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A NOTE ON COMPARISON OF ANNULI CONTAINING ALL THE
ZEROS OF A POLYNOMIAL

SUNIL HANS1, AMIT TOMAR1, AND JIANHENG CHEN2

Abstract. If P (z) is a polynomial of degree n, then for a subclass of polynomials,
Dalal and Govil [7] compared the bounds, containing all the zeros, for two different
results with two different real sequences λk > 0,

∑n
k=1 λk = 1. In this paper, we

prove a more general result, by which one can compare the bounds of two different
results with the same sequence of real or complex λk,

∑n
k=0 |λk| ≤ 1. A variety

of other results have been extended in this direction, which in particular include
several known extensions and generalizations of a classical result of Cauchy [4], from
this result by a fairly uniform manner.

1. Introduction

Properties of polynomials and especially the location of zeros is an old subject
and it has been studied since the time of Gauss and Cauchy, as it finds important
application in many areas of applied mathematics. Quite a few results giving the
bound for some and all the zeros of a polynomial in terms of its coefficients can be
found in [13–15].

Gauss was the earliest contributor to the study of location of zeros of a polynomial,
who proved that a nth degree polynomial

P (z) := anz
n + an−1z

n−1 + · · ·+ a1z + a0,

with all real ak, has no zeros outside the circle |z| = R, where

R = max
1≤k≤n

(n
√

2|ak|)1/k.

Cauchy [4] improved the above result of Gauss by proving the following result.
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Theorem 1.1. Let P (z) = ∑n
k=0 akz

k be a complex polynomial of degree n. Then all
the zeros of P (z) lie in the disc

{z : |z| ≤ r} ⊂ {z : |z| < 1 +M} ,

where

M := max
0≤k≤n−1

|ak|
|an|

and r is the unique positive real root of the real coefficients equation

|an|zn − |an−1|zn−1 − |an−2|zn−2 − · · · − |a1|z − |a0| = 0,

when P (z) is not a monomial, and as zero otherwise.

On applying the above theorem to the polynomial Q(z) = znP (1/z) and combining
it with the above theorem, one can easily get the following theorem.

Theorem 1.2 (Cauchy). All the zeros of a nth degree polynomial P (z) = ∑n
k=0 akz

k

lie in the annulus r1 ≤ |z| ≤ r2, where r1 is the unique positive real root of the equation

(1.1) |an|zn + |an−1|zn−1 + · · ·+ |a1|z − |a0| = 0,

and r2 is the unique positive real root of the equation

(1.2) |an|zn − |an−1|zn−1 − · · · − |a1|z − |a0| = 0,

when P (z) is not a monomial, and as zero otherwise.

The above result of Cauchy has been sharpened among others by Joyal et al. [11],
Datt and Govil [8], Affane-Aji et al. [1], and Sun and Hsieh [16].

Diaz-Barrero [9] proved the following result, which provides an annulus contain-
ing all the zeros of a polynomial by involving the Fibonacci numbers and binomial
coefficients.

Theorem 1.3. Let P (z) = ∑n
k=0 akz

k, ak 6= 0, 1 ≤ k ≤ n, be a non-constant
polynomial with complex coefficients. Then all its zeros lie in the annulus C =
{z : r1 ≤ |z| ≤ r2}, where

r1 = 3
2 min

1≤k≤n

(
2nFkC(n, k)

F4n

∣∣∣∣a0

ak

∣∣∣∣
)1/k

and

r2 = 2
3 max

1≤k≤n

(
F4n

2nFkC(n, k)

∣∣∣∣an−kan

∣∣∣∣
)1/k

.

Here C(n, k) is the binomial coefficient and Fk is the kth Fibonacci number.

Kim [12] used the identity ∑n
k=0 C(n, k) = 2n to prove the following result.
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Theorem 1.4. Let P (z) = ∑n
k=0 akz

k, ak 6= 0, 1 ≤ k ≤ n, be a non-constant
polynomial with complex coefficients. Then all the zeros of P (z) lie in the annulus
C = {z : r1 ≤ |z| ≤ r2}, where

r1 = min
1≤k≤n

(
C(n, k)
2n − 1

∣∣∣∣a0

ak

∣∣∣∣
)1/k

and

r2 = max
1≤k≤n

(
2n − 1
C(n, k)

∣∣∣∣an−kan

∣∣∣∣
)1/k

.

Here C(n, k) is the binomial coefficient.

There are many results, including the above Theorems 1.3 and 1.4, available in this
direction (for example, see [3, 5, 10]).

Aziz and Qayoom [2] (see also [5]) proved the following theorem which generalizes
all the above results.

Theorem 1.5. Let λ1, λ2, . . . , λn be any set of n real or complex numbers such that∑n
k=1 |λk| ≤ 1, and let P (z) = ∑n

k=0 akz
k, ak 6= 0, 1 ≤ k ≤ n, be a non-constant

polynomial with complex coefficients. Then all the zeros of P (z) lie in the annulus
C = {z : r1 ≤ |z| ≤ r2} , where

r1 = min
1≤k≤n

∣∣∣∣λk a0

ak

∣∣∣∣1/k
and

r2 = max
1≤k≤n

∣∣∣∣ 1
λk

an−k
an

∣∣∣∣1/k .
Theorem 1.5 can generate infinitely many results, including Theorem 1.2 to 1.4,

giving an annulus containing all the zeros of a polynomial, and over the years, mathe-
maticians were comparing the bounds with the existing bounds in the literature by
giving some examples. Dalal and Govil [6] have shown that these bounds cannot,
in general, be compared, implying that every result obtained can be useful. More
recently, Dalal and Govil [7] successfully compared the bounds of two different results
with two different real sequences λk > 0, ∑n

k=0 λk = 1 for a subclass of polynomials.
The main aim of this paper is to prove the following more general results (Theo-

rem 2.1, 2.2) of Section 2 using well known Hölder Inequality

(1.3)
n∑
k=1

αkβk ≤
(

n∑
k=1

αqk

)1/q ( n∑
k=1

βpk

)1/p

,

where αk > 0, βk > 0 for all 1 ≤ k ≤ n, and p > 1, q > 1, with 1/p+1/q = 1, by which
one can easily compare the bounds of two different results with the same sequence of
real or complex λk,

∑n
k=0 |λk| ≤ 1. Our results not only extend Theorem 1.5 but also
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improve it. Besides that theorems like Theorem 1.3, 1.4 and other similar to them
also extended and shown as corollaries of Theorem 2.1 in the Table 1.

As above mentioned, the annuli obtained by Theorem 2.1 of Section 2 and Theo-
rem 1.5 cannot, in general, be compared, however under some condition by MATLAB,
we construct example of polynomial, for which the bounds obtained by our Theorem
2.1 and 2.2 are considerably sharper than the bounds obtained by Theorem 1.5. This
has been done in Section 4.

2. Main Results

Theorem 2.1. Let λ1, λ2, . . . , λn be any set of n real or complex numbers such that∑n
k=1 |λk| ≤ 1. For p and q such that p > 1, q > 1, 1

p
+ 1

q
= 1, the non-constant

polynomial P (z) = ∑n
k=0 akz

k, ak 6= 0, 1 ≤ k ≤ n, with complex coefficients, has all
its zeros lie in the annulus C = {z : r′1 ≤ |z| ≤ r′2}, where

r′1 = min
1≤k≤n

∣∣∣∣∣∣λ
1/p
k

n1/q
a0

ak

∣∣∣∣∣∣
1/k

(2.1)

and

r′2 = max
1≤k≤n

∣∣∣∣∣n1/q

λ
1/p
k

an−k
an

∣∣∣∣∣
1/k

.(2.2)

Remark 2.1. If for all 1 ≤ k ≤ n, we take |λk| = 1/n, then by using 1/p+ 1/q = 1, we
have from Theorem 2.1

r′1 = min
1≤k≤n

∣∣∣∣ 1
n1/pn1/q

a0

ak

∣∣∣∣1/k = min
1≤k≤n

∣∣∣∣ 1n a0

ak

∣∣∣∣1/k
and

r′2 = max
1≤k≤n

∣∣∣∣nan−kan

∣∣∣∣1/k ,
which is similar to the bounds of Theorem 1.5 with |λk| = 1/n, 1 ≤ k ≤ n, but by
Theorem 2.8 of Dalal and Govil [7], it is easy to see that if |λk| < 1/n, 1 ≤ k ≤ n, then
Theorem 2.1 always gives a better bound than Theorem 1.5. Although, we are not
able to prove analytically that whether any condition required over the coefficients of
a polynomial or not, but with the help of MATLAB, we construct 1 million random
polynomials, without any condition on coefficients, with different degrees, random λk,
with |λk| < 1/n, and random p > 1, q > 1, with 1/p + 1/q = 1, and that shows the
bounds of our Theorem 2.1 is always better than Theorem 1.5. For reference, a result
of a 30th degree polynomial has been shown in Figure 2.1 below.

Remark 2.2. Let r be the positive root of the equation

(2.3) znp|an|p − z(n−1)pnp/q|an−1|p − · · · − zpnp/q|a1|p − np/q|a0|p = 0.
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Figure 1. Comparison of bounds of Theorem 2.1 and Theorem 1.5

Therefore, we have

(2.4)
{∣∣∣∣a0

an

∣∣∣∣p np/qrnp
+
∣∣∣∣a1

an

∣∣∣∣p np/q

r(n−1)p + · · ·+
∣∣∣∣an−1

an

∣∣∣∣p np/qrp
}

= 1.

If we take

(2.5) λk =
∣∣∣∣an−kan

∣∣∣∣p np/qrkp
, k = 1, 2, . . . , n,

the equality (2.4) yields

(2.6)
n∑
k=1
|λk| = 1.

Now, Theorem 2.1 implies that

r2 = max
1≤k≤n

{
n1/q

|λk|1/p
∣∣∣∣an−kan

∣∣∣∣
}1/k

= r.

Hence, it follows that all the zeros of a polynomial P (z) lie in |z| ≤ r, where r is the
positive root of the equation (2.3). This generalizes Theorem 1.2 due to Cauchy [4],
which is fairly deduced by our Theorem 2.1. The lower bound can be obtained in a
similar way. Taking q → +∞ (p→ 1), this result reduces to Theorem 1.2.

Table 1 represents corollaries using some of the existing identities. The left column
of the table contains the identities used in place of |λk| in Theorem 2.1 and the right
column shows the extension of corresponding existing results. So many other results
can be obtained using different identities.

Remark 2.3. By (2.5) and (2.6), one can see that the best possible result
this direction comes when D′r1 := 1 −

(∑n
k=1

∣∣∣ak

a0

∣∣∣p np/qrkp1

)1/p
= 0 and
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Table 1. Corollaries

|λk| Existing Results

1. 2n−k3kFkC(n,k)
F4n

, Fk is the kth Fibonacci number Theorem 1.3 of [9]
2. C(n,k)

2n−1 , C(n, k) are the Binomial coefficients Theorem 1.4 of [12]
3. C(n,k)AkB

k
j (bBj−1)n−k

Ajn
Theorem 2 of [10]

4. Lk

Ln+2−3 , Lk is kth Lucas number Corollary 2.1 of [5]
5. Ck−1Cn−k

Cn
, Ck is the kth Catalan number Corollary 2.2 of [5]

D′r2 := 1−
(∑n

k=1

∣∣∣an−k

an

∣∣∣p np/q

rkp
2

)1/p
= 0. But, this result is implicit in the sense that in

order to find the annulus containing all the zeros of a polynomial, we need to compute
the roots of another associated equation (2.3). Our Theorem 2.1 provide a family
of annuli that contains all the zeros of a polynomial based only on the polynomial
coefficients.

Our next result improves upon any bound r1, r2 obtainable from any of the above
mentioned results if D′r1 > 0 and D′r2 > 0.

Theorem 2.2. Let λ1, λ2, . . . , λn be any set of n real or complex numbers such that∑n
k=1 |λk| ≤ 1. If r1 and r2 be any positive numbers such that D′r1 ≥ 0 and D′r2 ≥ 0,

then for p and q such that p > 1, q > 1, 1
p

+ 1
q

= 1, the non-constant polynomial
P (z) = ∑n

k=0 akz
k, ak 6= 0, 1 ≤ k ≤ n, has all its zeros lie in the annulus C =

{z : r′′1 ≤ |z| ≤ r′′2}, where

r′′1 = min
1≤k≤n

rk1 +D′r1

∣∣∣∣∣∣λ
1/p
k

n1/q
a0

ak

∣∣∣∣∣∣
1/k

(2.7)

and

r′′2 = max
1≤k≤n

r−k2 +D′r2

∣∣∣∣∣∣λ
1/p
k

n1/q
an
an−k

∣∣∣∣∣∣
−1/k

.(2.8)

Remark 2.4. (a) Since, it is clear that r′′1 ≥ r1 and r′′2 ≤ r2 therefore the Theorem 2.2
always gives bound sharper than any of the bound that has been obtained in terms
of r1 and r2.

(b) In order to obtain better and better bound, Theorem 2.2 can be applied multiple
times by substituting newly computed r′′1 and r′′2 as r1 and r2 in the formula, and
making corresponding substitutions in D′r1 and D′r2 respectively and this has been
shown in Section 4.

If we take q → +∞ (p → 1) in the above Theorem 2.2 with limq→+∞D
′
r1 =

1 − ∑n
k=1

∣∣∣ak

a0

∣∣∣ rk1 =: Dr1 and limq→+∞D
′
r2 = 1 − ∑n

k=1

∣∣∣an−k

an

∣∣∣ 1
rk

2
=: Dr2 , we get the

following corollary, which in particular gives a result due to Dalal and Govil [6].
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Corollary 2.1. Let λ1, λ2, . . . , λn are any set of n real or complex numbers such that∑m
k=1 |λk| ≤ 1. If r1 and r2 be any positive numbers such that Dr1 ≥ 0 and Dr2 ≥ 0,

then the non-constant polynomial P (z) = ∑n
k=0 akz

k, ak 6= 0, 1 ≤ k ≤ n, has all its
zeros lie in the annulus C = {z : r′′1 ≤ |z| ≤ r′′2}, where

r′′1 = min
1≤k≤n

(
rk1 +Dr1

∣∣∣∣λk a0

ak

∣∣∣∣)1/k
(2.9)

and

r′′2 = max
1≤k≤n

(
r−k2 +Dr2

∣∣∣∣∣λk an
an−k

∣∣∣∣∣
)−1/k

.(2.10)

3. Proof of the Theorems

Proof of Theorem 2.1. Proof of Theorem 2.1 follows on the same lines of Theorem 2.2,
therefore we omit the details. �

Proof of Theorem 2.2. If a0 = 0, then r′1 = 0 which implies r′′1 = r′1 = 0. Therefore,
without loss of generality, we can suppose that a0 6= 0. Let z be such that |z| < r′′1 .
Then we have

|P (z)| ≥ |a0| −
∣∣∣∣∣
n∑
k=1

akz
k

∣∣∣∣∣ ≥ |a0| −
n∑
k=1
|ak| |z|k > |a0| −

n∑
k=1
|ak| (r′′1)k

= |a0|
[
1−

n∑
k=1

∣∣∣∣aka0

∣∣∣∣ (r′′1)k
]
.(3.1)

Now, from (2.7), we get∣∣∣∣aka0

∣∣∣∣ (r′′1)k ≤
∣∣∣∣aka0

∣∣∣∣ rk1 +D′r1

|λk|1/p

n1/q , for k = 1, 2, . . . , n.(3.2)

Substituting (3.2) in (3.1), and using Hölder inequality (1.3), we obtain

|P (z)| > |a0|

1−
n∑
k=1

∣∣∣∣aka0

∣∣∣∣ rk1 − n∑
k=1

D′r1

|λk|1/p

n1/q


≥ |a0|

1− n1/q
(

n∑
k=1

∣∣∣∣aka0

∣∣∣∣p rkp1

)1/p

−D′r1

(
n∑
k=1
|λk|

)1/p


= |a0|

D′r1 −D
′
r1

(
m∑
k=1
|λk|

)1/p


= |a0|D′r1

1−
(

m∑
k=1
|λk|

)1/p
 ≥ 0,

as ∑m
k=1 |λk| ≤ 1, and consequently P (z) does not have any zero in |z| < r′′1 .
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To prove the second part of the theorem, we shall use the first part. Consider the
polynomial

Q(z) = znP
(1
z

)
= a0z

n + a1z
n−1 + · · ·+ an−1z + an.

By the first part of the theorem, all the zeros of the polynomial Q(z) lie in

|z| ≥ min
1≤k≤n

 1
rk2

+
D′r2 |λk|

1/p

n1/q

∣∣∣∣∣ anan−k

∣∣∣∣∣
1/k

= min
1≤k≤m

1(
r−k2 + D′r2 |λk|1/p

n1/q

∣∣∣ an

an−k

∣∣∣)−1/k

= 1

max
1≤k≤m

r−k2 +
D′r2 |λk|

1/p

n1/q

∣∣∣∣∣ anan−k

∣∣∣∣∣
−1/k = 1

r′′2
.

Replacing z by 1
z
and observing that P (z) = znQ

(
1
z

)
, we conclude that all the zeros

of P (z) lie in

|z| ≤ r′′2 = max
1≤k≤m

r−k2 +
D′r2 |λk|

1/p

n1/q

∣∣∣∣∣ anan−k

∣∣∣∣∣
−1/k

,

and (2.8) is thus established. �

4. Numerical Experiments

By Figure 2.1, it is easy to see that for any random polynomial, random sequence
of λk,

∑n
k=0 |λk| < 1/n, 1 ≤ k ≤ n and random p > 1, q > 1, with 1/p+ 1/q = 1, our

Theorem 2.1 always gives better bounds than Theorem 1.5. Here, we construct an
example of a polynomial in order to compare our results, Theorems 2.1 and 2.2, with
Theorem 1.5.

Example 4.1. Let P (z) = z4 + 0.01z3 + 0.1z2 + 0.2z + 0.4.

Table 2. Comparison of Annuli (Theorem 2.2 applying again to P (z)
using the bounds r1 = 0.5187 and r2 = 1.0628)

Result r1 r2 Area of annulus
Theorem 1.5 0.2847 1.1647 4.0070
Theorem 2.1 0.4343 1.1345 3.4509
Theorem 2.2 0.5187 1.0628 2.7033
Theorem 2.2 0.5539 1.0442 2.4615
Actual bound 0.7412 0.8532 0.5610
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In Table 2, we first apply Theorems 1.5 and 2.1 to P (z) using the random sequence
λk,

∑n
k=0 |λk| < 1/n and random p > 1, q > 1, with 1/p + 1/q = 1. We see that

Theorem 2.1 gives sharper bounds than Theorem 1.5. We then apply Theorem 2.2 to
P (z) using the same sequence of λk, p, q and the radii r1 = 0.4343 and r2 = 1.1345,
and we obtain better bounds than Theorem 2.1. Applying again Theorem 2.2 to P (z)
using the radii r1 = 0.5187 and r2 = 1.0628 of Theorem 2.2, we get new bounds
r′′1 = 0.5539 and r′′2 = 1.0442, which are more closer to the actual radii of the annulus
that contains all the zeros of P (z).

Acknowledgements. The authors are extremely grateful to the referee for his valu-
able suggestions.
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