delta \in \mathbb{R}_+^{E \times Y_0}, \ x \in E, \ y \in Y_0.$$

Theorem 1.2 ([15]). Let hypotheses (H1)-(H3) hold and functions $\varepsilon : E \times Y_0 \to \mathbb{R}_+$ and $\varphi: E \to Y$ fulfill the following two conditions:

$$\begin{split} \left\| \Im \varphi(x) - \varphi(x), y \right\|_{\alpha} &\leq \varepsilon(x, y), \quad x \in E, \ y \in Y_0, \\ \varepsilon^*(x, y) &:= \sum_{n=0}^{\infty} \left(\Lambda^n \varepsilon \right)(x, y) < \infty, \quad x \in E, \ y \in Y_0. \end{split}$$

Then there exists a unique fixed point ψ of \mathfrak{T} for which

$$\left\|\varphi(x) - \psi(x), y\right\|_{\alpha} \le \varepsilon^*(x, y), \quad x \in E, \ y \in Y_0.$$

Moreover,

$$\psi(x) := \lim_{n \to \infty} (\mathfrak{T}^n \varphi)(x), \quad x \in E.$$

2. Main Results

In this section, we prove some stability results for the Cauchy-Jensen equation (1.3) in $(2, \alpha)$ -Banach spaces by using Theorem 1.2. In what follows $(Y, \|\cdot, \cdot\|_{\alpha})$ is a real $(2, \alpha)$ -Banach space.

Theorem 2.1. Let E be a normed space, $(Y, \|\cdot, \cdot\|_{\alpha})$ be a real $(2, \alpha)$ -Banach space, α be a fixed real number, with $0 < \alpha \leq 1$, Y_0 be a subset of Y containing two linearly independent vectors and $h_1, h_2 : E_0 \times Y_0 \to \mathbb{R}_+$ be two functions such that

$$\mathcal{U} := \{ n \in \mathbb{N} \colon b_n := \lambda_1(2+n)\lambda_2(2+n) + \lambda_1(1+n)\lambda_2(1+n) < 1 \} \neq \emptyset,$$

where

$$\lambda_i(n) := \inf \left\{ t \in \mathbb{R}_+ : h_i(nx, z) \le t \ h_i(x, z), \ x \in E_0, z \in Y_0 \right\},\$$

for all $n \in \mathbb{N}$, where i = 1, 2. Assume that $f : E \to Y$ satisfies the inequality

(2.1)
$$\left\|f\left(\frac{x+y}{2}\right) + f\left(\frac{x-y}{2}\right) - f(x), z\right\|_{\alpha} \le h_1(x,z)h_2(y,z),$$

for all $x, y \in E_0$, $z \in Y_0$ such that $\frac{x+y}{2} \neq 0$ and $\frac{x-y}{2} \neq 0$, then there exists a unique Cauchy-Jensen function $F: E \to Y$ such that

(2.2)
$$||f(x) - F(x), z||_{\alpha} \le \lambda_0 h_1(x, z) h_2(x, z),$$

for all $x \in E_0$, $z \in Y_0$, where

$$\lambda_0 := \inf_{n \in \mathcal{U}} \left\{ \frac{\lambda_1(2+n)\lambda_2(n)}{1-b_n} \right\}.$$

Proof. Replacing x by (2+m)x and y by mx, where $x \in E_0$ and $m \in \mathbb{N}$, in inequality (2.1), we get

(2.3)
$$\left\| f((2+m)x) - f((1+m)x) - f(x), z \right\|_{\alpha} \le h_1((2+m)x, z)h_2(mx, z),$$

for all $x \in E_0, z \in Y_0$. For each $m \in \mathbb{N}$, we define the operator $\mathfrak{T}_m : Y^{E_0} \to Y^{E_0}$ by

$$\mathfrak{T}_m\xi(x) := \xi((2+m)x) - \xi((1+m)x), \quad \xi \in Y^{E_0}, \ x \in E_0.$$

Further put

(2.4)
$$\varepsilon_m(x,z) := h_1((2+m)x,z)h_2(mx,z), \quad x \in E_0, \ z \in Y_0,$$

and observe that

(2.5)
$$\varepsilon_m(x,z) = h_1((2+m)x,z)h_2(mx,z) \le \lambda_1(2+m)\lambda_2(m)h_1(x,z)h_2(x,z),$$

for all $x \in E_0, z \in Y_0, m \in \mathbb{N}$. Then the inequality (2.3) takes the form

 $\left\| \mathfrak{T}_m f(x) - f(x), z \right\|_{\alpha} \le \varepsilon_m(x, z), \quad x \in E_0, \ z \in Y_0.$

Furthermore, for every $x \in E_0$, $z \in Y^{E_0}$, $\xi, \mu \in Y^{E_0}$, we obtain

$$\begin{aligned} \left\| \mathfrak{T}_{m}\xi(x) - \mathfrak{T}_{m}\mu(x), z \right\|_{\alpha} &= \left\| \xi \left((2+m)x \right) - \xi ((1+m)x) - \xi ((1+m)x) \right\|_{\alpha} \\ &- \mu \left((2+m)x \right) + \mu ((1+m)x), z \right\|_{\alpha} \\ &\leq \left\| (\xi - \mu) \left((2+m)x \right), z \right\|_{\alpha} + \left\| (\xi - \mu) ((1+m)x), z \right\|_{\alpha} \end{aligned}$$

This brings us to define the operator $\Lambda_m : \mathbb{R}^{E_0 \times Y_0}_+ \to \mathbb{R}^{E_0 \times Y_0}_+$ by

$$\Lambda_m \delta(x, z) := \delta\Big((2+m)x, z\Big) + \delta((1+m)x, z), \quad \delta \in \mathbb{R}^{E_0 \times Y_0}_+, \ x \in E_0, \ z \in Y_0.$$

For each $m \in \mathbb{N}$ the above operator has the form described in (H2) with $f_1(x) = (2+m)x$, $f_2(x) = (1+m)x$, $g_1(z) = g_2(z) = z$ and $L_1(x) = L_2(x) = 1$ for all $x \in E_0$. By mathematical induction on $n \in \mathbb{N}_0$, we prove that

(2.6)
$$(\Lambda_m^n \varepsilon_m)(x, z) \le \lambda_1 (2+m) \lambda_2(m) b_m^n h_1(x, z) h_2(x, z),$$

for all $x \in E_0$ and $z \in Y_0$, where

$$b_m = \lambda_1 (2+m)\lambda_2 (2+m) + \lambda_1 (1+m)\lambda_2 (1+m).$$

From (2.4) and (2.5), we obtain that the inequality (2.6) holds for n = 0. Next, we will assume that (2.6) holds for n = k, where $k \in \mathbb{N}$. Then we have

$$\begin{split} (\Lambda_m^{k+1}\varepsilon_m)(x,z) &= \Lambda_m \left((\Lambda_m^k \varepsilon_m)(x,z) \right) \\ &= (\Lambda_m^k \varepsilon_m) \left((2+m)x,z \right) + (\Lambda_m^k \varepsilon_m)((1+m)x,z) \\ &\leq \lambda_1 (2+m)\lambda_2(m) b_m^k h_1((2+m)x,z) h_2((2+m)x,z) \\ &+ \lambda_1 (2+m)\lambda_2(m) b_m^k h_1((1+m)x,z) h_2((1+m)x,z) \\ &= \lambda_1 (2+m)\lambda_2(m) b_m^{k+1} h_1(x,z) h_2(x,z) \end{split}$$

for all $x \in E_0$, $z \in Y_0$, $m \in \mathcal{U}$. This shows that (2.6) holds for n = k + 1. Now we can conclude that the inequality (2.6) holds for all $n \in \mathbb{N}_0$. Hence, we obtain

$$\varepsilon_m^*(x,z) = \sum_{n=0}^{\infty} (\Lambda_m^n \varepsilon_m)(x,z)$$

$$\leq \sum_{n=0}^{\infty} \lambda_1 (2+m) \lambda_2(m) b_m^n h_1(x,z) h_2(x,z)$$

$$= \frac{\lambda_1 (2+m) \lambda_2(m)}{1-b_m} h_1(x,z) h_2(x,z) < \infty,$$

for all $x \in E_0$, $z \in Y_0$, $m \in \mathcal{U}$. Therefore, according to Theorem 1.2 with $\varphi = f$, we get that the limit

$$F_m(x) := \lim_{n \to \infty} \left(\mathfrak{T}_m^n f \right)(x)$$

exists for each $x \in E_0$ and $m \in \mathcal{U}$, and (2.7)

$$\|f(x) - F_m(x), z\|_{\alpha} \le \frac{\lambda_1(2+m)\lambda_2(m)h_1(x,z)h_2(x,z)}{1-b_m}, \quad x \in E_0, \ z \in Y_0, \ m \in \mathcal{U}.$$

To prove that F_m satisfies the functional equation (1.3), just prove the following inequality

(2.8)
$$\left\| (\mathfrak{T}_m^n f) \left(\frac{x+y}{2} \right) + (\mathfrak{T}_m^n f) \left(\frac{x-y}{2} \right) - (\mathfrak{T}_m^n f)(x), z \right\|_{\alpha} \le b_m^n h_1(x, z) h_2(y, z),$$

for every $x, y \in E_0$, $z \in Y_0$, $\frac{x+y}{2} \neq 0$ and $\frac{x-y}{2} \neq 0$, $n \in \mathbb{N}_0$, and $m \in \mathcal{U}$. Since the case n = 0 is just (2.1), take $k \in \mathbb{N}$ and assume that (2.8) holds for n = k. Then, for each $x, y \in E_0$, $z \in Y_0$ and $m \in \mathcal{U}$, we have

$$\begin{split} & \left\| \left(\Im_{m}^{k+1} f \right) \left(\frac{x+y}{2} \right) + \left(\Im_{m}^{k+1} f \right) \left(\frac{x-y}{2} \right) - \left(\Im_{m}^{k+1} f \right) (x), z \right\|_{\alpha} \\ &= \left\| \Im_{m}^{k} f \left((2+m) \left(\frac{x+y}{2} \right) \right) - \Im_{m}^{k} f \left((1+m) \left(\frac{x+y}{2} \right) \right) \\ &+ \Im_{m}^{k} f \left((2+m) \left(\frac{x-y}{2} \right) \right) - \Im_{m}^{k} f \left((1+m) \left(\frac{x-y}{2} \right) \right) \\ &- \Im_{m}^{k} f \left((2+m) x \right) + \Im_{m}^{k} f \left((1+m) x \right), z \right\|_{\alpha} \\ &\leq \left\| \Im_{m}^{k} f \left((2+m) \left(\frac{x+y}{2} \right) \right) + \Im_{m}^{k} f \left((2+m) \left(\frac{x-y}{2} \right) \right) \\ &- \Im_{m}^{k} f \left((2+m) x \right), z \right\|_{\alpha} + \left\| \Im_{m}^{k} f \left((1+m) \left(\frac{x+y}{2} \right) \right) \\ &+ \Im_{m}^{k} f \left((1+m) \left(\frac{x-y}{2} \right) \right) - \Im_{m}^{k} f ((1+m) x), z \right\|_{\alpha} \\ &\leq b_{m}^{k} h_{1} \left((2+m) x, z \right) h_{2} \left((2+m) y, z \right) + b_{m}^{k} h_{1} \left((1+m) x, z \right) h_{2} \left((1+m) y, z \right) \\ &= b_{m}^{k+1} h_{1} (x, z) h_{2} (y, z). \end{split}$$

Thus, by using the mathematical induction on $n \in \mathbb{N}_0$, we have shown that (2.8) holds for all $x, y \in E_0, z \in Y_0, n \in \mathbb{N}_0$, and $m \in \mathcal{U}$. Letting $n \to \infty$ in (2.8), we obtain the equality

$$F_m\left(\frac{x+y}{2}\right) + F_m\left(\frac{x-y}{2}\right) = F_m(x),$$

for all $x, y \in E_0$, such that $\frac{x+y}{2} \neq 0$ and $\frac{x-y}{2} \neq 0$, $m \in \mathcal{U}$. This implies that $F_m : E \to Y$, defined in this way, is a solution of the equation

(2.9)
$$F(x) = F((2+m)x) - F((1+m)x), \quad x \in E_0, m \in \mathcal{U}.$$

Next, we will prove that each Cauchy-Jensen function $F:E\to Y$ satisfying the inequality

(2.10)
$$\left\|f(x) - F(x), z\right\|_{\alpha} \le L h_1(x, z) h_2(x, z), \quad x \in E_0, \ z \in Y_0$$

with some L > 0, is equal to F_m for each $m \in \mathcal{U}$. To this end, we fix $m_0 \in \mathcal{U}$ and $F: E \to Y$ satisfying (2.10). From (2.7), for each $x \in E$, we get

(2.11)
$$\begin{aligned} \left\|F(x) - F_{m_0}(x), z\right\|_{\alpha} &\leq \left\|F(x) - f(x), z\right\|_{\alpha} + \left\|f(x) - F_{m_0}(x), z\right\|_{\alpha} \\ &\leq L h_1(x, z)h_2(x, z) + \varepsilon_{m_0}^*(x, z) \\ &\leq L_0 h_1(x, z)h_2(x, z) \sum_{n=0}^{\infty} b_{m_0}^n, \end{aligned}$$

where $L_0 := (1 - b_{m_0})L + \lambda_1(m_0)\lambda_2(m_0) > 0$ and we exclude the case that $h_1(x, z) \equiv 0$ or $h_2(x, z) \equiv 0$, which is trivial. Observe that F and F_{m_0} are solutions to equation (2.9) for all $m \in \mathcal{U}$. Next, we show that, for each $j \in \mathbb{N}_0$, we have

(2.12)
$$\left\|F(x) - F_{m_0}(x), z\right\|_{\alpha} \le L_0 h_1(x, z) h_2(x, z) \sum_{n=j}^{\infty} b_{m_0}^n, \quad x \in E_0, \ z \in Y_0.$$

The case j = 0 is exactly (2.11). We fix $k \in \mathbb{N}$ and assume that (2.12) holds for j = k. Then, in view of (2.11), for each $x \in E_0$, $z \in Y_0$, we get

$$\begin{split} \left\|F(x) - F_{m_0}(x), z\right\|_{\alpha} &= \left\|F\left((2+m_0)x\right) - F((1+m_0)x) \\ &- F_{m_0}\left((2+m_0)x\right) + F_{m_0}((1+m_0)x), z\right\|_{\alpha} \\ &\leq \left\|F\left((2+m_0)x\right) - F_{m_0}\left((2+m_0)x\right), z\right\|_{\alpha} \\ &+ \left\|F((1+m_0)x) - F_{m_0}((1+m_0)x), z\right\|_{\alpha} \\ &\leq L_0 h_1\left((2+m_0)x, z\right)h_2\left((2+m_0)x, z\right) \sum_{n=k}^{\infty} b_{m_0}^n \\ &+ L_0 h_1\left((1+m_0)x, z\right)h_2\left((1+m_0)x, z\right) \sum_{n=k}^{\infty} b_{m_0}^n \\ &= L_0 \left(h_1\left((2+m_0)x, z\right)h_2\left((1+m_0)x, z\right)\right) \sum_{n=k}^{\infty} b_{m_0}^n \\ &\leq L_0 b_{m_0}h_1(x, z)h_2(x, z) \sum_{n=k+1}^{\infty} b_{m_0}^n \\ &= L_0 h_1(x, z)h_2(x, z) \sum_{n=k+1}^{\infty} b_{m_0}^n. \end{split}$$

This shows that (2.12) holds for j = k+1. Now we can conclude that the inequality (2.12) holds for all $j \in \mathbb{N}_0$. Now, letting $j \to \infty$ in (2.12), we get

$$(2.13) F = F_{m_0}.$$

Thus, we have also proved that $F_m = F_{m_0}$ for each $m \in \mathcal{U}$, which (in view of (2.7)) yields

$$\left\|f(x) - F_{m_0}(x), z\right\|_{\alpha} \le \frac{\lambda_1(2+m)\lambda_2(m)h_1(x,z)h_2(x,z)}{1-b_m}$$

for all $x \in E_0, z \in Y_0, m \in \mathcal{U}$. This implies (2.2) with $F = F_{m_0}$ and (2.13) confirms the uniqueness of F.

Theorem 2.2. Let *E* be a normed space, $(Y, \|\cdot, \cdot\|_{\alpha})$ be a real $(2, \alpha)$ -Banach space, α be a fixed real number with $0 < \alpha \leq 1$, Y_0 be a subset of *Y* containing two linearly independent vectors and $h: E_0 \times Y_0 \to \mathbb{R}_+$ be a functions such that

$$\mathcal{U} := \{ n \in \mathbb{N} \colon \beta_n := \lambda(2+n) + \lambda(1+n) < 1 \} \neq \emptyset,$$

where

$$\lambda(n) := \inf \{ t \in \mathbb{R}_+ : h(nx, z) \le t \ h(x, z), \ x \in E_0, \ z \in Y_0 \} \}$$

for all $n \in \mathbb{N}$. Assume that $f : E \to Y$ satisfies the inequality

(2.14)
$$\left\|f\left(\frac{x+y}{2}\right) + f\left(\frac{x-y}{2}\right) - f(x), z\right\|_{\alpha} \le h(x,z) + h(y,z),$$

for all $x, y \in E_0$, $z \in Y_0$ such that $\frac{x+y}{2} \neq 0$ and $\frac{x-y}{2} \neq 0$. Then there exists a unique Cauchy-Jensen function $F: E \to Y$ such that

$$\left\|f(x) - F(x), z\right\|_{\alpha} \le \lambda_0 h(x, z),$$

for all $x \in E_0, z \in Y_0$, where

$$\lambda_0 := \inf_{n \in \mathcal{U}} \left\{ \frac{\lambda(2+n) + \lambda(n)}{1 - \lambda(2+n) - \lambda(1+n)} \right\}.$$

Proof. Replacing x with (2 + m)x and y with mx, where $x \in E_0$ and $m \in \mathbb{N}$, in inequality (2.14), we get

(2.15)
$$\left\| f\left((2+m)x\right) - f\left((1+m)x\right) - f(x), z \right\|_{\alpha} \le h((2+m)x, z) + h(mx, z),$$

for all $x \in E_0, z \in Y_0$. For each $m \in \mathbb{N}$, we define the operator $\mathfrak{T}_m : Y^{E_0} \to Y^{E_0}$ by

$$\mathfrak{I}_m\xi(x) := \xi((2+m)x) - \xi((1+m)x), \quad \xi \in Y^{E_0}, \ x \in E_0.$$

Further put

(2.16)
$$\varepsilon_m(x,z) := h((2+m)x,z) + h(mx,z), \quad x \in E_0, \ z \in Y_0,$$

and observe that

(2.17)
$$\varepsilon_m(x,z) = \left(h((2+m)x,z) + h(mx,z)\right) \le (\lambda(2+m) + \lambda(m))h(x,z), \quad m \in \mathbb{N}.$$

Then the inequality (2.15) takes the form

$$\left\|\mathfrak{T}_m f(x) - f(x), z\right\|_{\alpha} \le \varepsilon_m(x, z), \quad x \in E_0, \ z \in Y_0.$$

Furthermore, for every $x \in E_0, z \in Y_0, \xi, \mu \in Y^{E_0}$, we obtain

$$\begin{split} \left\| \mathfrak{T}_{m}\xi(x) - \mathfrak{T}_{m}\mu(x), z \right\|_{\alpha} &= \left\| \xi \left((2+m)x \right) - \xi \left((1+m)x \right) \right. \\ &- \mu \left((2+m)x \right) + \mu \left((1+m)x \right), z \right\|_{\alpha} \\ &\leq \left\| (\xi-\mu) \left((2+m)x \right), z \right\|_{\alpha} + \left\| (\xi-\mu) \left((1+m)x \right), z \right\|_{\alpha} \end{split}$$

This brings us to define the operator $\Lambda_m : \mathbb{R}^{E_0 \times Y_0}_+ \to \mathbb{R}^{E_0 \times Y_0}_+$ by

$$\Lambda_m \delta(x, z) := \delta\Big((2+m)x, z\Big) + \delta\Big((1+m)x, z\Big), \quad \delta \in \mathbb{R}^{E_0 \times Y_0}_+, \ x \in E_0, \ z \in Y_0.$$

For each $m \in \mathbb{N}$ the above operator has the form described in (H2) with $f_1(x) = (2+m)x$, $f_2(x) = (1+m)x$, $g_1(z) = g_2(z) = z$ and $L_1(x) = L_2(x) = 1$ for all $x \in X$. By mathematical induction on $n \in \mathbb{N}_0$, we prove that

(2.18)
$$(\Lambda_m^n \varepsilon_m)(x, z) \le (\lambda(2+m) + \lambda(m))\beta_m^n h(x, z),$$

for all $x \in E_0$ and $z \in Y_0$, where

$$\beta_m := \lambda(2+m) + \lambda(1+m)$$

From (2.16) and (2.17), we obtain that the inequality (2.18) holds for n = 0. Next, we will assume that (2.18) holds for n = k, where $k \in \mathbb{N}$. Then we have

$$\begin{split} (\Lambda_m^{k+1}\varepsilon_m)(x,z) &= \Lambda_m \left((\Lambda_m^k \varepsilon_m)(x,z) \right) \\ &= (\Lambda_m^k \varepsilon_m) \left((2+m)x,z \right) + (\Lambda_m^k \varepsilon_m) \left((1+m)x,z \right) \\ &\leq \left((\lambda(2+m) + \lambda(m)) \beta_m^k h((2+m)x,z) \right) \\ &+ (\lambda(2+m) + \lambda(m)) \beta_m^k h((1+m)x,z) \right) \\ &= (\lambda(2+m) + \lambda(m)) \beta_m^{k+1} h(x,z), \end{split}$$

for all $x \in E_0$, $z \in Y_0$, $m \in \mathcal{U}$. This shows that (2.18) holds for n = k + 1. Now we can conclude that the inequality (2.18) holds for all $n \in \mathbb{N}_0$. Hence, we obtain

$$\begin{split} \varepsilon_m^*(x,z) &= \sum_{n=0}^\infty (\Lambda_m^n \varepsilon_m)(x,z) \\ &\leq \sum_{n=0}^\infty (\lambda(2+m) + \lambda(m))\beta_m^n h(x,z) \\ &= \frac{(\lambda(2+m) + \lambda(m))h(x,z)}{(1-\beta_m)} < \infty, \end{split}$$

for all $x \in E_0$, $z \in Y_0$, $m \in \mathcal{U}$. Therefore, according to Theorem 1.2 with $\varphi = f$, we get that the limit

$$F_m(x) := \lim_{n \to \infty} \left(\mathfrak{T}_m^n f \right)(x)$$

exists for each $x \in E_0$ and $m \in \mathcal{U}$, and

$$\|f(x) - F_m(x), z\|_{\alpha} \le \frac{(\lambda(2+m) + \lambda(m))h(x, z)}{(1-\beta_m)}, \quad x \in E_0, \ z \in Y_0, \ m \in \mathcal{U}.$$

By a similar method in the proof of Theorem 2.1, we show that

$$\left\| (\mathfrak{T}_m^n f)(x+y) + (\mathfrak{T}_m^n f)(x-y) - (\mathfrak{T}_m^n f)(x), z \right\|_{\alpha} \le \beta_m^n (h(x,z) + h(y,z)),$$

for every $x, y \in E_0, z \in Y_0, n \in \mathbb{N}_0$ and $m \in \mathcal{U}$. Also, the remaining reasonings are analogous as in the proof of that theorem.

3. Applications

According to above theorems, we can obtain the following corollaries for the hyperstability results of the Cauchy-Jensen equation (1.3) in $(2, \alpha)$ -Banach spaces.

Corollary 3.1. Let *E* be a normed space, $(Y, \|\cdot, \cdot\|_{\alpha})$ be a real $(2, \alpha)$ -Banach space, α be a fixed real number with $0 < \alpha \leq 1$, Y_0 be a subset of *Y* containing two linearly independent vectors and h_1, h_2 , and \mathcal{U} be as in Theorem 2.1. Assume that

(3.1)
$$\begin{cases} \lim_{n \to \infty} \lambda_1(2+n)\lambda_2(n) = 0, \\ \lim_{n \to \infty} \lambda_1(2+n)\lambda_2(2+n) = \lim_{n \to \infty} \lambda_1(1+n)\lambda_2(1+n) = 0. \end{cases}$$

Then every function $f: E \to Y$ satisfying (2.1) is a solution of (1.3) on E_0 .

Proof. Suppose that $f: E \to Y$ satisfies (2.1). Then, by Theorem 2.1, there exists a function $F: E \to Y$ satisfying (1.3) and

$$||f(x) - F(x), z||_{\alpha} \le \lambda_0 h_1(x, z) h_2(x, z),$$

for all $x \in E_0, z \in Y_0$, where

$$\lambda_0 := \inf_{n \in \mathcal{U}} \left\{ \frac{\lambda_1(2+n)\lambda_2(n)}{1-b_n} \right\}.$$

By (3.1), $\lambda_0 = 0$. This means that f(x) = F(x) for all $x \in E_0$, whence

$$f\left(\frac{x+y}{2}\right) + f\left(\frac{x-y}{2}\right) = f(x),$$

for all $x, y \in E_0$ such that $\frac{x+y}{2} \neq 0$ and $\frac{x-y}{2} \neq 0$, which implies that f satisfies the functional equation (1.3) on E_0 .

Corollary 3.2. Let E be a normed space, $(Y, \|\cdot, \cdot\|_{\alpha})$ be a real $(2, \alpha)$ -Banach space, α be a fixed real number with $0 < \alpha \leq 1$, Y_0 be a subset of Y containing two linearly independent vectors and h_1 and \mathcal{U} be as in Theorem 2.2. Assume that

(3.2)
$$\begin{cases} \lim_{n \to \infty} (\lambda_1(2+n) + \lambda_2(n)) = 0, \\ \lim_{n \to \infty} (\lambda_1(2+n) + \lambda_2(1+n)) = 0 \end{cases}$$

Then every function $f: E \to Y$ satisfying (2.14) is a solution of (1.3) on E_0 .

Proof. Suppose that $f: E \to Y$ satisfies (2.14). Then, by Theorem 2.2, there exists a function $F: E \to Y$ satisfying (1.3) and

$$||f(x) - F(x), z||_{\alpha} \le \lambda_0 h(x, z)$$

for all $x \in E_0, z \in Y_0$, where

$$\lambda_0 := \inf_{n \in \mathcal{U}} \left\{ \frac{\lambda_1(2+n) + \lambda_2(n)}{1 - \beta_n} \right\}$$

By (3.2), $\lambda_0 = 0$. This means that f(x) = F(x) for all $x \in E_0$, whence

$$f\left(\frac{x+y}{2}\right) + f\left(\frac{x-y}{2}\right) = f(x),$$

for all $x, y \in E_0$ such that $\frac{x+y}{2} \neq 0$ and $\frac{x-y}{2} \neq 0$, which implies that f satisfies the functional equation (1.3) on E_0 .

References

- L. Aiemsomboon and W. Sintunavarat, On new stability results for generalized Cauchy functional equations on groups by using Brzdęk's fixed point theorem, J. Fixed Point Theory Appl. 18 (2016), 45–59.
- [2] L. Aiemsomboon and W. Sintunavarat, On generalized hyperstability of a general linear equation, Acta Math. Hungar. 149 (2016), 413–422.
- [3] M Almahalebi, Non-Archimedean hyperstability of a Cauchy-Jensen type functional equation, J. Class. Anal. 11(2) (2017), 159–170.
- [4] M. Almahalebi and A. Chahbi, Approximate solution of p-radical functional equation in 2-Banach spaces, Acta Math. Sci. 39(2) (2019), 551–566.
- [5] T. Aoki, On the stability of the linear transformation in Banach spaces, J. Math. Soc. Japan 2 (1950), 64–66.
- [6] C. Baak, Cauchy-Rassias stability of Cauchy-Jensen additive mappings in Banach spaces, Acta Math. Sin. (Engl. Ser.) 22(6) (2006), 1789–1796.
- [7] D. G. Bourgin, Classes of transformations and bordering transformations, Bull. Amer. Math. Soc. 57 (1951), 223–237.
- [8] J. Brzdęk, A note on stability of additive mappings, in: T. M. Rassias and J. Tabor, (Eds.) Stability of Mappings of Hyers-Ulam Type, Hadronic Press, Palm Harbor, 1994, 19–22.
- [9] J. Brzdęk, Stability of additivity and fixed point methods, Fixed Point Theory Appl. 2013(9) (2013), Article ID 285.
- [10] J. Brzdęk, Hyperstability of the Cauchy equation on restricted domains, Acta Math. Hungar. 141(1-2) (2013), 58–67.
- [11] J. Brzdęk and K. Ciepliński, A fixed point approach to the stability of functional equations in non-Archimedean metric spaces, Nonlinear Anal. 74 (2011), 6861–6867.
- [12] J. Brzdęk and K. Ciepliński, On a fixed point theorem in 2-Banach spaces and some of its applications, Acta Math. Sci. 38(2) (2018), 377–390.
- [13] J. Brzdęk and K. Ciepliński, A fixed point theorm in n-Banach spaces and Ulam stability, J. Math. Anal. Appl. 470 (2019), 632–646.
- [14] J. Brzdęk, W. Fechner, M. S. Moslehian and J. Sikorska, Recent developments of the conditional stability of the homomorphism equation, Banach J. Math. Anal. 9 (2015), 278–327.
- [15] E. El-hady, On stability of the functional equation of p-Wright affine functions in $(2, \alpha)$ -Banach spaces, J. Egyptian Math. Soc.27 (2019), Article ID 21.

- [16] R. W. Freese and Y. J. Cho, Geometry of Linear 2-Normed Spaces, Nova Science Publishers Inc., Hauppauge, NY, 2001.
- [17] Z. Gajda, On stability of additive mappings, Int. J. Math. Math. Sci. 14 (1991), 431–434.
- [18] M. E. Gordji, H. Khodaei and M. Kamar, Stability of Cauchy-Jensen type functional equation in generalized fuzzy normed spaces, Comput. Math. Appl. 62 (2011), 2950–2960.
- [19] D. H. Hyers, On the stability of the linear functional equation, Proc. Natl. Acad. Sci. USA 27 (1941), 222–224.
- [20] K.-W. Jun, H.-M. Kim and J. M. Rassias, Extended Hyers-Ulam stability for Cauchy-Jensen mappings, J. Diference Equ. Appl. 13 (2007), 1139–1153.
- [21] C. Park, Fixed points and Hyers-Ulam-Rassias stability of Cauchy-Jensen functional equations in Banach algebras, Fixed Point Theory Appl. (2007), Article ID 50175, 15 pages.
- [22] C. Park and J. M. Rassias, Stability of the Jensen-type functional equation in C*-algebras: a fixed point approach, Abs. Appl. Anal. (2009), Article ID 360432, 17 pages.
- [23] W. G. Park, Approximate additive mappings in 2-Banach spaces and related topics, J. Math. Anal. Appl. 376 (2011), 193–202.
- [24] Th. M. Rassias, On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc. 72 (1978), 297–300.
- [25] Th. M. Rassias, Problem 16, 2. Report of the 27th international symposium on functional equations, Aequationes Math. 39 (1990), 292–293.
- [26] Th. M. Rassias, On a modified Hyers-Ulam sequence, J. Math. Anal. Appl. 158 (1991), 106–113.
- [27] Th. M. Rassias and P. Semrl, On the behavior of mappings which do not satisfy Hyers-Ulam stability, Proc. Amer. Math. Soc. 114 (1992), 989–993.
- [28] K. Y. N. Sayar and A. Bergam, Some hyperstability results for a Cauchy-Jensen type functional equation in 2-Banach spaces, Proyectiones 39(1)(2020), 73–89.
- [29] K. Y. N. Sayar and A. Bergam, Approximate solutions of a quadratic functional equation in 2-Banach spaces using fixed point theorem, J. Fixed Point Theory Appl. 22 (2020), Article ID 3.
- [30] S. M. Ulam, Problems in Modern Mathematics, Science Editions, John-Wiley & Sons Inc., New York, 1964.

¹MAE2D LABORATORY, POLYDISCIPLINARY FACULTY OF LARACHE, Abdelmalek Essaadi University, Morocco

²DEPARTMENT OF MATHEMATICS,

UNIVERSITY OF SANA'A,

SANA'A, YEMEN

Email address: khaledsayar@gmail.com, ysayarkhalid@uae.ac.ma *Email address*: bergamamal11@gmail.com