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NONNEGATIVE SIGNED EDGE DOMINATION IN GRAPHS

N. DEHGARDI1∗ AND L. VOLKMANN2

Abstract. A nonnegative signed edge dominating function of a graphG = (V,E) is
a function f : E → {−1, 1} such that

∑
e′∈N [e] f(e′) ≥ 0 for each e ∈ E, where N [e]

is the closed neighborhood of e. The weight of a nonnegative signed edge dominating
function f is ω(f) =

∑
e∈E f(e). The nonnegative signed edge domination number

γ′ns(G) of G is the minimum weight of a nonnegative signed edge dominating function
of G. In this paper, we prove that for every tree T of order n ≥ 3, 1 − n

3 ≤
γ′ns(T ) ≤

⌊
n−1

3
⌋
. Also we present some sharp bounds for the nonnegative signed

edge domination number. In addition, we determine the nonnegative signed edge
domination number for the complete graph, and the complete bipartite graph Kn,n.

1. Introduction

Let G be a simple graph with vertex set V = V (G) and edge set E = E(G). The
order |V | of G is denoted by n = n(G) and the size |E| of G is denoted by m = m(G).
For every vertex v ∈ V , the open neighborhood of v is the set N(v) = {u ∈ V | uv ∈
E} and the closed neighborhood of v is the set N [v] = N(v) ∪ {v}. The degree of a
vertex v ∈ V is degG(v) = deg(v) = |N(v)|. The minimum and maximum degrees of
a graph G are denoted by δ = δ(G) and ∆ = ∆(G), respectively. Two edges e1, e2 of
G are called adjacent if they are distinct and have a common end-vertex. For every
edge e ∈ E, the open neighborhood NG(e) = N(e) is the set of all edges adjacent
to e and its closed neighborhood is NG[e] = N [e] = N(e) ∪ {e}. If X ⊆ V (G), then
G[X] is the induced subgraph. Any spanning subgraph of a graph G is referred to as
a factor of G. A k-regular factor is called a k-factor. We write Kn for the complete
graph of order n, Kp,q for the complete bipartite graph with partite sets X and Y ,
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where |X| = p and |Y | = q, Cn for a cycle of length n and Pn for a path of length
n− 1. For a subset S ⊆ E of edges of a graph G and a function f : E → R, we define
f(S) = ∑

x∈S f(x). For terminology and notation on graph theory not defined here,
the reader is referred to [7, 8, 13].

A signed dominating function (SDF) on a graph G is a function f : V → {−1, 1}
such that ∑u∈N [v] f(u) ≥ 1 for each vertex v ∈ V . The weight of an SDF is the sum
of its function values over all vertices. The signed domination number of G, denoted
by γs(G), is the minimum weight of an SDF in G. The signed domination number
was introduced by Dunbar et al. [6].

For a positive integer k, a signed edge k-dominating function (SEkDF) on a graph
G is a function f : E → {−1, 1} such that ∑e′∈N [e] f(e′) ≥ k for each edge e ∈ E. The
weight of an SEkDF is the sum of its function values over all edges. The signed edge
k-domination number of G, denoted by γ′sk(G), is the minimum weight of an SEkDF
in G. The signed edge k-domination number was introduced by Carney et al. [2]. The
special case k = 1 was introduced and investigated in [15]. For more information the
reader may also consult [3, 4, 10,11,14,16].

A nonnegative signed dominating function (NNSDF) on a graph G is a function
f : V → {−1, 1} such that ∑x∈N [v] f(x) ≥ 0 for each vertex v ∈ V . The weight of an
NNSDF is the sum of its function values over all vertices. The nonnegative signed
domination number of G, denoted by γNNs (G), is the minimum weight of an NNSDF
in G. The nonnegative signed domination number was introduced by Huang et al. [9].
For more information the reader may also consult [1, 5].

A nonnegative signed edge dominating function (NNSEDF) on a graph G is a
function f : E → {−1, 1} such that ∑e′∈N [e] f(e′) ≥ 0 for each edge e ∈ E. The
weight of an NNSEDF is the sum of its function values over all edges. The nonnegative
signed edge domination number of G, denoted by γ′ns(G), is the minimum weight of
an NNSEDF in G. A γ′ns(G)-function is an NNSEDF on G of weight γ′ns(G). For an
NNSEDF f , let Ei = Ei(f) = {e ∈ E : f(e) = i} for i = −1, 1.

The aim of this paper, is to initiate the study of the nonnegative signed edge
domination number. We prove that for every tree T of order n ≥ 3, 1− n

3 ≤ γ′ns(T ) ≤⌊
n−1

3

⌋
. Also we present some sharp bounds for the nonnegative signed edge domination

number. In addition, we determine the nonnegative signed edge domination number
for the complete graph, and the complete bipartite graph Kn,n.

We make use of the following results in this paper.

Observation 1.1. Let G be a connected graph of order n ≥ 2. If f is an NNSEDF on
G, then:

(a) m = |E−1|+ |E1|;
(b) ω(f) = |E1| − |E−1|.

Observation 1.2. If G is a connected graph of size m ≥ 1, then γ′ns(G) ≡ m (mod 2).

Proposition 1.1. [1] For any even graph G, γNNs (G) = γs(G).
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Proposition 1.2. [6] For n ≥ 3, γs(Cn) = n
3 when n ≡ 0 (mod 3), γs(Cn) =

⌊
n
3

⌋
+ 1

when n ≡ 1 (mod 3), and γs(Cn) =
⌊
n
3

⌋
+ 2 when n ≡ 2 (mod 3).

Proposition 1.3. [9] For any path Pn, we have γNNs (Pn) = n− 2
⌈
n
3

⌉
.

Proposition 1.4. [9] Let Kn be a complete graph. Then γNNs (Kn) = 0 when n is
even and γNNs (Kn) = 1 when n is odd.

The line graph of a graph G, written L(G), is the graph whose vertices are the
edges of G, with ef ∈ E(L(G)) when e = uv and f = vw in G. It is easy to see that
L(K1,n) = Kn, L(Cn) = Cn and L(Pn) = Pn−1. The proof of the following result is
straightforward and therefore omitted.

Observation 1.3. For any connected graph G of order n ≥ 3, γ′ns(G) = γNNs (L(G)).

Using Observation 1.3, Propositions 1.1, 1.2, 1.3 and 1.4, we obtain the next results.

Corollary 1.1. For n ≥ 1, γ′ns(K1,n) = 0 when n is even and γ′ns(K1,n) = 1 when n
is odd.

Corollary 1.2. For n ≥ 2, γ′ns(Pn) = n− 1− 2
⌈
n−1

3

⌉
.

Corollary 1.3. For n ≥ 3, γ′ns(Cn) = n
3 when n ≡ 0 (mod 3), γ′ns(Cn) =

⌊
n
3

⌋
+ 1

when n ≡ 1 (mod 3) and γ′ns(Cn) =
⌊
n
3

⌋
+ 2 when n ≡ 2 (mod 3).

2. Trees

In this section we prove that for every tree T of order n ≥ 3, 1− n
3 ≤ γ′ns(T ) ≤

⌊
n−1

3

⌋
.

A vertex of degree one is called a leaf, and its neighbor is called a support vertex.
If v is a support vertex, then Lv will denote the set of all leaves adjacent to v. A
support vertex v is called a strong support vertex if |Lv| > 1. A strong support vertex
is said to be an end-strong support vertex if all its neighbors except one of them are
leaves. For a vertex v in a rooted tree T , let C(v) denotes the set of children of v,
D(v) denotes the set of descendants of v and D[v] = D(v) ∪ {v}. Also, the depth of
v, depth(v), is the largest distance from v to a vertex in D(v). The maximal subtree
at v is the subtree of T induced by D(v) ∪ {v}, and is denoted by Tv.

For r, s ≥ 1, a double star S(r, s) is a tree with exactly two vertices that are not
leaves, with one adjacent to r leaves and the other to s leaves.

Proposition 2.1. For r ≥ s ≥ 1, γ′ns(S(r, s)) = 0 when r+s is odd and γ′ns(S(r, s)) =
1 when r + s is even.

Proof. Let S(r, s) be a double star whose central vertices are x, y with r pendant edges
xxi and s pendant edges yyi. Since S(1, 1) = P4, we have γ′ns(P4) = 1 by Corollary
1.2. Assume that f is a γ′ns(S(r, s))-function. Consider the following two cases.
Case 1. r + s is odd.
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We may assume that r is odd and s is even (the case r is even and s is odd, is
similar). Define g : E(S(r, s))→ {−1, 1} by g(xy) = 1, g(xxi) = (−1)i for 1 ≤ i ≤ r
and g(yyj) = (−1)j for 1 ≤ j ≤ s. Obviously, g is an NNSEDF of S(r, s) of weight
0 which implies γ′ns(S(r, s)) ≤ 0. Now, we show that γ′ns(S(r, s)) = ω(f) ≥ 0 in this
case. Since N [xy] = E(S(r, s)), we have

γ′ns(S(r, s)) = ω(f) = f(E(S(r, s))) = f(N [xy]) ≥ 0.
Hence γ′ns(S(r, s)) = 0 when r + s is odd.
Case 2. r + s is even.

First let r and s be odd. Define g : E(S(r, s))→ {−1, 1} by g(xy) = −1, g(xxi) =
(−1)i+1 for 1 ≤ i ≤ r and g(yyj) = (−1)j+1 for 1 ≤ j ≤ s. Obviously, g is an
NNSEDF of S(r, s) of weight 1 and hence γ′ns(S(r, s)) ≤ 1. Now let r and s be even.
Define g : E(S(r, s)) → {−1, 1} by g(xy) = 1, g(xxi) = (−1)i for 1 ≤ i ≤ r and
g(yyj) = (−1)j for 1 ≤ j ≤ s. Obviously, g is an NNSEDF of S(r, s) of weight 1 and
hence γ′ns(S(r, s)) ≤ 1. Now, we show that γ′ns(S(r, s)) = ω(f) ≥ 1 when r + s is
even. Since N [xy] = E(S(r, s)), we have ω(f) = f(N [xy]) ≥ 0. By Observation 1.2,
γ′ns(S(r, s)) = ω(f) ≡ n (mod 2). Hence γ′ns(S(r, s)) ≥ 1 and γ′ns(S(r, s)) = 1 when
r + s is even. This complete the proof. �

Let r ≥ 0 be an integer and Tr be the tree obtained from the star K1,2r+1 with
central vertex x and leaves x1, x2, . . . , x2r+1 by adding exactly one pendant edge at xi
such that xiyi ∈ E(Tr) for each 1 ≤ i ≤ r + 1 (Figure 1). Suppose F = {Tr | r ≥ 0}.
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Figure 1. Family F

Example 2.1. If T ∈ F, then γ′ns(T ) = 1− |V (T )|
3 .

Proof. Let T ∈ F. Then T = Tr for some integer r ≥ 0. To show that γ′ns(T ) ≤
1 − |V (T )|

3 , define f : E(T ) → {−1, 1} by f(xxi) = 1 for each 1 ≤ i ≤ r + 1 and
f(e) = −1 otherwise. Clearly, f is an NNSEDF of T of weight 1 − |V (T )|

3 and so
γ′ns(T ) ≤ 1 − |V (T )|

3 . Now, we show that γ′ns(T ) ≥ 1 − |V (T )|
3 . Let f be a γ′ns(T )-

function. By definition, f(N [xiyi]) = f(xxi) + f(xiyi) ≥ 0 for each 1 ≤ i ≤ r + 1.
This implies that

γ′ns(T ) = ω(f) =
r+1∑
i=1

f(N [xiyi]) +
2r+1∑
i=r+2

f(xxi) ≥ −r = 1− |V (T )|
3 .

Thus γ′ns(T ) = 1− |V (T )|
3 and the proof is complete. �
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The next result is an immediate consequence of Example 2.1.

Corollary 2.1. For every integer r ≥ 0, there exists a connected graph G such that
γ′ns(G) = −r.

Theorem 2.1. Let T be a tree of order n ≥ 2. Then

γ′ns(T ) ≥ 1− n

3 .

Proof. The proof is by induction on n. If diam(T ) ≤ 3, then T is a star or a double
star and by Corollary 1.1 and Proposition 2.1, we have γ′ns(T ) ≥ 1− n

3 with equality
if T = K1,2. Hence the statement holds for all trees T with diam(T ) ≤ 3 as well
as all trees of order n ≤ 4. Assume that T is an arbitrary tree of order n ≥ 5 and
diam(T ) ≥ 4. Let f be a γ′ns(T )-function. We proceed further with a series of claims
that we may assume satisfied by the tree T and the NNSEDF f .
Claim 1. T has no non-pendant edge e with f(e) = −1.
Proof. Assume that e = u1u2 ∈ E(T ) is a non-pendant edge in T with f(e) = −1.
Let T − e = Tu1 ∪ Tu2 , where Tui

is the component of T − e containing ui for i = 1, 2.
Obviously, γ′ns(T ) = f(E(Tu1)) + f(E(Tu2))− 1 and the function f , restricted to Tui

is an NNSEDF and hence γ′ns(Tui
) ≤ f(E(Tui

)) for i = 1, 2. Clearly, |V (Tui
)| ≥ 2 for

each i = 1, 2. By the induction hypothesis we obtain

γ′ns(T ) ≥ γ′ns(Tu1) + γ′ns(Tu2)− 1 ≥ 1− n

3 .

Claim 2. T has no two pendant edges vu1 and vu2 with f(vu1) = 1 and f(vu2) = −1.
Proof. Let vu1 and vu2 be two pendant edges in T such that f(vu1) = 1 and
f(vu2) = −1. Let T ′ = T − {u1, u2}. Since |V (T )| ≥ 5, we have |V (T ′)| ≥ 3. Clearly,
the function f , restricted to T ′ is an NNSEDF on T ′, and by the induction hypothesis
we have

γ′ns(T ) ≥ γ′ns(T ′) ≥ 1− n− 2
3 > 1− n

3 .

We conclude from Claim 2 that all pendant edges at a vertex are either −1 edges or
positive edges. Let v1v2 . . . vd be a diametral path in T chosen to maximize degT (v2)
and root T at vd. Assume that E(v) is the set of all edges incident to the vertex
v. Since f is a γ′ns(T )-function, we have f(v) = ∑

e∈E(v) f(e) ≥ 0 for every support
vertex v.
Claim 3. deg(v2) = 2.
Proof. Let deg(v2) ≥ 3. Since v2 is a support vertex, f(v2) = ∑

e∈E(v2) f(e) ≥ 0. It
follows that all pendant edges at v2 are 1 edges. In particular f(v1v2) = 1. If there is
no −1 pendant edge at v3, then obviously the function f , restricted to T ′ = T − v1 is
an NNSEDF of T ′ and γ′ns(T ) = ω(f) = ω(f |T ′) + 1. By the induction hypothesis we
have

γ′ns(T ) ≥ 1− n− 1
3 + 1 > 1− n

3 .
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Let v3z be a -1 pendant edge at v3, and let T ′ = T − {v1, z}. Obviously, the function
f , restricted to T ′ = T − {v1, z} is an NNSEDF of T ′ and γ′ns(T ) = ω(f) = ω(f |T ′).
By the induction hypothesis we have

γ′ns(T ) ≥ 1− n− 2
3 > 1− n

3 .

Claim 4. deg(v3) = 2.
Proof. Let deg(v3) ≥ 3. By the choice of the diametral path, every support vertex
adjacent to v3 has degree 2. Clearly f(v2) ≥ 0. First let f(v2) = 2. Then f(v1v2) =
f(v2v3) = 1. If there is no −1 pendant edge at v3, then the function f , restricted to
T ′ = T − v1 is an NNSEDF of T ′ of weight ω(f)− 1 and it follows from the induction
hypothesis that γ′ns(T ) > 1 − n

3 . Hence, we assume that there is a −1 pendant
edge at v3, say v3z. Then the function f |T−{v1,z} is an NNSEDF of T − {v1, z} and
by the induction hypothesis we obtain γ′ns(T ) > 1 − n

3 . Now, let f(v2) = 0. Then
f(v1v2) = −1 and f(v2v3) = 1. First assume that there is no −1 pendant edge at v3. If
there is no −1 pendant edge at v4, then the function f , restricted to T ′ = T −{v1, v2}
is an NNSEDF of T ′ of weight ω(f) and it follows from the induction hypothesis that
γ′ns(T ) > 1 − n

3 . Hence, we assume that there is a -1 pendant edge at v4, say v4z.
Then the function f |T−{v1,v2,z} is an NNSEDF of T − {v1, v2, z} and by the induction
hypothesis we obtain γ′ns(T ) ≥ 1− n

3 . Now assume that there is a −1 pendant edge
at v3, say v3z. Then the function f |T−{v1,v2,z} is an NNSEDF of T −{v1, v2, z} and by
the induction hypothesis we obtain γ′ns(T ) ≥ 1− n

3 .
Hence deg(v2) = deg(v3) = 2. We now return to the proof of the theorem. If there

is no −1 pendant edge at v4, then the function f , restricted to T ′ = T −{v1, v2} is an
NNSEDF of T ′ of weight at most ω(f) and it follows from the induction hypothesis
that γ′ns(T ) > 1 − n

3 . Hence we assume that there is at least one −1 pendant edge
at v4. If there are two −1 pendant edges at v4, say v4z, v4z

′, then the function
f |T−{v1,v2,v3,z} is an NNSEDF of T −{v1, v2, v3, z} and by the induction hypothesis we
obtain γ′ns(T ) > 1 − n

3 . Hence assume that there is one -1 pendant edges at v4, say
v4z. Then the function f |T−{v1,v2} is an NNSEDF of T −{v1, v2} and by the induction
hypothesis we obtain γ′ns(T ) > 1− n

3 . This completes the proof. �

Example 2.1 shows that Theorem 2.1 is sharp.

Theorem 2.2. Let T be a tree of order n ≥ 3. Then

γ′ns(T ) ≤
⌊
n− 1

3

⌋
.

Proof. The proof is by induction on n. If diam(T ) ≤ 3, then T is a star or a
double star and by Corollary 1.1 and Proposition 2.1, we have γ′ns(T ) ≤ bn−1

3 c. If
n = 5 and diam(T ) = 4 or n = 6 and diam(T ) = 5, then T is path and the result
follows by Corollary 1.2. Let n = 6 and diam(T ) = 4. Assume that v1v2v3v4v5 is
diametral path in T . Then T has exactly one pendant edge at v2 (resp. v4) or one
pendant edge at v3. If T has exactly one pendant edge at v2, then the function
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f : E(T ) → {−1, 1} by f(v1v2) = f(v2v3) = f(v3v4) = 1 and f(e) = −1 otherwise,
is an NNSEDF of T of weight 1. If T has exactly one pendant edge at v3, then the
function f : E(T ) → {−1, 1} by f(v2v3) = f(v3v4) = 1 and f(e) = −1 otherwise, is
an NNSEDF of T of weight −1. Hence, the statement is true for all trees of order
n ≤ 6. Assume that T is an arbitrary tree of order n ≥ 7 and diam(T ) ≥ 4. We
proceed further with a series of claims that we may assume satisfied by the tree T .
Claim 1. T has no end-strong support vertex of degree at least 4.
Proof. Let T have an end-strong support vertex w of degree at least 4 and let
w1, w2, w3 be three leaves adjacent to w. Now let T ′ = T − {w1, w2}. Then for any
γ′ns(T ′)-function f , f(N [w3w]) ≥ 0. Now any γ′ns(T )-function f , can be extended
to an NNSEDF g of T as follows, g(ww1) = 1, g(ww2) = −1 and g(e) = f(e) for
e ∈ E(T ′). It follows from the induction hypothesis that

γ′ns(T ) ≤ ω(g) = ω(f) ≤
⌊
n− 3

3

⌋
≤
⌊
n− 1

3

⌋
.

Let v1v2 . . . vd be a diametral path in T chosen to maximize degT (v2) and root T in
vd. By Claim 1, v2 and any support vertex adjacent to v3, except v4, has degree 2
or 3.
Claim 2. deg(v2) = 2.
Proof. Let deg(v2) = 3 and v′1 ∈ N(v2)−{v1, v3}. If deg(v3) = 2, then let T ′ = T−Tv2 .
Now any γ′ns(T ′)-function f , can be extended to an NNSEDF of T by assigning 1 to
v1v2, v2v3 and −1 to v′1v2. Then by the induction hypothesis we obtain

γ′ns(T ) ≤ ω(g) = ω(f) + 1 ≤
⌊
n− 4

3

⌋
+ 1 = bn− 1

3 c.

If v3 is adjacent to a leaf w, then let T ′ = T − Tv2 . Hence v3 is a support vertex
in T ′ and for any γ′ns(T ′)-function f , f(v3) ≥ 0. Now any γ′ns(T ′)-function f , can be
extended to an NNSEDF of T by assigning 1 to v1v2, v2v3 and −1 to v′1v2. Then by
the induction hypothesis we obtain

γ′ns(T ) ≤ ω(g) = ω(f) + 1 ≤
⌊
n− 4

3

⌋
+ 1 =

⌊
n− 1

3

⌋
.

Now let v3 be adjacent to a support vertex w2 not in {v2, v4}. First let deg(w2) = 2
and let w1 be the leaf adjacent to w2. Let T ′ = T −{v1, v

′
1, v2}. Since f(N [w2v3]) ≥ 0,

we have f(v3) ≥ −1. Now any γ′ns(T ′)-function f , can be extended to an NNSEDF g
of T as follows, g(v′1v2) = −1, g(v1v2) = g(v2v3) = 1 and g(e) = f(e) for e ∈ E(T ′).
Then by the induction hypothesis we obtain

γ′ns(T ) ≤ ω(g) = ω(f) + 1 ≤
⌊
n− 4

3

⌋
+ 1 =

⌊
n− 1

3

⌋
.

Hence let any support vertex adjacent to v3, except v4, have degree 3. Assume
that N(v3) − {v2, v4} = {u1, u2, . . . , uk}. Let xi, x′i be the leaves adjacent to ui for
1 ≤ i ≤ k. Let T ′ = T − ({v1, v

′
1, v2} ∪ {ui, xi, x′i | 1 ≤ i ≤ k}). Hence v3 is a

leaf in T ′ and for any γ′ns(T ′)-function f , f(v3) ≥ −1. Now any γ′ns(T ′)-function
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f , can be extended to an NNSEDF g of T as follows, g(v′1v2) = g(x′iui) = −1,
g(v1v2) = g(v2v3) = g(xiui) = g(uiv3) = 1, for 1 ≤ i ≤ k, and g(e) = f(e) for
e ∈ E(T ′). Then by the induction hypothesis we obtain

γ′ns(T ) ≤ ω(g) = ω(f) + k + 1 ≤
⌊
n− 1− (3k + 3)

3

⌋
+ k + 1 =

⌊
n− 1

3

⌋
.

By Claim 1 and 2, v2 and any support vertex adjacent to v3, except v4, has degree 2.
Claim 3. deg(v3) = 2.
Proof. Let deg(v3) ≥ 3. If v3 is adjacent to a leaf w, then let T ′ = T − Tv2 . Hence
v3 is a support vertex in T ′ and for any γ′ns(T ′)-function f , f(v3) ≥ 0. Now any
γ′ns(T ′)-function f , can be extended to an NNSEDF of T by assigning 1 to v2v3, −1
to v1v2. Then by the induction hypothesis we obtain

γ′ns(T ) ≤ ω(g) = ω(f) ≤
⌊
n− 3

3

⌋
≤
⌊
n− 1

3

⌋
.

Hence let any vertex adjacent to v3, except v4, be a support vertex. Assume that
N(v3) − {v2, v4} = {u1, u2, . . . , uk}. Let xi be the leaf adjacent to ui for 1 ≤ i ≤ k.
Let T ′ = T − ({v1, v2} ∪ {ui, xi | 1 ≤ i ≤ k}). Hence v3 is a leaf in T ′ and for any
γ′ns(T ′)-function f , f(v3) ≥ −1. Now any γ′ns(T ′)-function f , can be extended to
an NNSEDF g of T as follows, g(v1v2) = g(xiui) = −1, g(v2v3) = g(uiv3) = 1, for
1 ≤ i ≤ k, and g(e) = f(e) for e ∈ E(T ′). Then by the induction hypothesis we
obtain

γ′ns(T ) ≤ ω(g) = ω(f) ≤
⌊
n− 1− (2k + 2)

3

⌋
<
⌊
n− 1

3

⌋
.

By Claim 1, 2 and 3, v2, and any support vertex with depth 2 of v4, except v5, has
degree 2.
Claim 4. deg(v4) = 2.
Proof. Let deg(v4) ≥ 3. If v4 is adjacent to a leaf w, then let T ′ = T − Tv3 . Hence v4
is a support vertex in T ′ and for any γ′ns(T ′)-function f , f(v4) ≥ 0. Now any γ′ns(T ′)-
function f , can be extended to an NNSEDF g of T by assigning 1 to v2v3, v3v4, −1
to v1v2. Then by the induction hypothesis we obtain γ′ns(T ) ≤ ω(g) = ω(f) + 1 ≤
bn−4

3 c+ 1 = bn−1
3 c. Now let v4 be adjacent to a vertex w such that deg(w) = 2. Let

T ′ = T −Tv3 . Since f(N [wv4]) ≥ 0, we have f(v4) ≥ −1. Now any γ′ns(T ′)-function f ,
can be extended to an NNSEDF g of T by assigning 1 to v2v3, v3v4, -1 to v1v2. Then
by the induction hypothesis we obtain

γ′ns(T ) ≤ ω(g) = ω(f) + 1 ≤
⌊
n− 4

3

⌋
+ 1 =

⌊
n− 1

3

⌋
.

Hence let any vertex adjacent to v4, except v3, v5, be a strong support vertex. Assume
that N(v4) − {v3, v5} = {u1, u2, . . . , uk}. Let xi, x′i be the leaves adjacent to ui for
1 ≤ i ≤ k. Let T ′ = T − ({v1, v2, v3} ∪ {ui, xi, x′i | 1 ≤ i ≤ k}). Hence v4 is a
leaf in T ′ and for any γ′ns(T ′)-function f , f(v4) ≥ −1. Now any γ′ns(T ′)-function
f , can be extended to an NNSEDF g of T as follows, g(v1v2) = g(x′iui) = −1,
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g(v2v3) = g(v3v4) = g(xiui) = g(uiv3) = 1, for 1 ≤ i ≤ k, and g(e) = f(e) for
e ∈ E(T ′). Then by the induction hypothesis we obtain

γ′ns(T ) ≤ ω(g) = ω(f) + k + 1 ≤
⌊
n− 1− (3k + 3)

3

⌋
+ k + 1 =

⌊
n− 1

3

⌋
.

We now return to the proof of the theorem. Assume that T ′ = T − Tv3 . Then
f(v4) ≥ −1 and any γ′ns(T ′)-function f , can be extended to an NNSEDF of T by
assigning −1 to v1v2 and 1 to v2v3, v3v4. Thus

γ′ns(T ) ≤ ω(f) + 1 ≤
⌊
n− 1− 3

3

⌋
+ 1 =

⌊
n− 1

3

⌋
.

This complete the proof. �

Corollary 1.2 shows that Theorem 2.2 is sharp for n 6≡ 2 (mod 3).

3. Bounds on γ′ns(G)

In this section we present basic properties of γ′ns(G) and sharp bounds on the
nonnegative signed edge domination number of a graph.

Theorem 3.1. If G is a graph of size m, maximum degree ∆ and minimum degree
δ, then

γ′ns(G) ≥ 2m(δ −∆)
2∆− 1 .

Proof. Let f be a γ′ns(G)-function and define g : E → {0, 2} by g(e) = f(e) + 1 for
each e ∈ E. We have∑

e∈E
g(N [e]) ≥

∑
e=uv∈E

(f(N [e]) + deg(u) + deg(v)− 1)

≥ 2mδ +
∑

e=uv∈E
(f(N [e])− 1)

≥ 2mδ −m = m(2δ − 1).

On the other hand,∑
e∈E

g(N [e]) =
∑

e=uv∈E
(deg(u) + deg(v)− 1)g(e)

≤
∑
e∈E

(2∆− 1)g(e)

= (2∆− 1)g(E).

Thus g(E) ≥ m(2δ−1)
2∆−1 . Since f(E) = g(E)−m, we have

γ′ns(G) ≥ 2m(δ −∆)
2∆− 1 . �

For some special cases we can improve Theorem 3.1.
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Theorem 3.2. Let G be a graph of size m, maximum degree ∆ and minimum degree
δ. If deg(x) is odd for each vertex x or if deg(x) is even for each vertex x, then

γ′ns(G) ≥ m(2δ − 2∆ + 1)
2∆− 1 .

Proof. Let f be a γ′ns(G)-function and define g : E → {0, 2} by g(e) = f(e) + 1 for
each e ∈ E. Since deg(x) is odd for each vertex x or deg(x) is even for each vertex x,
we observe that f(N [e]) is odd for each edge e, and therefore f(N [e]) ≥ 1. As in the
proof of Theorem 3.1, it follows that∑

e∈E
g(N [e]) ≥ 2mδ +

∑
e=uv∈E

(f(N [e])− 1) ≥ 2mδ.

Using the upper bound ∑
e∈E

g(N [e]) ≤ (2∆− 1)g(E),

from the proof of Theorem 3.1, we obtain analogously the desired result. �

Corollary 3.1. If G is an r-regular graph of size m with r ≥ 1, then γ′ns(G) ≥ m
2r−1 .

For r = 1 and the complete graphs K4 and K5 Corollary 3.1 is sharp. In addition,
if n ≡ 0, 1 (mod 3), then the cycle Cn shows that Corollary 3.1 is sharp for r = 2 too.

Next we present a sharp upper bound on the nonnegative signed edge domination
number for some special regular graphs.

Theorem 3.3. Let p ≥ 1 be an integer, and let G be a (2p+ 1)-regular graph with a
p-factor. If G is of order n, then γ′ns(G) ≤ n

2 .

Proof. LetH be a p-factor of G. Define the function f : E(G)→ {−1, 1} by f(e) = −1
for e ∈ E(H) and f(e) = 1 otherwise. Then f(N [e]) = 3 for e ∈ E(H) and f(N [e]) = 1
otherwise. Therefore f is an NNSEDF on G of weight

(2p+ 1)n
2 − pn = n

2
and thus γ′ns(G) ≤ n

2 . �

Using the well-known result by Katerinis [12], that an r-regular graph with a 1-
factor has a k-factor for all k ∈ {1, 2, . . . , r}, Theorem 3.3 leads to the following
corollary.

Corollary 3.2. Let p ≥ 1 be an integer, and let G be a (2p+ 1)-regular graph with a
1-factor. If G is of order n, then γ′ns(G) ≤ n

2 .

Now we determine the nonnegative signed edge domination number for complete
graphs, and complete bipartite graphs Kn,n.

Theorem 3.4. For n ≥ 3, γ′ns(Kn) =
⌊
n
2

⌋
.
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Proof. First let n = 2p + 1 for an integer p ≥ 1. If n = 3, then the desired result
follows from Corollary 1.3. Let now p ≥ 2 and u1, u2, . . . , u2p+1 be the vertex set
of G = K2p+1. Let H1 = G[{u1, u2, . . . , up+1}] and H2 = G[{up+2, up+3, . . . , u2p+1}].
Define the function f : E(G) → {−1, 1} by f(e) = −1 for e ∈ E(H1) ∪ E(H2)
and f(e) = 1 otherwise. Then f(N [e]) = 2p − 2(p − 1) − 1 = 1 for e ∈ E(H1),
f(N [e]) = 2p+ 2− 2(p− 2)− 1 = 5 for e ∈ E(H2) and f(N [e]) = 2p− p− (p− 1) = 1
otherwise. Therefore f is an NNSEDF on K2p+1 and thus

γ′ns(K2p+1) ≤ p(p+ 1)− p(p+ 1)
2 − p(p− 1)

2 = p.

Next we will show that γ′ns(K2p+1) ≥ p for p ≥ 2. Let f be a γ′ns(G)-function,
and let H be the subgraph with vertex set V (G) and edge set E−1 = E−1(f). We
will show that |E−1| ≤ p2. Suppose to the contrary that |E−1| ≥ p2 + 1. Let
d1 ≥ d2 ≥ · · · ≥ d2p+1 be the degree sequence of H. Then 2|E−1| =

∑2p+1
i=1 di ≥ 2p2 + 2

and so 2p ≥ d1 ≥ p. Since ∑e′∈N [e] f(e′) ≥ 0 for each edge e ∈ E(G), we observe that

(3.1) dH(x) + dH(y) ≤ 2p− 1, when e = xy ∈ E1

and

(3.2) dH(x) + dH(y) ≤ 2p, when e = xy ∈ E−1.

If d1 = 2p, then we obtain the contradiction d1 + d2 ≥ 2p+ 1. Let now d1 = 2p− k for
an integer 1 ≤ k ≤ p, and assume that dH(u1) = 2p− k. Let u1y ∈ E1. If dH(y) ≥ k,
then dH(u1) + dH(y) ≥ 2p, a contradiction to (1). Therefore dH(x) ≤ k − 1 for
x ∈ V (H)−NH [u1]. If dH(y) ≥ k + 1 for y ∈ NH(u1), then dH(u1) + dH(y) ≥ 2p+ 1,
a contradiction to (2). Therefore dH(x) ≤ k for x ∈ NH(u1). Since |NH(u1)| = 2p− k,
we deduce that

2p2 + 2 ≤
2p+1∑
i=1

di ≤ k(2p− k) + 2p− k + (k − 1)k = 2pk + 2p− 2k.

This implies
(p− 1)2 = p2 − 2p+ 1 ≤ k(p− 1)− p,

and hence we obtain the contradiction

p− 1 ≤ k − p

p− 1 .

Altogether, we see that |E−1| ≤ p2 and so γ′ns(K2p+1) ≥ (2p+1)2p
2 − 2p2 = p.

Second let n = 2p for an integer p ≥ 2. It is a part of mathematical folklore that
the complete graph K2p is 1-factorable, and therefore K2p has a (p− 1)-factor. Hence
it follows from Theorem 3.3 that γ′ns(K2p) ≤ p.

Next we will show that γ′ns(K2p) ≥ p. Let f be a γ′ns(G)-function, and let H be
the subgraph with vertex set V (G) and edge set E−1 = E−1(f). We will show that
|E−1| ≤ p2 − p. Suppose to the contrary that |E−1| ≥ p2 − p + 1. Let d1 ≥ d2 ≥
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· · · ≥ d2p be the degree sequence of H. Then 2|E−1| =
∑2p
i=1 di ≥ 2p2 − 2p+ 2 and so

2p− 1 ≥ d1 ≥ p. Since ∑e′∈N [e] f(e′) ≥ 0 for each edge e ∈ E(G), we observe that
(3.3) dH(x) + dH(y) ≤ 2p− 2, when e = xy ∈ E1

and
(3.4) dH(x) + dH(y) ≤ 2p− 1, when e = xy ∈ E−1.

If d1 = 2p−1, then we obtain the contradiction d1+d2 ≥ 2p. Let now d1 = 2p−k for an
integer 2 ≤ k ≤ p, and assume that dH(u1) = 2p− k. Let u1y ∈ E1. If dH(y) ≥ k− 1,
then dH(u1) + dH(y) ≥ 2p − 1, a contradiction to (3). Therefore dH(x) ≤ k − 2 for
x ∈ V (H) − NH [u1]. If dH(y) ≥ k for y ∈ NH(u1), then dH(u1) + dH(y) ≥ 2p, a
contradiction to (4). Therefore dH(x) ≤ k−1 for x ∈ NH(u1). Since |NH(u1)| = 2p−k,
we deduce that

2p2 − 2p+ 2 ≤
2p∑
i=1

di ≤ (k − 1)(2p− k) + 2p− k + (k − 2)(k − 1) = 2pk − 3k + 2.

This leads to the contradiction

p ≤ k − k

2(p− 1) .

Altogether, we see that |E−1| ≤ p2−p and so γ′ns(K2p) ≥ 2p(2p−1)
2 −2p2 +2p = p. �

Theorem 3.5. For n ≥ 2, γ′ns(Kn,n) = n.

Proof. Let X = {u1, u2, . . . , un} and Y = {v1, v2, . . . , vn} be a bipartition of G = Kn,n.
First let n = 2p+ 1 for an integer p ≥ 1. Clearly, K2p+1,2p+1 has p-factor, and thus

Theorem 3.3 implies γ′ns(K2p+1,2p+1) ≤ 2p+ 1.
Next we will show that γ′ns(K2p+1,2p+1) ≥ 2p+ 1. Let f be a γ′ns(G)-function, and

let H be the subgraph with vertex set V (G) and edge set E−1 = E−1(f). We will
show that |E−1| ≤ 2p2 +p. Suppose to the contrary that |E−1| ≥ 2p2 +p+1. Let d1 ≥
d2 ≥ . . . ≥ d4p+2 be the degree sequence of H. Then 2|E−1| =

∑4p+2
i=1 di ≥ 4p2 + 2p+ 2

and so 2p + 1 ≥ d1 ≥ p + 1. Since ∑e′∈N [e] f(e′) ≥ 0 for each edge e ∈ E(G), we
observe that
(3.5) dH(x) + dH(y) ≤ 2p, when e = xy ∈ E1

and
(3.6) dH(x) + dH(y) ≤ 2p+ 1, when e = xy ∈ E−1.

Let now d1 = 2p+1−k for an integer 0 ≤ k ≤ p, and assume, without loss of generality,
that dH(u1) = 2p+ 1− k. If dH(y) ≥ k for u1y ∈ E1, then dH(u1) + dH(y) ≥ 2p+ 1,
a contradiction to (5). Therefore dH(x) ≤ k− 1 for x ∈ Y −NH(u1). If dH(y) ≥ k+ 1
for y ∈ NH(u1), then dH(u1) + dH(y) ≥ 2p + 2, a contradiction to (6). Therefore
dH(x) ≤ k for x ∈ NH(u1). We deduce that

|E−1| ≤ k(k − 1) + (2p+ 1− k)k = 2pk,
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a contradiction to |E−1| ≥ 2p2 + p+ 1.
Altogether, we see that |E−1| ≤ 2p2 + p and so

γ′ns(K2p+1,2p+1) ≥ (2p+ 1)2 − 2(2p2 + p) = 2p+ 1.

Second let n = 2p for an integer p ≥ 1, and letB1 = G[{u1, u2, . . . , up, v1, v2, . . . , vp}]
and B2 = G[{up+1, up+2, . . . , u2p, vp+1, vp+2, . . . , v2p}] be two induced subgraphs of G.
In addition, let H2 be a (p− 1)-factor of B2. Define the function f : E(G)→ {−1, 1}
by f(e) = −1 for e ∈ E(B1) ∪ E(H2) and f(e) = 1 otherwise. Then f(N [e]) =
2p−2(p−1)−1 = 1 for e ∈ E(B1), f(N [e]) = 2p+2−2(p−2)−1 = 5 for e ∈ E(H2),
f(N [e]) = 2p+1−2(p−1) = 3 for e ∈ E(B2)−E(H2) and f(N [e]) = 2p−p−(p−1) = 1
otherwise. Therefore f is an NNSEDF on K2p,2p of weight

2p2 + p− p2 − p(p− 1) = 2p

and thus γ′ns(K2p,2p) ≤ 2p.
Next we will show that γ′ns(K2p,2p) ≥ 2p. Let f be a γ′ns(G)-function, and let

H be the subgraph with vertex set V (G) and edge set E−1 = E−1(f). We will
show that |E−1| ≤ 2p2 − p. Suppose to the contrary that |E−1| ≥ 2p2 − p + 1. Let
d1 ≥ d2 ≥ . . . ≥ d4p be the degree sequence of H. Then 2|E−1| =

∑4p
i=1 di ≥ 4p2−2p+2

and so 2p ≥ d1 ≥ p. Since ∑e′∈N [e] f(e′) ≥ 0 for each edge e ∈ E(G), we observe that

(3.7) dH(x) + dH(y) ≤ 2p− 1, when e = xy ∈ E1

and

(3.8) dH(x) + dH(y) ≤ 2p, when e = xy ∈ E−1.

Let now d1 = 2p− k for an integer 0 ≤ k ≤ p, and assume, without loss of generality,
that dH(u1) = 2p − k. If dH(y) ≥ k for u1y ∈ E1, then dH(u1) + dH(y) ≥ 2p, a
contradiction to (7). Therefore dH(x) ≤ k − 1 for x ∈ Y −NH(u1). If dH(y) ≥ k + 1
for y ∈ NH(u1), then dH(u1) + dH(y) ≥ 2p + 1, a contradiction to (8). Therefore
dH(x) ≤ k for x ∈ NH(u1). We deduce that

|E−1| ≤ k(k − 1) + (2p− k)k = 2pk − k,

a contradiction to |E−1| ≥ 2p2 − p+ 1.
Altogether, we see that |E−1| ≤ 2p2 − p and so γ′ns(K2p,2p) ≥ (2p)2 − 2(2p2 − p) =

2p. �

Theorems 3.4 and 3.5 show that Theorem 3.3 is sharp.

Proposition 3.1. Let G be a graph of size m ≥ 1. If u and v are two adjacent
vertices, then

γ′ns(G) ≥ deg(u) + deg(v)−m− 1.
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Proof. Let f be a γ′ns(G)-function. By definition f(N [uv]) ≥ 0, and the least possible
weight for f will now be achieved if f(e) = −1 for each e ∈ E(G)−N [uv]. Thus

γ′ns(G) ≥ f(N [uv])− |E(G)−N [uv]| ≥ −(m− (deg(u) + deg(v)− 1))
= deg(u) + deg(v)−m− 1. �

The trees of the family F show that Proposition 3.1 is sharp. Choosing u as a
vertex of maximum degree in Proposition 3.1, we obtain the following corollary.

Corollary 3.3. If G is a graph of size m ≥ 1, then
γ′ns(G) ≥ ∆ + δ −m− 1.

Corollary 1.1 demonstrates that Propositions 3.1 and Corollary 3.3 are sharp when
n is even.

Theorem 3.6. Let G be a connected graph of size m ≥ 1. Then γ′ns(G) ≥ 2−m with
equality if and only if G is isomorphic to P2 or P3.

Proof. If m = 1, then γ′ns(G) = 1 = 2 −m. If m ≥ 2, then ∆ ≥ 2 and the desired
result follows from Corollary 3.3.

Assume now that γ′ns(G) = 2−m, and let f be a γ′ns(G)-function. This implies that
G has exactly one edege e with f(e) = 1 and m− 1 edges e1, e2, . . . , em−1 such that
f(ei) = −1 for 1 ≤ i ≤ m−1. Suppose that m ≥ 3, and let, without loss of generality,
e1 be adjacent to e. Since G is connected, there exists an edge, say e2, adjacent to e
or to e1. If e2 is adjacent to e, then we obtain the contradiction ∑e′∈N [e] f(e′) ≤ −1,
and if e2 is adjacent to e1, then we obtain the contradiction ∑e′∈N [e1] f(e′) ≤ −1. This
implies that m ≤ 2, and thus G is isomorphic to P2 or P3.

Conversely, if G is isomorphic to P2 or P3, then γ′ns(G) = 2−m. �

Using Observation 1.2 and Theorem 3.6, we obtain the next result immediately.

Corollary 3.4. If G is a connected graph of size m ≥ 3, then γ′ns(G) ≥ 4−m.

Remark 3.1. If ∆ ≥ 5 or ∆ ≥ 4 and δ ≥ 2, then Corollary 3.3 implies that γ′ns(G) ≥
5−m and therefore γ′ns(G) ≥ 6−m by Observation 1.2.

In the case that ∆ = 4 and δ = 1, we have γ′ns(K1,4) = 0 = 4 − m(K1,4) and
therefore equality in the inequality of Corollary 3.4. Proposition 3.1 shows that the
star K1,4 is the only graph with equality in the inequality γ′ns(G) ≥ 4−m in the case
that ∆ = 4.

Corollaries 1.2 and 1.3 imply the next result.

Proposition 3.2. Let G be a connected graph of size m ≥ 3 with ∆(G) = 2. Then
γ′ns(G) = 4−m if and only if G is isomorphic to C3, P4 or P5.

The graphs K1,3 and T1 ∈ F are further examples with equality in the inequality
γ′ns(G) ≥ 4−m of Corollary 3.4.
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Theorem 3.7. Let G be a graph of size m and minimum degree δ ≥ 2. Then

γ′ns(G) ≤ m− 2δ + 2.

Proof. Let v ∈ V be a vertex, t = δ − 1 and u1, u2, . . . , ut ∈ N(v). Define f : E →
{−1, 1} by f(vui) = −1 for 1 ≤ i ≤ t and f(e) = 1 otherwise. Then f(N [vw]) ≥
−t+ 1 + deg(w)− 1 ≥ δ − t ≥ 0 for w ∈ N(v). Let e = wz such that w, z 6= v. Then
f(N [wz]) ≥ 0 when δ = 2 and f(N [wz]) ≥ deg(w) + deg(z)− 5 ≥ 2δ − 5 > 0 when
δ ≥ 3. Therefore f is an NNSEDF on G of weight m− 2t and so γ′ns(G) ≤ m− 2t =
m− 2δ + 2. �

Proposition 3.3. Let G be a connected graph, different from C5, of order n ≥ 5 with
diam(G) = 2. Then

γ′ns(G) ≤ m− 4.

Proof. If δ(G) ≥ 3, then the result is immediate by Theorem 3.7. Henceforth, we
assume δ(G) ≤ 2. First let δ = 1, v1 ∈ V be a vertex of minimum degree and
v1v2 ∈ E(G). Since diam(G) = 2, for every vertex w ∈ V − {v1, v2}, w ∈ N(v2).
Let w ∈ N(v2) − {v1}. Define f : E(G) → {−1, 1} by f(v2w) = f(v1v2) = −1
and f(e) = 1 for e ∈ E(G) − {v1v2, wv2}. Clearly, f is an NNSEDF of G of weight
at most m − 4 and hence γ′ns(G) ≤ m − 4. Hence let δ = 2. Let v1 ∈ V be a
vertex of minimum degree and v2, v3 ∈ N(v1). If deg(v2) ≥ 3 and deg(v3) ≥ 3,
then define f : E(G) → {−1, 1} by f(v1v2) = f(v1v3) = −1 and f(e) = 1 for
e ∈ E(G) − {v1v2, v1v3}. Clearly, f is an NNSEDF of G of weight at most m − 4
and hence γ′ns(G) ≤ m − 4. Hence let deg(v2) = 2 or deg(v3) = 2. We may assume
that deg(v2) = 2. Since diam(G) = 2 and n ≥ 5, we observe that deg(v3) ≥ 3 and
let w ∈ N(v3) − N(v2). Define f : E(G) → {−1, 1} by f(v1v2) = f(wv3) = −1 and
f(e) = 1 for e ∈ E(G) − {v1v2, wv3}. Clearly, f is an NNSEDF of G of weight at
most m− 4 and hence γ′ns(G) ≤ m− 4. This complete the proof. �

Proposition 3.4. Let G be a connected graph of order n ≥ 5 with diam(G) = 3.
Then

γ′ns(G) ≤ m− 4.

Proof. If δ(G) ≥ 3, then the result is immediate by Theorem 3.7. Henceforth, we
assume δ(G) ≤ 2. Consider two cases.
Case 1. δ = 2.

Let v1v2v3v4 be a diametral path in G. If deg(v2) ≥ 3 or deg(v3) ≥ 3, then
define f : E(G) → {−1, 1} by f(v1v2) = f(v3v4) = −1 and f(e) = 1 for e ∈
E(G) − {v1v2, v3v4}. Clearly, f is an NNSEDF of G of weight at most m − 4 and
hence γ′ns(G) ≤ m−4. Hence let deg(v2) = deg(v3) = 2. Since diam(G) = 3, for every
vertex w ∈ V − {v1, v2, v3, v4}, w ∈ N(v1) ∪ N(v4). If deg(v1) = deg(v4) = 2, then
G = C6 and by Corollary 1.3, γ′ns(G) ≤ m− 4. Hence let deg(v1) ≥ 3 or deg(v4) ≥ 3.
We may assume that deg(v1) ≥ 3 and w ∈ N(v1)− {v2}. Define f : E(G)→ {−1, 1}
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by f(v1w) = f(v2v3) = −1 and f(e) = 1 for e ∈ E(G)− {v1w, v2v3}. Clearly, f is an
NNSEDF of G of weight at most m− 4 and hence γ′ns(G) ≤ m− 4.
Case 2. δ = 1.

Let v1 ∈ V be a vertex of minimum degree and v1v2 ∈ E(G). First let deg(v2) = 2
and v3 ∈ N(v2)−{v1}. Since diam(G) = 3, for every vertex w ∈ V −{v1, v2, v3}, w ∈
N(v3). Let w ∈ N(v3)− {v2}. Define f : E(G)→ {−1, 1} by f(v3w) = f(v1v2) = −1
and f(e) = 1 for e ∈ E(G) − {v1v2, wv3}. Clearly, f is an NNSEDF of G of weight
at most m− 4 and hence γ′ns(G) ≤ m− 4. Now let deg(v2) ≥ 3. If deg(v2) ≥ 4 and
v3 ∈ N(v2) − {v1}, then define f : E(G) → {−1, 1} by f(v1v2) = f(v2v3) − 1 and
f(e) = 1 for e ∈ E(G)−{v1v2, v2v3}. Clearly, f is an NNSEDF of G of weight at most
m − 4 and hence γ′ns(G) ≤ m − 4. Hence let deg(v2) = 3 and v3, v

′
3 ∈ N(v2) − {v1}.

Since diam(G) = 3, for every vertex w ∈ V − {v1, v2, v3, v
′
3}, w ∈ N(v3) ∪ N(v′3).

Let w ∈ N(v3) − {v2}. Define f : E(G) → {−1, 1} by f(v3w) = f(v1v2) = −1 and
f(e) = 1 for e ∈ E(G) − {v1v2, wv3}. Clearly, f is an NNSEDF of G of weight at
most m− 4 and hence γ′ns(G) ≤ m− 4. This complete the proof. �

Proposition 3.5. If G is a connected graph of order n ≥ 5 with diam(G) ≥ 4, then
γ′ns(G) ≤ m− 4.

Proof. Let v1v2 . . . vd be a diametral path in G. Define f : E(G) → {−1, 1} by
f(v1v2) = f(v4v5) = −1 and f(e) = 1 for e ∈ E(G) − {v1v2, v4v5}. Clearly, f is an
NNSEDF of G of weight at most m− 4 and hence γ′ns(G) ≤ m− 4. �

Theorem 3.8. Let G be a connected graph of order n ≥ 3 and size m. Then γ′ns(G) =
m− 2 if and only if G ∼= P3, P4, C3, C4, C5, or K1,3.

Proof. Clearly, if G ∼= P3, P4, C3, C4, C5, or K1,3, then γ′ns(G) = m − 2. Conversely,
let G be a connected graph of size m ≥ 2 and let γ′ns(G) = m− 2. By Propositions
3.3, 3.4 and 3.5, n ≤ 4 or G = C5 and by Theorem 3.7, δ ≤ 2. The case G = C5 is
obvious by Corollary 1.3. Let n ≤ 4 and δ ≤ 2. If δ = 2, we must have G = C3, C4
and C4 + e. If G = C3, C4, we are done by Corollary 1.3. Let G = C4 + e and
V (C4 + e) = {v1, v2, v3, v4}, where e = v1v3. Define f : E(C4 + e) → {−1, 1} by
f(v1v2) = f(v3v4) = −1 and f(e) = 1 otherwise. Clearly, f is an NNSEDF of C4 + e
with weight 1. Thus G 6= C4 + e. Let δ = 1. It is easy to see that the only graphs
satisfying the conditions are P3, P4 or K1,3. This completes the proof. �
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