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A SUBCLASS OF NOOR-TYPE HARMONIC p-VALENT
FUNCTIONS BASED ON HYPERGEOMETRIC FUNCTIONS

HIBA F. AL-JANABY! AND F. GHANIM?

ABSTRACT. In this paper, we introduce a new generalized Noor-type operator of
harmonic p-valent functions associated with the Fox-Wright generalized hypergeo-
metric functions (FWGH-functions). Furthermore, we consider a new subclass of
complex-valued harmonic multivalent functions based on this new operator. Several
geometric properties for this subclass are also discussed.

1. INTRODUCTION

Harmonic function has fruitful applications not only in applied mathematics, but
also in physics, engineering. It appears in differential equations, such as harmonic
differential equations, wave equations, and heat equations. In geometric function
theory (GFT), the famed authors Clunie and Sheil-Small [11] launched the study of
harmonic univalent functions in 1984. In their investigates, they provided a class
83¢ of harmonic functions ¢ = ¢ + 1) that are univalent, sense-preserving which is
|¢'(2)] > [¢/(2)| in the unit disk D = {z € C : |z| < 1}, and normalized by the
conditions ¢(0) = ¢’'(0) — 1 = 0, where the regular(analytic) part ¢ and the co-regular
part 1 are defined as follows:

o(z)=z+ ZM&ZH,Q/J(Z) = Z ve2®, | < L
K=2 k=1

In addition, they studied its geometric properties, which involves coefficient bounds,
growth and distortion formulas. Note that, class 84 reduces to the class 8§ of regular
univalent functions if the co-regular part v is zero.
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In 2001, Ahuja and Jahangiri [2] defined a more general class 8y of harmonic
p—valent (multivalent) functions, ¢ = ¢ + ¢ that are sense-preserving in D, and ¢
and v are of the formula

(1.1) o(z) = 2P + Z 2™ (2 ZV,{ . vl <l,peN={1,2,... }.
Kk=p+1

Note that, class 85, reduces to the class M, of normalized regular p—valent functions

if the co-regular part 1 is zero. Consequently, the function ¢ € M, are expressed as:

(1.2) o) =4 Y

rk=p+1
Denoted by N8,y the subclass of 84, consisting of functions ¢ = ¢ + 1) such that
the regular functions ¢ and v are of the form

o0 oo

(1.3) @(2) =22 — > |palz™ 0(2) = =D |wel2®, || <lpeN={1,2,...}.
k=p+1 K=p

Convolution (Hadamard) product is a mathematical operation on two regular functions

1 and @y to yield a third regular function 3. It is used to define various subclasses

and linear operators in GFT. This concept owes its origin to Hadamard in 1899 [22].

In the harmonic functions case, Clunie and Sheil-Small [11] studied and defined the

following convolution product: for any two functions ¢, € 8[}( of the form

0i(2) = ¢u(2) + U (2) —Z+Zumz +vaz

where v = 1,2, |11 1| < 1, |1 2] < 1, their convolution is denoted by 7 * 2 and defined
as

oo "o
(1% p2)(2) = 2+ Z M1 fre2 27+ Z Vi1 Vi2 27

k=2 k=1
More generally, the convolution of two functions ¢, € 85(,) is given by (see, [29]):

(1.4) (p1 % pa)(z) = 2P + Z e 2 27 4 Z Vi1 Vi,2 27,
r=p+1 K=p
where
gpl(z):(lﬁl( )—i-"% _Zp+ Z /vLHzZ +ZV/€ZZ 221727’VP’1|<17|VP,2’<1'
_p—‘,-l

Operators Theory has a significant role in the study GFT. Actually, operators are
utilized in defining new subclasses. The technique of convolution has a remarkable
part in the evolution of this area. Numerous differential and integral operators (linear
operators) can be established in terms of the convolution. In 1915, Alexander [4]
introduced the first integral operator on class A that includes normalized regular
functions. Later, several well-known integral operators are investigated by complex
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analysts, such as Libera [26], Bernardi [9], Miller, Mocanu and Reade [27,28], Pascu
and Pescar [34], Ong et al. [33], Frasin [20], Frasin and Breaz [21], El-Ashwah, Aouf
and El-Deeb [16], Deniz [13], Rahrovi [35], Al-Janaby and Ghanim [5], Al-Janaby,
Ghanim, Darus [6], Al-Janaby [7] and others. The following are some important linear
operators related to results in this study.

In 1975, Ruscheweyh [37] introduced the differential operator D7¢(z) so-called the
Ruscheweyh differential operator as follows: for p € A, 7> —1 and D" : A — A is
given by

(15) D7ol2) = g () =2+ S

where (a), = F(I?(Z)“ ) denotes the Pochhammer symbol. Note that D%(z) = ¢(z) and

Dlp(z) = 2¢'(2).

Analogous manner to the Ruscheweyh operator, in 1999, the author Noor [31]
presented an integral operator I.¢(z), namely Noor Integral of 7—th order, as follows:
for a function p € A and 7 € Ny, the Noor integral operator I.(z) is given by
I, : A— A,

(16) Lao2) = () 4 2) = || #o0) =2+ 3 g

such that ¢-(z) * oV (2) = - Note that Inp(z) = 2¢'(2), Lip(z) = @(2). This
version of integral operator is a considerable gadget in imposing several subclasses of
regular functions.

On the other hand, special functions have been applied in GFT. In 1984, de Branges
[12] employed hypergeometric function in proving the prominent problem called Bieber-
bach’s conjecture. Since then, the study of hypergeometric function and its general-
izations have attracted the attention of many function theorists. The important role
played by special functions is defining new operators. The generalized hypergeometric
function known as Fox-Wright generalized hypergeometric function (FWGH-function)

is defined as: (see for example [19,40] and [41])
nWsl(p1, Ci)1m; (01, Di)rss 2] = nWs[(p1, €1) -+ (o, €); (01, D1) - -+ (05, Dy ); 2]

_ i U(p1 + kC)L(p2 + £Co) - - - T'(p, + kC;) 2"
=0 F(O’l + /{Dl)F(ag -+ K,Dg) tee F(O‘g -+ K,Dg) K!
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n 0
where €, > 0, 7 = 1,2,...,n, B, >0,y =1,2,...,0, 1+ > C — > D, >0,
1=1 1=1
p,+kC,#0,-1,...,9=12,...,7,s=0,1,...,0,+KrD, #0,-1,...,7=1,2,...,
n J
0,k =0,1,... and z € C. The condition 1 + } €, — > D, > 0 is essential so that
=1 =1
the series in (1.7) is absolutely convergent for all z € C, and is an entire function of
z (for details, see [25]). Special case of FWGH-function defined in (1.7), given as: if
C,=171=1.2,....n,D,=1,7=1,2,...,6,n< 0+ 1 and

5 -1
(1.9 Ez(_fwm)(nruw) ,

then
= nWsl(py, 1)1; (04, 153 2] = nFsl(p1, -..pn; 01, -..05; 2],

where nFs[(p1,...,pp;01,...,05; 2] is a generalized hypergeometric function, [14].
Other special cases of FWGH-function were presented in [25].

In the well-known theory of regular univalent functions, there are numerous inves-
tigates on hypergeometric functions associated with classes of regular functions. In
2004, Ahuja and Silverman [1] discovered the corresponding connections between hy-
pergeometric functions and harmonic univalent functions. Recently, the connections
between WGHF and harmonic univalent functions were discussed by some authors,
such that Murugusundaramoorthy and Raina [30], Sharma [39], Raina and Sharma
[36], Ahuja and Sharma [3] and Hussain et al.[23]. In addition, several operators have
been extended to harmonic functions by authors. For instance, Chandrashekar et al.
[10], El-Ashwah, and Aouf [17] Yagar and Yalgin [42], Seoudy [38], Al-Janaby [8] and
others. Some previous studies that involving hypergeometric and FWGH functions
are presented in this paper.

In 2004, Dziok and Raina [15] considered the linear operator W (p,, C,)1.; (o;, D,)1,6]
by means of FWGH-function on A as:

W(p;: €)1 (05, Dy)1sle(z) =z + Z E O p 27,

k=2
where

L(pi + (k= D@L (pa + (k= 1)€y) - T(p, + (x — 1)€,)
T(oy + (k — 1)D)T(os + (k — 1)Dg) -+ D(os + (5 — 1)Ds) (s — 1)1’

and Z is defined in (1.8). Following that, in 2016, Hussain, Rasheed and Darus [23]
introduced a new subclass of harmonic functions by using the extension of the above
linear operator to harmonic functions. Also, they investigated various properties
such as coefficient bounds, extreme points, and inclusion results and closed under an
integral operator for this subclass.

Ve =
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In 2006, the author Noor [32] again imposed the integral operator I.((,&;) by
employing the Gauss hypergeometric function as follows:

- 1),._
(19)  L(¢&7e(2) = [T &G 2)]  *p —Z+Z Tt Dot
)K 1(£)n71
where
(¢ &7 )] %[5 &7 2)) :<1—Zz)T+1— +;2 n—f Lo

In 2008, Ibrahim and Darus [24] studied the following generalized integral operator
I [(0),D))165 (py €)1,y associated with FWGH-function on A, where
5
0 1:11 I'(o,+ (k= 1)D))
(110) IT[(Ujv D])l,ﬁ; (pjv e])l,n]gp(z) =z+ Z jin (7_ + 1)&—1 Mk 2"
rw=2 Hl L'(p, + (k= 1)€))
j:

and
I'(01) ---I'(0s)

L(py)---T(py)

Posterior, in 2016, the authors El-Ashwah and Hassan [18] established the linear
operator O,[(p;, €,)1.7; (,, D,)1¢] on the class M, of regular p—valent functions in D
as:

=1.

Okl(py: €103 (05, D)1 slp(2) = 2" + Z E Dy pr 2",

rk=p+1

where

L(p1 + (k —p)C)I(p2 + (k —p)C2) - - T'(py + (k — p)Cy)
I'(o1 4+ (k = p)D1)l (02 + (k= p)D2) - - - I'(0s + (k — p)Ds)(

and = is defined in (1.8).

In this study, we continue our investigates in the theory of operators. Here we’ll
introduce a new generalized Noor-type operator of harmonic p—valent functions asso-
ciated with FWGH-functions. We then define a new subclass and discuss several of
its properties.

—p)l’

2. IMPOSED OPERATOR J!¢[0); p,] ¢(2)

This section proposes a new generalized Noor-type operator 32:2[03; p, ¢(z) for
harmonic p-valent functions based on FWGH-function in (1.7).
By giving an extension of the FWGH-function in (1.7)

nMa[(Py e])l,nS (037 DJ)MS Z] = QZP??W(S[(PJ, 63)1,77; (037 D])1,5; Z]
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~ QT+ (E-peC) .

(2.1) =y Y S
1 e+ (e —py) )
il

Y

where
(2.9 o= (11re) (11re)

We define a new generalization of the extended FWGH-function in (2.1) in terms of
{—th convolution product as:

77M§[(1017 63)1,775 (‘737 DJ)M; 2]
= 77M5[(PJ> ej)lnﬁ (U], Dj)l,é? 2% x 773\/[5[(pj, e])lﬂﬁ (U]’ 93)1,5? ]

/—times

N Q T1T(p, + (k- p)€))
(23) =24 Y | 2"
r=p+1 J];[l I'(o,+ (k —p)D,)(k — p)!

l

-1
Then we introduce a new function (an;[(pj, C))1m; (05, D))1s: z]) as:

-1

<77M§[(pya €)1 (05, Dy)s; ZD
5 J4
00 [1 (o) + (k= p)D,)(k — p)!
(2'4) =P Z J=1 . (T +p)f~”v:p P
K=p+1 Q 11 T(p, + (k — p)€,) (& —p)!

such that for 7 > —p

-1
(MV5[(pys €)1 (0, D)1si 2]) # (MM, €)1 (0 D)1 s 2])

o0

_L_Zmzn

_<1 - Z)T+p B K=p (KZ _p)'

Next, we consider the following linear operator: g[(o,, D,)1.6: (05, €)1 : My = M,
where

3;;[(‘737 Dy)1s; (3 €))1nlep(z) = (UMf;KPy €13 (05 Dy)1s; Z])_l * p(2)
5 4
o [fir,+ —pD)e—p]
(2.5) =24+ ) = 7 ( +_p),{7p [ 2"
| QT+ k-pe) | )




A SUBCLASS OF NOOR-TYPE HARMONIC p-VALENT FUNCTIONS BASED ON... 505

For brevity,
(2.6) Zj?[%; p]] p(z) = 3£[(Uya ®J)L6§ (pj7 ej)l,nkO(Z)‘

Remark 2.1. For suitably chosen parameters p, £, 0, m, C1, Co, Dy, p1, p2 and oy, the
generalized Noor-type operator g7, 2o, )] (2.6) reduces to some of the above linear
operators. Thus, we obtain the following special cases.
eforp=1,0=1,0=1,n=2,6=C=D;=1,and py =ps =07 =1 1in
(2.6), we gain the Ruscheweyh differential operator given by (1.5).
eforp=1,/=1,0=1,1=2,6,=C=Dy=1, py=p=1+7and oy =1,
the operator (2.6) provides the Noor integral operator in (1.6).
e Bytakingp=1,/=1,0=1,n1=2,C=C =D, =1, p1 = py =& and
o1 = in (2.6), gives us an integral operator defined by (1.9).
elfp=1,¢=1and Q =1, we yield the linear operator given by (1.10).

The generalized Noor-type operator HZ:?[JJ; p,] ¢(2) (2.6) when extended to har-
monic p—valent function ¢ = ¢ + 1) is defined by

(2.7) Dolosp)e(z) =3[0y p) d(2) + 30010y py) ¥ (2),
where

5 l

I[1 (o, + (k= p)D,)(k — p)!

32 2[0% p]] - Zp + Z = n <T i p)lﬁ'p 20 ZH
S| QT+ -pe) | )
1=1
and
5 V4

. e O L A

Ve 2.
S| Qe+ -pe) | )

n,0
31; E[ajv pﬂ

3. GEOMETRIC RESULTS

This section introduces a certain subclass of harmonic p—valent functions which
includes the generalized Noor-type operator HZ:?[U]; p,] ¢(z) extended to harmonic func-
tions. This subclass is denoted by H. (v, [0); p)]). Further, coefficient bounds, growth
formula, extreme points, convolution, convex combinations and class-preserving in-
tegral operator are also investigated for harmonic functions satisfying the subclass

J'C;B;(O‘a [UJQPJ])'

Definition 3.1. A function ¢ € 8y is said to be in subclass H.(a, [0,; p,]) if it
satisfies the following inequality:

grllosple(z) | [Tnilosie) o))
+ «
2P pzpfl

(3.1) Re{ (1 —a)

>

9

B
p
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where HZ:g[aj;pj] ©(z) is defined by (2.7), 0 < a <land 0 < < p.
Also, let Nﬂff(a, [0,:p,]) = H (v, o5 5)) N NS3¢ (p)-

A sufficient coefficient condition for function belonging to the class H (e, [0,; p,])
is now derived.

Theorem 3.1. Let ¢ = ¢+ 1) given by (1.1). Then p € Hi(w, [0, p,)) if

(3.2)
5 ¢
- (100, + (s =)Dk —p)!|
> k—pa+pl | (ff%th
QTG+ (k-pe) | 7P
5 ¢
00 [1 (o, + (k—p)D,)(rk — p)! -
+ 3w patr) |2 T4 Drp <o,
Q[T+ (—pey) | 7PN

where 0 < a<1,0< 8 <p.

Proof. Using the fact that Re(A) > 0 if and only if |14+ A| > |1 — )|, it suffices to show
that

(3.3) lp—B+p0(z)| = |p+ B8 —pb(z)],
where

"0 z e 0, P, (2 ,
bo) = (1 - ) Bl ) [sp,f[pzpmlw( I3

Substituting for ¢ and v in 6, we gain

(3.4)
lp — B+ pd(2)]
5 ¢
- (100, + (o2 =)
22— =Y [(k—platp |=— e )“7” |27
k=p+1 Q 1:11 I'(p,+ (k—p)C)) (5 —p)!
5 ¢
- f1 70, + (o= 912 s =)
- Z [(k —p)a + p] = 7 ( +_p),$'p |V 2]"7P
"=P Q El L(p,+ (k—p)C)) (k= p)!

and
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(3.5)

lp+ 8 —po(z)|
?
11 T(o, + (5 — p)D,)(k — p)!

<G+ 3 le-patal |y L
r=ptl Q I;Ilr(p] + (k= p)C)) (r = p):
0 l
. [[T(0,+ (k=)D —p)!|
+3 (k= pa+p |[T— ( +_p)“;p I, ||2]7 7.
= Q11T+ (k=-pe) | 7P

These inequalities (3.4) and (3.5) in conjunction with (3.2) yields

p — B+ pd(2)]
>[p+ 8 — po(z)]
4
. [ 1o, + (= p)D) =] (L,
>2(p—0)— > (k—pla+tp] |—F |
S QI T(p,+(—pe,) | 5P
s J4
. {1 Do, + (s~ D)0~ )|
~Y s —pa+p | ( +_p)*’jp ve|| > 0.
= Q11 T(p, + (x ~p)E) (= p)!

The harmonic function

(3.6)

S Q 1 T(p, + (5~ p)C)) S
p(z) =2 + = : T, 2"
S| 1 T, + (= D) - | TP (=)

00 QI T'(p) + (k= p)€)) E (k — p)!
+y = it 77"
K=p lél p(g]_,_ (:‘i—p)D])(li—p)! (T‘f’P)n—p [(k —p)a + p]

where 3227y |2 + 2222, [Yx] = p — 3 shows that the coefficient bound given by (3.2)
is sharp.
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The functions of the from (3.6) are in subclass 32 (¢, 1, §) because in view of (3.2),
we acquire

5 ¢
oo [1T(o, + (k= p)D,))(k — p)!
S [k—pa+s |E— Tt D), |
O M, +(-pe) | -
=1
5 J ¢
0o [1 (o, + (k= p)D,)(k — p)!
+ 3 (k- pats] |[E— RS JES TN
Q[T+ (-pe,) | P
=
S Z |xn|+2|yn| :p_ﬁ'
K=p+1 KR=p
This completes the proof. 0

Now, we yield the necessary and sufficient condition for the function ¢ = ¢ + ¥
given by (1.3) to be in Nﬂ-(g(a, [0,:05])-

Theorem 3.2. Let ¢ = ¢ + 1 be given by (1.3). Then ¢ € Nﬂ-(g(a, lo,:p,]) if and
only if the condition (3.2) is as follows:

s ¢
o0 [T (o, + (v =p)Dy)(k =)
> k—pa+pl |T— ( +_p)”]p ||
r=p+1 @) 1;[11“(/)] + (k — p)ej) (5 —p)!
5 ¢
o0 [T T(o, + (v =p)Dy)(k = p)|
+ 3 [k —pa+p] [T ( +_p)“jp vl <p— 5,
i 2 1;[1 L(p,+ (k= p)C)) (k= p)!

where 0 < a<1,0< 8 <p.

Proof. In view of Theorem 3.1 and ¢ € Nﬂ-fg(a, [0,;0,) € HE (v, [0; py]), we only

need to prove the “only if” part of this theorem. Assume that ¢ € Nﬂ{fg(a, (7,5 0,])s
then by virtue of (3.1), we get

(3.7)
V4
. [ 1o, + (=)D =] (o,
Re{(p—B)— 3 [(k—pla+p] |=—F —
et QI;IIF(PJ"‘(’{G_Z))GJ) (k=)

P ]
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d ¢
& 1 T(0, + (s —p)Dy) e =p)|
2P =3 (k= platp] | T Dhr ey
w=p Q T1T(p, + (5~ p)C)) (v —p)!

>0.

This inequality (3.7) must hold for all values of z in . Upon choosing the values of
z on the positive real axis, where 0 < |z| =r < 1, (3.7) reduces to

s ¢
. {1 T(0, + (k= p)D,) ( — )
p-B8)— Y [(k—pa+p |=—j7 7+ p)*fp || 77
it Q1T+ (-pey) | 2
=1
5 ] ¢
s [1 (o + (5 — p)D,) (s — p)!
= +D)w— _
~ Yl —pla+p) |=—F (T(K_p>)'p|uﬁ|rp k> 0.
n=p Q 31;11 L(p, + (k= p)C)) pr
Letting » — —1 through real values, it follows that
(3.8)
p ¢
o0 [T (o, + (k = p)D,) (k — p)!
= + D)k
p—8)— 3 lk—pa+p |7 4 _p> el
i Q1T+ (c=p)e,) | P
=1
5 j ¢
. [1 [(o, + (k = p)D,)(r — p)!
= + )
~ >l —pa+yp |F—j (T( _p)),p|uﬁ|zo.
r=p 2 I T(p, + (5 = p)C)) R Pr
=
Thus, (3.8) yields (3.2). This completes the proof. O

The following theorem considers the growth bounds for the function ¢ that belongs
to Nj{;f(@» [UJS/)J])-

Theorem 3.3. Let ¢ € Nﬂ-(g(a, lo:p)]) and r = |z| < 1. Then

n ¢
R R O Y e

o e ey | r i+
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and
n l
0 1:[ F(pﬂ + GJ) 1— .
)] 2 (1 ) 7 — | L
1;[1 I'(o,+ D)) b pn

Proof. Let ¢ € N.‘J-Cf (e, [0,5p,]). By taking the modulus value of ¢ and using Theo-
rem 3.2, we have

P <+ D™+ 3 (il + ] 77

k=p+1

<Al r? P Y ([l + [val)
r=p+1

n l

yo+l Q I;IIF(PJ—FGJ)

J

<1+ [wp)) r? + [+ p|(T+ph ]é[ [(o, +D,)

1=1
s ¢
0 H1F(0J+®J)
x| Y le+pl(T+ph | ([u] + [v])
k=p+1 Q ]];[ I'(p, +C,
¢
yptl Q ]le(pﬂ + ) i
<(L+ [p)) r? + - ( [(k = p)a+ p
’ [a + p)(7 + )1 J]i[lf‘(oj o) |\
s ¢
[1 (o, + (k—p)D,)(k — p)
% g=1 ; J (T—Fp)f-z?p <‘ /{""’VHD
QT+ (k-pe) | )
=
. ‘
Q I'(p,+ C
SRR DL SR I L .
< p ﬁF(Jj—l-@]) [+ pl(T + ph
1=1
Also,
e >+ 1)) 1P = D0 (sl + e]) 7"
Kk=p+1

o)

(14wl " = 32 (sl + [wl) 77

rk=p+1
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1
rp+l Q 31:[1 I'(p, +€)) 00
>(1+[y|)r? i > la+pl(r+ph
[ +p (7 +ph T Do, +D,) |\
5 ¢
{1 T(0, +D)
X | (| + )
Q H1 I'(p, + €,
=
¢
ypt1 Q Jljl F(P] + GJ) oo
>(1+ [1p]) r? - > l(k—pla+p)
[ +p(7+ph T Do, +D,) |\t
5 ¢
[ (o, + (=)D =] (L,
‘| P (] + )
@ 1L T(p, + (5 = p)€)) '
=
" ¢
Q I D(p,+C
R R N
>(14 |v|)r 5 P
[1 (o, + D)) at i+ ph
1=1
This completes the proof of Theorem 3.3. 0J

The next theorem determines the extreme points of convex hulls of Nf)-(f) (e, [o4:p,])
denoted by coNfHS(a, (7,5 0,])-

Theorem 3.4. A function ¢ € @N}Cg(a, l0,:p,]) if and only if

P2 = 3 (Xehul2) + Yign(2)),

K=p

h’P(’Z) :Zpa

(o) o | TS D=8

{1 Do, + (5~ p)D) (s~ pt | (7P H R E D)y

Y

k=p+1Lp+2,...,
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Ui

o fire+e-ne) |,
| L

J=1

K —p)a+pl(T+D)p

gn(z) =P _

Y

0

{1 70, + (5= p)D) 5 -
]:

:p7p+17“'7

> (Xe+Y,) =1, X, >0and Y, >0.

K=p

Proof. For a function ¢ of the form (3.9), we acquire

o

0(2) =3 (Xphi(2) + Yigu(2))

K=p

:Xp hp + Z thn<z) + Z Yngn(z)

K=p+1 K=p

=X, 2"+ > X2

Kk=p+1

. ¢
Q11 T(p, + (k= p)C)) (k—p) (p— B)
ol [

K —p)a~+pl(T+p)ayp

J=1

-y

r=p+1

X, 2"

jﬁl Lo, + (k= p)Dy) (K —

I R

K=p

ﬁrmy< — p)D,)(k —

=8 .
(S "

:i (X, +Y) 2P

QT+ —-pe) |
p)!

B i @ 1 T(py+ (= p)C) -Do-8) .,
S| [ Tlo, + (= D) pt | (7P RIT b

B i Q jl;[lr(/)j + (k5 — p)ej) (k=) (p— B) -
T L0, + 5= pD)(s—p | (7P PATH ey
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o0

S

K=p+1

(k—p)(p—B)
K —p)a+pl(T+D)p

5 X, 2"

11 (0, + (5= p)D)(~ p

@ 11 T(oy + (s~ )C) 5 — )l (p— B)

lé[ F(UJ + (K _p)DJ>(/€ p)!] [(k = p)a+pl(7 +p)f’rp

o 110+ -ne) |
W

Y,.zZ".

Therefore, in view of Theorem 3.2, we gain

11 T(o, + (5 — p)D,)(s — p)

J=1

Q ]13[1 [(p, + (k = p)C))

oo

S [(k—p)a+p)

k=p+1

(T+P)ep
(k —p)!

(k—p)(p—B)
K —p)a+pl(T +p)ayp

6 )(K
[1 (o, + (k—p)D))(k —p

J=1

0 1T+ -ne) |
W

11 T(o, + (5 — p)D,) (s — p)!

J=1

Q]§F@f+w—pmﬂ

o0

+ 3 [(k = p)a+ ]

k=p

(T +DP)rp
(kK —p)!

(k—p)(p—B)
K —p)a+pl(T +Pp)ayp

K

{1 Do, + (5 — p)D,)(k — p

J=1

0 1T+ -ne) |
W

o0

<(p-5) <z<xﬁ+n>—xp) —p-A-X)<p—p

K=p

Therefore, ¢ € @Nﬂfﬁ(a, [0,:05])-
Conversely, suppose that ¢ € @Nﬂ-ﬁﬁ (a, [0 p,]). Set

11700, + (= p)D))(x p)!] -

Koty o)

Q jli F(p] + (5 — p)ej)

k=p+1,p+2, ...,
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and
{1 Do, + (5 — p)D,)(x — p)! ¢
Y, =[(k — p)a+p] | =

(T +P)sp ],
Qjﬁlr(pﬁ(ﬁ_p)e]) (k=)' (0= B)

k=p,p+1,p+2 ...
On the basis of Theorem 3.2, we note that 0 < X, < 1,k =p+ 1,p+2,... and
0<Y. <L k=pp+Lp+2. ... Let X, =1-— Kp+1X+Z;’°,Yandnote
that by Theorem 3.2, X, > 0. Consequently, ©(2) = o, (Xehe(2) + Yega(2)) is
obtained as required. O

Using convolution principle, we show the subclass Nf}fg(a, [0,: p,]) is closed under
convolution.

Theorem 3.5. For0 < A< g <p,lety € Nﬂ-fg(oz, [0,:p]) and F € Nﬂ{;‘(a, (0,5 0,])-

Then p x F € Nf}ff,(oz, [0 ;) C NFH (e, [0; p,]).

Proof Utilizing definition of convolution, let the harmonic function p(z) = 2 —
it [ 25 =200 [V |27 and F(z) = 2P = 3202 ) | Ayl — 3202 [ Be[Z". Then, the

convolution of ¢ and J is

(90*? Z |MHA |Z —Z|V,§B |Z
rk=p+1

For F € Nﬂ{;}(a, [0,:p]), by Theorem 3.2, we conclude that |A,| < 1 and |B,| < 1.
Now for the convolution ¢ * F, we gain

5 l
i [(k — p)a + p| ]I;[1F(03+(m—p)®])(ﬁ—p)! (T—i_p)n—p 4,
K=p+1 (p—o) Q f[ll“(p]—i—(ﬁ—p)ej) (k=p)! "
5 y4
+Z a+p] jgll“(aﬁr(ff—p)D)(ff—p)! (T+p),€p| 1B,
¢ @ ﬁ1r<py+(”v—]9)€y) (k= p)! -
5 4
i [(k — p)a + p| ]1;[1F<OJ+(/€_p)DJ)(K_p)! (T—'—p),‘{/—p o
" eptl (p—B) 0 IZIIF(PJ"‘("@—P)GJ) (K —p)!
5 Y4
p)a Ulr(aj + (k= p)D,)(k — p)! -
+Z +p] | = (T+D)n —p Iv| <

e | R e I RS
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since 0 < A< <pand g€ Nﬂ-fg(oz, [0, p,]). Therefore, p x F € Nf}(g(a, lo,5p,]) C
Nf]'fg‘(oz, (053 p,))- O

In this theorem, we show that Nﬂg (e, [04; p,]) is closed under convex combination
of its members. Let the functions ¢, be defined, for v+ =1,2,..., by

(3.10) 0, (2) = 2P + Z || 2" — Z 2
r=p+1 K=p

Theorem 3.6. Let the functions ¢, given by (3.10) be in Nf]{g(oz, [0,:p,]) for every
1=1,2,... Then, the function 6 defined by

(3.11) 0(z) =Y cuwl(z), 0<¢ <1,
1=1

is also in the subclass Nﬂ{g(a, [0, p5]), where 3270, ¢, = 1.
Proof. According to the definition of 0, we can write

00 =+ 3 (Sl )= 5 (e )2

k=p+1 \1=1 K=p \1=1

Then, by Theorem 3.2, we have

s ¢
§ ln—paty) (LT OO iy, (Sl
w1 p=0) 0 ﬁlr(ijr(H_p)@J) (k=p)! \&Z "

s ¢
o K — k—p)!
L5 h—pa+p [T E=pD)E=Dt <ic|y |>
= =0 0 ﬁlr(p]_|_(,{_p)e]) (k=—p! \SZ """
s | £
:icz i [(k — p)a + p] jl;llr(aj—i‘(/ﬁ—p)@])(/ﬁ—p)- (T + D)y s
=1 k=p+1 (p_ﬁ) 0 lill F(p]+(/€—p)€]) (/{—p)! )
5 ¢
o K — Kk —p)!
+§O: (= pa+p] | T+ (5 =p)Dy)(s = p) (T
S =D e+ k-pe) | PP

oo
SZCZ =1.
1=1
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Hence, the proof is completed. O

Finally, we discuss a closure property of subclass Nﬂf?(a, (0,5 p,]) under the gener-
alized Bernardi-Libera-Livingston integral operator  which is given as (see [9]):

F(z) = (A;p) /0 TP o()dt, A > —p.

Theorem 3.7. Let ¢ € Nﬂ{g(a, l0,ip,]). Then F € Nﬂg(a, [0, p,])-
Proof. Let

Z || 2" —sz

K=p+1

From the representation of JF, it follows that

A+D 7 5 ———
3z =L [ 1{¢>(z)—|—¢(z)}dt
)HrP{/ A1 (tp Z |H/H|t:‘i) / -1 <Z|Vﬁ|t“>dt}
k=p+1 K=D
Z A2t — ZB z"
k=p+1
where
A+p [ A+Dp
A, = <A+ )|,u,£] and B, = (A—l—/{) |V |-
Therefore, since ¢ € Nf]{p(a, 7,5 0515
s ¢
o [T, + (k—p)D,)(k —p)!
> (s —pa+p [ = TR Tt D)y </\+p> ||
k=p+1 Q ]ﬂ[lr(p]-i-(li—p)e]) (=p)! AdR
=
5 ¢

{1 T, + (= p)D,) (5~ p)!

—l—z K—p)a+p|

Qﬁlf‘(pﬂr(ﬁ—p)ﬁy) (k=p)! \A+r
é ¢
o0 I1 T(o,+ (k —p)D,)(k — p)! i
< Y lk=pa+p]|=—F TPy,

i Q1T+ w-pe) | )
=1
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s ¢
0 [1T(0;+ (k= p)D,)(r — p)!
-1 T+ DP)k—
E3 (e pa ] |y CiDer iy <p-s
= Q 11 T(p,+ (r = p)€)) br
j:
By considering Theorem 3.2, we yield F(z) € Nﬂfg(a, [0, 0,])- d

4. CONCLUSION

In this paper, we have introduced a new generalized Noor-type integral operator

Z:g[a]; p,] on the class of harmonic p—valent functions Correlating with FWGH-

functions in the unit disc . A certain subclass including this new operator is studied.
In addition, some outcomes are obtained by involving coefficient condition and by
showing this significance condition for negative coefficient, growth bounds, extreme
points, convolution property, convex linear combination and a class-preserving integral
operator.
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