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EXISTENCE OF POSITIVE SOLUTIONS FOR A PERTUBED
FOURTH-ORDER EQUATION

MOHAMMAD REZA HEIDARI TAVANI1 AND ABDOLLAH NAZARI2

Abstract. In this paper, a special type of fourth-order differential equations with
a perturbed nonlinear term and some boundary conditions is considered which is
very important in mechanical engineering. Therefore, the existence of a non-trivial
solution for such equations is very important. Our goal is to ensure at least three
weak solutions for a class of perturbed fourth-order problems by applying certain
conditions to the functions that are available in the differential equation (problem
(1.1)). Our approach is based on variational methods and critical point theory.
In fact, using a fundamental theorem that is attributed to Bonanno, we get some
important results. Finally, for some results, an example is presented.

1. Introduction

In the present paper, the following fourth-order problem

(1.1)


u(iυ)(x) = λf(x, u(x)) + h(u(x)), x ∈ [0, 1],
u(0) = u′(0) = 0,
u′′(1) = 0, u′′′(1) = µ g(u(1)),

is studied, where λ and µ are positive parameters, f : [0, 1]× R→ R is non-negative
L1-Carathéodory function, h : R→ R is a non-negative Lipschitz continuous function
with the Lipschitz constant 0 < L < 1, i.e.,

|h(t1)− h(t2)| ≤ L|t1 − t2|,
for every t1, t2 ∈ R, and h(0) = 0 and g : R→ R is a non-positive continuous function.
It is clear that for function h we have h(t) ≤ L|t| for each t ∈ R.
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The problem (1.1) is related to the deflections of elastic beams based on nonlinear
elastic. In relation with the problem (1.1), there is an interesting physical description.

An elastic beam of length d = 1, which is clamped at its left side x = 0, and
resting on a kind of elastic bearing at its right side x = 1 which is given by µg .
Along its length, a load λf + h, is added to cause deformations. If u = u(x) denotes
the configuration of the deformed beam, then since u′′′(1) represents the shear force
at x = 1, the condition u′′′(1) = µg(u(1)) means that the vertical force is equal to
µg(u(1)), which denotes a relation, possibly nonlinear, between the vertical force and
the displacement u(1).

Different models and their applications for problems such as (1.1) can be derived
from [9]. Studying fourth-order differential equations are very important in engineering
sciences. Therefore, several results are known concerning the existence of multiple
solutions for fourth-order boundary value problems. For example, in [7] the author
obtained the existence of at least two positive solutions for the problem

(1.2)


u(iυ)(x) = f(x, u(x)), x ∈ [0, 1],
u(0) = u′(0) = 0,
u′′(1) = 0, u′′′(1) = g(u(1)),

based on variational methods and maximum principle.
Moreover, in [8] authors considered iterative solutions for problem (1.2) with nonlin-

ear boundary conditions. In particular, by using a variational methods the existence
of non-zero solutions for problem (1.1) in the case of h(t) ≡ 0 has been established
in [2]. In [6], using a critical points theorem obtained in [3], multiplicity results for
the problem (1.1) were discussed. Also based on variational methods, existence and
multiplicity results for this kind of problems were considered in [4, 5].

In the present paper, using a three critical points theorem obtained in [1] we will
establish the existence of at least three weak solutions for the problem (1.1).

2. Preliminaries

Our main tool is a three critical points theorem that we recall here in a appropriate
form. This theorem has been established in [1]. In this theorem a suitable sign
hypothesis is assumed.

Theorem 2.1. ([1, Corollary 3.1]). Let X be a reflexive real Banach space, Φ : X →
R be a convex, coercive and continuously Gâteaux differentiable functional whose
derivative admits a continuous inverse on X∗, Ψ : X → R be a continuously Gâteaux
differentiable functional whose derivative is compact, such that infX Φ = Φ(0) =
Ψ(0) = 0.

Assume that there are two positive constants r1, r2 and w ∈ X, with 2r1 < Φ(w) <
r2
2 , such that

(b1)
supu∈Φ−1(]−∞,r1[) Ψ(u)

r1
<

2
3

Ψ(w)
Φ(w) ;
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(b2)
supu∈Φ−1(]−∞,r2[) Ψ(u)

r2
<

1
3

Ψ(w)
Φ(w) ;

(b3) for each

λ ∈ Λr1,r2 :=
(

3
2

Φ(w)
Ψ(w) , min

{
r1

supu∈Φ−1(]−∞,r1[) Ψ(u) ,
r2
2

supu∈Φ−1(]−∞,r2[) Ψ(u)

})
and for every u1, u2 ∈ X, which are local minimum for the functional Φ− λΨ
and such that Ψ(u1) ≥ 0 and Ψ(u2) ≥ 0, one has

inf
s∈[0,1]

Ψ(su1 + (1− s)u2) ≥ 0.

Then, for each λ ∈ Λr1,r2 the functional Φ − λΨ has at least three distinct critical
points which lie in Φ−1(]−∞, r2[).

Now we give some preliminary definitions and basic concepts. Denote

X := {u ∈ H2[0, 1] | u(0) = u′(0) = 0, u(1) ≥ 0},

where H2[0, 1] is the Sobolev space of all functions u : [0, 1] → R such that u and
its distributional derivative u′ are absolutely continuous and u′′ belongs to L2[0, 1].
Obviously, X is a Hilbert space with the usual norm

‖u‖X =
(∫ 1

0
(|u′′(x)|2 + |u′(x)|2 + |u(x)|2)dx

)1/2
,

which is equivalent to the norm

‖u‖ =
(∫ 1

0
|u′′(x)|2dx

)1/2
.

The embedding X ↪→ C1[0, 1] is compact and also

(2.1) ‖u‖C1([0,1]) = max{‖u‖∞, ‖u′‖∞} ≤ ‖u‖,

for each u ∈ X (see [10]). We assume that the Lipschitz constant L of the function h
satisfies L < 1.

Definition 2.1. We mean by a (weak) solution of the problem (1.1), any function
u ∈ X such that

∫ 1

0
u′′(x)v′′(x)dx− λ

∫ 1

0
f(x, u(x))v(x)dx+ µg(u(1))v(1)−

∫ 1

0
h(u(x))v(x)dx = 0,

(2.2)

holds for every v ∈ X.

Here, we note that if f is continuous function, then every weak solution u of the
problem (1.1) is a classical solution (see [10, Lemma 2.1]).

Proposition 2.1. If u0 6≡ 0 is a weak solution for problem (1.1), then u0 is non-
negative.
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Proof. Let A = {x ∈ [0, 1] | u0(x) < 0}. Since u0 is a weak solution for problem (1.1),
then from (2.2) we have∫

A∪Ac
u′′0(x)v′′(x)dx− λ

∫
A∪Ac

f(x, u0(x))v(x)dx+ µg(u0(1))v(1)

−
∫
A∪Ac

h(u0(x))v(x)dx = 0,

for every v ∈ X. Choosing v(x) = ū0 = max{−u0(x), 0}. Since u0 is a weak solution
for problem (1.1), then u0(1) ≥ 0 and hence v(1) = 0. So, one has

−
∫
A
v′′(x)v′′(x)dx+ λ

∫
A
f(x, u0(x))u0(x)dx+

∫
A
h(u0(x))u0(x)dx = 0,

that is
−
∫
A
v′′(x)v′′(x)dx = −λ

∫
A
f(x, u0(x))u0(x)dx−

∫
A
h(u0(x))u0(x)dx ≥ 0,

which means that −‖v‖2 ≥ 0 and one has, v = 0. Hence, −u0 ≤ 0, that is, u0 ≥ 0
and the proof is complete. �

Put

F (x, t) =
∫ t

0
f(x, ξ)dξ, for all (x, t) ∈ [0, 1]× R,

G(t) =
∫ t

0
g(ξ)dξ, for all t ∈ R,

Gη = min
|t|≤η

G(t) = inf
|t|≤η

G(t), for all η > 0,

and
H(t) =

∫ t

0
h(ξ)dξ, for all t ∈ R.

We state the following proposition which will be used in the next sections.

Proposition 2.2. ([6, Proposition 2.2]) Let T : X → X∗ be the operator defined by

T (u)(v) =
∫ 1

0
u′′(x)v′′(x)dx−

∫ 1

0
h(u(x))v(x)dx,

for each u, v ∈ X. Then T admits a continuous inverse on X∗.

Now, we introduce the functional Iλ : X → R associated with (1.1), Iλ(u) :=
Φ(u)− λΨ(u) for all u ∈ X, where

Φ(u) = 1
2

∫ 1

0
|u′′(x)|2dx−

∫ 1

0
H(u(x))dx

and
Ψ(u) =

∫ 1

0
F (x, u(x))dx− µ

λ
G(u(1)),

for each u ∈ X. It is well known that Ψ is a continuously Gâteaux differentiable
functional whose differential at the point u ∈ X is

Ψ′(u)(v) =
∫ 1

0
f(x, u(x))v(x)dx− µ

λ
g(u(1))v(1)
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and furthermore, Ψ′ : X → X∗ is a compact operator (see [10, page 1602]). Moreover,
Φ is continuously Gâteaux differentiable functional whose differential at the point
u ∈ X is

Φ′(u)(v) =
∫ 1

0
u′′(x)v′′(x)dx−

∫ 1

0
h(u(x))v(x)dx,

for every v ∈ X. Also according to Proposition 2.2, functional Φ whose derivative
admits a continuous inverse on X and moreover Φ is coercive and convex.

Definition 2.2. Let Φ and Ψ be defined as above. Put Iλ = Φ− λΨ, λ > 0. We say
that u ∈ X is a critical point of Iλ when I ′λ(u) = 0{X∗}, that is, I ′λ(u)(v) = 0 for all
v ∈ X.

Remark 2.1. We note that, the weak solutions of the problem (1.1) are exactly the
critical points of the functional Iλ.

3. Main Results

To get our result, fix three positive constants θ1, θ2 and δ such that

12(1 + L)(2
3)3π4δ2∫ 1

3
4

F (x, δ)dx
< (1− L) min


θ1

2∫ 1

0
sup
|t|≤θ1

F (x, t)dx
,

θ2
2

2
∫ 1

0
sup
|t|≤θ2

F (x, t)dx


and take

λ ∈ Λ :=

6(1 + L)(2
3)3π4δ2∫ 1

3
4

F (x, δ)dx
,min


(1− L)θ1

2

2
∫ 1

0
sup
|t|≤θ1

F (x, t)dx
,

(1− L)θ2
2

4
∫ 1

0
sup
|t|≤θ2

F (x, t)dx




and set ηλ,g given by

ηλ,g := min


2λ
∫ 1

0
sup
|t|≤θ1

F (x, t)dx− (1− L)θ1
2

2Gθ1

,

4λ
∫ 1

0
sup
|t|≤θ2

F (x, t)dx− (1− L)θ2
2

4Gθ2

 ,
(3.1)

where Gθ1 and Gθ2 are assumed to be negative. It is easy to show that ηλ,g > 0. Our
main result is the following theorem.

Theorem 3.1. Suppose that there exist three positive constants θ1, θ2 and δ, with
3

4π2

√
3
2θ1 < δ < 3

8π2

√
3(1−L)
2(1+L)θ2, such that

(A1) 12π4(1 + L)(2
3)3δ2

∫ 1

0
sup
|t|≤θ1

F (x, t)dx < (1− L)θ1
2
∫ 1

3
4

F (x, δ)dx;

(A2) 24π4(1 + L)(2
3)3δ2

∫ 1

0
sup
|t|≤θ2

F (x, t)dx < (1− L)θ2
2
∫ 1

3
4

F (x, δ)dx.
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Then, for every λ ∈ Λ and for each non-positive continuous function g : R→ R there
exists ηλ,g > 0 given by (3.1) such that, for every µ ∈]0, ηλ,g[, the problem (1.1) admits
at least three weak solutions ui for i = 1, 2, 3, in X such that 0 ≤ ui(x) < θ2 for all
x ∈ [0, 1], i = 1, 2, 3.

Proof. Our aim is to apply Theorem 2.1, to problem (1.1). For this purpose, fix λ ∈ Λ
and µ ∈]0, ηλ,g[. Let Φ, Ψ : X → R be defined by

Φ(u) = 1
2

∫ 1

0
|u′′(x)|2dx−

∫ 1

0
H(u(x))dx

and
Ψ(u) =

∫ 1

0
F (x, u(x))dx− µ

λ
G(u(1)),

for every u ∈ X. As seen before, the functionals Φ and Ψ satisfy the regularity
assumptions requested in Theorem 2.1. Put

(3.2) r1 := (1− L)
2 θ2

1, r2 := (1− L)
2 θ2

2

and

(3.3) w(x) :=



0, if x ∈
[
0, 3

8

]
,

δ cos2
(4πx

3

)
, if x ∈

]3
8 ,

3
4

[
,

δ, if x ∈
[3
4 , 1

]
.

We see that w ∈ X and
‖w‖2 = 8π4δ2

(2
3

)3
.

Now, according to (2.1), for every u ∈ X
(1− L)

2 ‖u‖2 ≤ Φ(u) ≤ (1 + L)
2 ‖u‖2

holds and in particular

(3.4) 4(1− L)π4δ2
(2

3

)3
≤ Φ(w) ≤ 4(1 + L)π4δ2

(2
3

)3
.

Now, using 3
4π2

√
3
2θ1 < δ < 3

8π2

√
3(1−L)
2(1+L)θ2 and (3.4) we have 2r1 < Φ(w) < r2

2 . Since,
(1−L)

2 ‖u‖
2 ≤ Φ(u) for each u ∈ X and for i = 1, 2, we see that

Φ−1(]−∞, ri]) ={u ∈ X | Φ(u) ≤ ri}

⊆
{
u ∈ X | (1− L)

2 ‖u‖2 ≤ ri

}
⊆{u ∈ X | |u(x)| ≤ θi for each x ∈ [0, 1]}
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and it follows that

supu∈Φ−1(]−∞,r1[) Ψ(u)
r1

=
supu∈Φ−1(]−∞,r1[)

( ∫ 1

0
F (x, u(x))dx− µ

λ
G(u(1))

)
(1−L)

2 θ2
1

≤

∫ 1

0
sup
|t|≤θ1

F (x, t)dx− µ

λ
Gθ1

(1−L)
2 θ2

1
.(3.5)

On the other hand, since w(x) ∈ [0, δ] for each x ∈ [0, 1], we have

Ψ(w) =
∫ 1

0
F (x,w(x))dx− µ

λ
G(w(1)) ≥

∫ 1

3
4

F (x, δ)dx− µ

λ
G(δ).

Hence, we have

Ψ(w)
Φ(w) ≥

∫ 1
3
4
F (x, δ)dx− µ

λ
G(δ)

4(1 + L)π4δ2(2
3)3 .(3.6)

Now, since µ < ηλ,g and λ ∈ Λ one has∫ 1

0
sup
|t|≤θ1

F (x, t)dx− µ

λ
Gθ1

(1−L)
2 θ1

2 ≤1
λ
<

∫ 1

3
4

F (x, δ)dx

6(1 + L)π4δ2(2
3)3

≤2
3

∫ 1

3
4

F (x, δ)dx− µ

λ
G(δ)

4(1 + L)π4δ2(2
3)3 .(3.7)

So, from (3.5), (3.6) and (3.7), one has
supu∈Φ−1(]−∞,r1[) Ψ(u)

r1
<

2
3

Ψ(w)
Φ(w)

and hence, (b1) of Theorem 2.1 is established. As in the above process, we will have

2 supu∈Φ−1(]−∞,r2[) Ψ(u)
r2

≤
2
(∫ 1

0
sup
|t|≤θ2

F (x, t)dx− µ

λ
Gθ2

)
(1−L)

2 θ2
2 ≤ 1

λ
<

∫ 1

3
4

F (x, δ)dx

6(1 + L)π4δ2(2
3)3

≤2
3

∫ 1

3
4

F (x, δ)dx− µ

λ
G(δ)

4(1 + L)π4δ2(2
3)3 ≤ 2

3
Ψ(w)
Φ(w) ,(3.8)

that is,
supu∈Φ−1(]−∞,r2[) Ψ(u)

r2
<

1
3

Ψ(w)
Φ(w)

and hence, (b2) of Theorem 2.1 is established.
Finally, we will prove that Φ − λΨ satisfies the assumption (b3) of Theorem 2.1.

Let u1 and u2 be two local minima for Φ − λΨ. Then u1 and u2 are critical points
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for Φ − λΨ, and so, they are weak solutions for the problem (1.1). According to
Proposition 2.1 one has u1(x) ≥ 0 and u2(x) ≥ 0 for every x ∈ [0, 1]. Hence, it follows
that

inf
s∈[0,1]

Ψ(su1 + (1− s)u2) ≥ 0.

From Theorem 2.1, for every

λ ∈ Λ ⊆ Λr1,r2 =

3
2

Φ(w)
Ψ(w) , min


r1

sup
u∈Φ−1(]−∞,r1[)

Ψ(u) ,
r2/2

sup
u∈Φ−1(]−∞,r2[)

Ψ(u)


 ,

the functional Φ − λΨ has at least three distinct critical points ui, in X such that
0 ≤ ui(x) < θ2, for all x ∈ [0, 1], i = 1, 2, 3, which are the weak solutions of (1.1). �

Remark 3.1. If in Theorem 3.1 we assume f(x, 0) 6= 0, then problem (1.1) has at least
three distinct non-trivial and non-negative weak solutions.

Now, we present a variant of Theorem 3.1, which will be achieved by reversing the
role of λ and µ.

Theorem 3.2. Suppose that there exist three positive constants θ1, θ2 and δ, with
3

4π2

√
3
2θ1 < δ < 3

8π2

√
3(1−L)
2(1+L)θ2, such that

(B1) G(δ)(1− L)θ1
2 < 12Gθ1(1 + L)4δ2(2

3)3;
(B2) G(δ)(1− L)θ2

2 < 24 Gθ2(1 + L)π4δ2(2
3)3.

Then, for each

µ ∈ Λ′ :=
6(1 + L)π4δ2(2

3)3

−G(δ) ,min

(1− L)θ1
2

−2Gθ1

,
(1− L)θ2

2

−4Gθ2




and for each non-negative L1-Carathéodory function f : [0, 1] × R → R there exists
η′λ,g > 0, where

η′λ,g = min


(1− L)θ1

2 + 2µ Gθ1

2
∫ 1

0
sup
|t|≤θ1

F (x, t)dx
,
(1− L)θ2

2 + 4µ Gθ2

4
∫ 1

0
sup
|t|≤θ2

F (x, t)dx

 ,

such that, for all λ ∈]0, η′λ,g[, (1.1) admits at least three weak solutions in X.

Proof. Fix µ ∈ Λ′ and λ ∈]0, η′λ,g[ . Let Ψ̂ : X → R be defined by

Ψ̂(u) = λ

µ

∫ 1

0
F (x, u(x))dx−G(u(1)),
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for each u ∈ X. We observe that Φ(u) − λΨ(u) = Φ(u) − µΨ̂(u) for every u ∈ X.
Choose r1, r2 and w as given in (3.2) and (3.3). Now, we have

supu∈Φ−1(]−∞,r1[) Ψ̂(u)
r1

=

λ
µ

∫ 1

0
sup
|t|≤θ1

F (x, t)dx−Gθ1

(1−L)
2 θ1

2 ≤ 1
µ
<

−G(δ)
6(1 + L)π4δ2(2

3)3

≤2
3

λ

µ

∫ 1

3
4

F (x, δ)dx−G(δ)

4(1 + L)π4δ2(2
3)3 ≤ 2

3
Ψ̂(w)
Φ(w) ,

that is,
supu∈Φ−1(−∞,r1) Ψ̂(u)

r1
<

2
3

Ψ̂(w)
Φ(w)

and

2 supu∈Φ−1(]−∞,r2[) Ψ̂(u)
r2

=
2
(
λ
µ

∫ 1

0
sup
|t|≤θ2

F (x, t)dx−Gθ2

)
(1−L)

2 θ2
2 ≤ 1

µ
<

−G(δ)
6(1 + L)π4δ2(2

3)3

≤2
3

λ

µ

∫ 1

3
4

F (x, δ)dx−G(δ)

4(1 + L)π4δ2(2
3)3 ≤ 2

3
Ψ̂(w)
Φ(w) ,

that is,
supu∈Φ−1(−∞,r2) Ψ̂(u)

r2
<

1
3

Ψ̂(w)
Φ(w) .

Therefore, since for each

µ ∈ Λ′ ⊆

3
2

Φ(w)
Ψ̂(w)

, min


r1

sup
u∈Φ−1(]−∞,r1[)

Ψ̂(u)
,

r2/2
sup

u∈Φ−1(]−∞,r2[)
Ψ̂(u)


 ,

the assumptions of Theorem 2.1 are fulfilled, so the desired result is achieved from
Theorem 2.1. �

Now we will give a special case of Theorem 3.1 that the function f depends only
on t.

Corollary 3.1. Let f : R→ R be a non-negative continuous function such that

lim
t→0+

f(t)
t

= 0

and ∫ 100

0
f(ξ)dξ < 625(1− L)

6(1 + L)π4(2
3)3

∫ 1

0
f(ξ)dξ.
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Also, suppose that, 1 < 300
8π2

√
3(1−L)
2(1+L) . Then, for every

λ ∈
]

24(1 + L)π4(2
3)3∫ 1

0 f(ξ)dξ
,

2500(1− L)∫ 100
0 f(ξ)dξ

[
and for every non-positive function g : R→ R there exists δ∗λ,g > 0 such that, for each
µ ∈ [0, δ∗λ,g[, the problem

u(iυ)(x) = λf(u(x)) + h(u(x)), x ∈ [0, 1],
u(0) = u′(0) = 0,
u′′(1) = 0, u′′′(1) = µ g(u(1)),

admits at least three classical solutions.

Proof. Our aim is to employ Theorem 3.1 by choosing θ2 = 100 and δ = 1. Hence, we
have

6(1 + L)(2
3)3π4δ2∫ 1

3
4

F (x, δ)dx
=

24(1 + L)π4(2
3)3∫ 1

0 f(ξ)dξ

and
(1− L)θ2

2

4
∫ 1

0
sup
|t|≤θ2

F (x, t)dx
= 2500(1− L)∫ 100

0 f(ξ)dξ
.

Also, according to the condition 1 < 300
8π2

√
3(1−L)
2(1+L) , we have

δ <
3

8π2

√√√√3(1− L)
2(1 + L)θ2.

Moreover, since limt→0+
f(t)
t

= 0, one has

lim
t→0+

∫ t

0
f(ξ)dξ

t2
= 0.

Then, there exists a positive constant θ1 <
4π2

3

√
2
3 such that∫ θ1

0
f(ξ)dξ

θ2
1

<
1− L

48(1 + L)(2
3)3π4

∫ 1

0
f(ξ)dξ

and
θ2

1∫ θ1

0
f(ξ)dξ

>
5000∫ 100

0
f(ξ)dξ

.

Finally, a simple computation shows that all the circumstances of the Theorem 3.1
hold and so the desired result is achieved. �
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Remark 3.2. If we consider

f(t) :=


18 t2, if t ≤ 1,
−18000 t+ 18018, if 1 < t ≤ 1.001,
0, if t > 1.001,

and h(t) = 1
2 |t| for all t ∈ R, then we can consider L = 1

2 . In this case, a simple
calculation reveals that, all the conditions of Corollary 3.1 are established.

Acknowledgements. The authors express their gratitude to the referees who re-
viewed this paper.
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