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ON GENERALIZED LAGRANGE-BASED APOSTOL-TYPE AND
RELATED POLYNOMIALS

WASEEM A. KHAN!

ABSTRACT. In this article, we introduce a new class of generalized polynomials,
ascribed to the new families of generating functions and identities concerning La-
grange, Hermite, Miller-Lee, and Laguerre polynomials and of their associated forms.
It is shown that the proposed method allows the derivation of sum rules involving
products of generalized polynomials and addition theorems. We develop a point of
view based on generating relations, exploited in the past, to study some aspects of
the theory of special functions. The possibility of extending the results to include
generating functions involving products of Lagrange-based unified Apostol-type and
other polynomials is finally analyzed.

1. INTRODUCTION

The Lagrange polynomials in several variables, which are known as the Chan-
Chyan-Srivastava polynomials [2] are defined by means of the following generating

function
I8

[ee]

(1) [T = o)™ = 32 g ()"
j=1 n=0

where a; € C, j =1,...,r, [¢t| < min{|z1|7}, ..., |2.| "'}, and are represented by
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_ kpr_1—k,r_ k. —
l‘lfl .73]52 k1 xrr—ll r—2 .1':} kr—1

Ul (ks — k)L oy — ko)l (n— &y — 1)1
where (A\)g:=1and (A\), =AXA+1)---(A+n—-1),neN:={1,2,3,...}.

Altin and Erkus [1] presented a multivariable extension of the so called Lagrange-
Hermite polynomials generated by (see [1, page 239, (1.2)]):

(1.2)

T

(1'3) H(l - wjtj)_aj = Z h7(za17m’a7')(x1’ o 'xr)tn’

j=1 n=0
where aj € C, j =1,...,r, |t| < min{|z|~", |zo|72, ..., |z,| "} and
k1 ky
T T
Rl (g oo ) = > (0q)py - (), e
kq! k,.!

k1+2ko+-~4rkr=n

The special case when r = 2 in (1.3) is essentially a case which corresponds to the
familiar (two-variable) Lagrange-Hermite polynomials considered by Dattoli et al. [3]

(14) (1 — Qflt)_al(]_ — $2t2)_a2 = Z hv(f‘l’a?)(xl, Ig)tn
n=0

The multi-variable (Erkus-Srivastava) polynomials U,Sﬁi::j:i”(:cl, ..., 2, ) defined by
the following generating function, (see [5, page 268, (3))]:
(1.5) [T = zth)™ =3 Ut @y, ),

i=1 n=0

where a; € C, j=1,---,r, ; €N, j=1,...,r, [t| < min{|z|7}, ..., |z}, are a
unification (and generalization) of several known families of multivariable polynomials
including (for example) the Chan-Chyan-Srivastava polynomials g2 (zy, ... )
defined by (1.1) (see, for details, [5]). It is evident that the Chan-Chyan-Srivastava
polynomials  g{@t®)(x ... x,) and the Lagrange-Hermite polynomials
hlev-wer)(gy . x,) follow as the special cases of the Erkus-Srivastava polynomials
Uﬁi::::i’“)(xl, c.,xy)whenl; =1,5=1,...,r

The generating function (1.5) yields the following explicit representation (see [5,
page 268, (4)]):

(a « ) x]fl xkr
Ui ey = 2 (e (e e
Lki++lrkr=n 1- .

which, in the special case when [; =1, j =1,...,r, corresponds to (1.2).

Recently, Ozarslan [14] introduced the following unification of the Apostol-Bernoulli,
Apostol-Euler and Apostol-Genocchi polynomials. Explicitly Ozarslan studied the
following generating function:

(1.6) £t a,b) = thk e = iP(a)(a:'k: a b)ﬁ
a,b )y Uy Wy ﬁbet . ab — n,B y vy Uy ’I’L!’
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|t +bln <ﬂ>
a

For a =1 in (1.6), we get

where

<2m, keNy, abeR\{0}, «,5€C.

21_ktk 00 tn
(1.7) fan(x;t,a,b) = = Z P, s(x;k,a, b)ﬁ’
n=0 :

- ﬁbet —ab
t+bln <ﬂ>
o

From (1.6) and (1.7), we have

where

<27, keNy abeR\{0}, apeC.

Pé,l,%(l"; k,a,b) = P, g(x;k,a,b), neN,

which is defined by Ozden and Simsek [16]. Now Ozden et al. [15] introduced many
properties of these polynomials. We give some specific special cases.

1. By substituting a = b = k = 1 and § = X into (1.6), one has the Apostol-
Bernoulli polynomials Pflaﬁ) (x;1,1,1) = Pfff\) (x;1,1,1), which are defined by means of
the following generating function

t “ xt - (@) (. "

(1.8) ()\et—l) = 3 BN e logd] < om

(see for details [6-13] and also, the references cited in each of these earlier works).
For A = a =1 in (1.8), the result reduces to

t "

xt z
1% = nz::OBn(a:)n!, t| < 2,

where B, (z) denotes the classical Bernoulli polynomials (see from example [17, 18],
see also the references cited in each of these earlier works).
2. If we substitute b = 1, k = 0, a = —1 and 8 = X into (1.6), we have the

Apostol-Euler polynomials Pﬁ?j\)(x; 0,—1,1) = B (z, \)

2 “ xt o (@) (e t
(1.9) ()\et+1> e —nz::OEn (m,/\)n!, |t +log \| <,

(see for details [6-13] and also the references cited in each of these earlier works).
For A = a =1 1in (1.9), the result reduces to

2 0™ tn
€t+1e "= § :ETI(I')Ev |t| <,
n=0 :

where E,(x) denotes the classical Euler polynomials (see from example [14-18] and
also the references cited in each of these earlier works).
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3. By substituting b = o = 1, k =1, a = —1 and § = X into (1.6), one has
the Apostol-Genocchi polynomials P ﬂ(a:, 1,-1,1) = %Gn(:c; A), which is defined by
means of the following generating function

2t
)\et+1 ZG :c)\ 5o [t +log A <,

(see for details [6-18] and also the references cited in each of these earlier works).

4. By substituting x = 0 in the generating function (1.6), we obtain the correspond-
ing unification of the generating functions of Bernoulli, Euler and Genocchi numbers
of higher order. Thus, we have

PL(0; k,a,b) = P (k,a,b), neN.

The generalized Stirling numbers of the second kinds S(n, v, a, b, 3) of order v are
defined in [16] as follows:

t" Bbet —a
(1.10) ZS n,v,a,b, ﬁ) (1/')
On setting =\, a = b =1, (1.10) reduces to
t” (Aet — 1)
ZS n,v, )\ =

The outline of this paper is as follows. In Section 2, we introduce the Lagrange-based
unified Apostol-type polynomials and investigate some properties. In Section 3, we in-
troduce Miller-Lee polynomials and derive some relationship between Lagrange-based
unified Apostol-type polynomials. In Section 4, we introduce Laguerre polynomials
and obtain some properties of Laguerre and Lagrange-based unified Apostol-type
polynomials.

2. LAGRANGE-BASED UNIFIED APOSTOL-TYPE POLYNOMIALS

In this section, we connect the Lagrange polynomials in several variables with
Hermite and Apostol-Bernoulli, Apostol-Euler and Apostol-Genocchi polynomials.
The resulting formulae allow a considerable unification of various special results that
appear in the literature.

Definition 2.1. The Lagrange-based unified Apostol-type polynomials
T 75?27’,;"’%)($|x1, ...Zy;a,b) in several variables by means of the following generating
function:

21—ktk .
(2.1) (W—cﬂ’) x H 1—a;t))™% = Z (x|z1, ... 250, 0)E"
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which, for ordinary case r = 2, (2.1) reduces to the Lagrange-based unified Apostol-
type Hermite polynomials

21_ktk ) oo

: —— e —x1t) (1 — 22 = > uY, 5 (x|, x03k, a, -

(2.2) (6“ b) (1 —at) (1 — at?) 702 = 3 gV (x] k,a, b)t"
e —aqa n—=0 ’

In particular, when x; = x5 = 0, (2.2) reduces to unified Apostol-type polynomials
Y, 5(z; k,a,b) defined by

21—ktk . 00 e
<ﬁbet—ab> € :nz::OYn”3<l', k,a,b)a.
The Lagrange-based unified Apostol-type Hermite polynomials of order « are defined
by

Bbet _ CLb

Note that

21—ktk 1 00 ot o
(2.3) ( (1 — )" (1 — 2ot?) 02 = 3 5 ¥, (g, s K, a0, D).

n=0

Yn(gln,ﬁ ($; ka a, b)

(n—m)!

Hyyf%la17a2)($|x17 To; ]{;7 a, b) = Z hngLu,aﬂ(xl’ 132)

m=0

On setting o = x = 0 in (2.3), the result reduces to (1.4). For a = 1, (2.3) reduces
to (2.2).
The Lagrange-based unified Apostol-type polynomials of order o are defined by

21_ktk @ 3 B 00 alos o
(2.4) (M’) e (1 — ayt) " (1 — aot) ™™ = Zygﬁ.é v 2)(x]x1,x2;k,a, b)t".
n=0

Thus, we have

Yn(g)rn,ﬁ(x7 k? a, b)

(n—m)!

Ygflil?ah%)(ﬂxhx% k,a,b) = Z gr(r?l’az)@hm)
m=0

On taking = 0 in (2.4), the result reduces to

ol—kpk \ @ B ) . o
(W—Gb (1 —2t) (1 — 2at) ™ = Zyg;g 202 (21 ok, a, D)LY,
n=0
where

Ygé?gal’%)(mm, To; k,a,b) = yg,(fgalm)(m, x93 k,a,b).

Remark 2.1. By substitutinga = b=k =1and = X in (2.3), we get the generalized
Lagrange-based Apostol-Bernoulli polynomials by means of the following generating
function

t @ = |,
(25) (Aet—]_> emt(l — l’lt)_al(]_ — .ZUQt)_aQ = Z BHT(L/\‘ b 2)(17|.1U1,.T2)tn.

n=0
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For A =1 in (2.5), the result reduces to the known result of Khan and Pathan [§]
as follows

t « (0.9]
( ‘ 1) (L —ayt)" (L= wat) 2 = Y pHM (]2, )"
€ - n=0
Remark 2.2. If we substitute b=a =1, k=0, a = —1 and = X into (2.3), we get
the generalized Lagrange-based Apostol-Euler polynomials by means of the following
generating function

2 )“ . . - (afar,a
e (1 —x1t) (1 — aot) ™% = Z pHy 2) (x|zq, 22)t".
()\et +1 o

Remark 2.3. By substituting b =a =1, k=1, a = —% and 8 = % into (2.3), we

obtain the generalized Lagrange-based Apostol-Genocchi polynomials by means of
the following generating function

2t )a Ocla a2)
1= 2pt) 7 (1 — aot) ™2 = Z H, '\ (x|, mo)t".
()\et +1 =

Theorem 2.1. The following summation formula for Lagrange-Hermite polynomials
hleva2) (1 25) holds true:

(2.6 W @y, m0) = 3 V3 el ik 0,0)

m=0

Proof. For a = 0 in (2.3), we have

m!

e N gV @]y, woy by a, D) =(1 — at) T (1 — wot?) 70

n=0
X Z dou Y(al ) (p|ay, 2a; k, a, b)E"
! n=0
= Z hff“m)(a;l, .Z'Q)tn
n=0

Replacing n by n — m in L. H. S, we have

Z Z Yn(a1 ©2) (p|ay, ma; k, a b)( x') = 3 R0 (g, )",
n=0m=0 m: n=0
Comparing the coefficients of " on both sides, we get (2.6). O

Theorem 2.2. The following summation formula for the Lagrange-based unified
Apostol-type Hermite polynomials HYA%‘M’”)(ﬂxl, xo; k,a,b) holds true:

m

(2.7) HY;%‘“’QQ)(JC+y|x1,x2;k,a b) Z HYTL(O"a1 ) (|21, ma3 k, a b)‘an!
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Proof. From (2.3), we have

21_ktk @ )
<Bbet—ab> TIL — )" (1 — wat?) O

=y HYn(%'al’aQ)(m + ylz1, v2; K, a, b)t"
n=0

21_ktk @ - )
= <ﬂbet — ab> e eV (1 — wqt) (1 — xot™) ™

e} m

—Z Y(a|°”’°‘2 (x|z1, 225 k) a, b)t Z —'

n=0

Replacing n by n — m in above equation and comparing the coefficients of ¢" on
both sides, we get the result (2.7). O

Theorem 2.3. The following summation formula for the Lagrange-based unified
Apostol-type Hermite polynomials HYn(%'O“’aQ)(x\xl, 123k, a,b) holds true:

Y(OH-VlOél +az,a3+4)

n?ﬁ

(28) = Z era‘al’a:i |x17 Ta; k a b) Y(’Y‘BO‘Q’O‘ZL) (y‘xla Ta; k? a, b)

m,

(m + y|fl'1,$2; kaaa b)

Proof. By using definition (2.3), we have

Z % a+7\a1+a2,a3+0¢4)($ + y|x1 To; k,a b)tn

ol—kgk N\ Y
= (M) €($+y)t(1 - Ilt)_al_QQ(l - l’gt2)_a3_a4

Z amm (w1, 205 K, @, b)E" Z la37a4)(y|$1,$2;kaaa b)t™
n=0 m=0
Replacing n by n —m in above equation, we have

S Y0 (4 oyl ok, a, D)
n=0

—Z (Z Ynaml’as (z]z1, 22; K, a,b) Ym7,|6a27a4)(y|331,5€2;k7@7 b)) t"

Comparing the coeflicients of t"on both sides, we get the result (2.8). O

Theorem 2.4. The following summation formula for the Lagrange-based unified
Apostol-type Hermite polynomials HY;;'“’O‘?)(:EMM xo; k,a,b) holds true:

(2.9) HY(%lal’O‘Q)(x]xl,xg;k,a b) Z HY(Q‘O”’O‘2 (x — 2|21, 20 kya, b)—

z
n, n m! :
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Proof. By exploiting the generating function (2.3), we have

21_ktk @ . )

=3 HYn(ﬂo‘“az)(xkvl, xo; k, a,b)t"
n=0

= Z Y a|a1,a2 (.I' - Z|$1,£IZ’2,]€ a, b t" Z Zmﬁ

Replacing n by n — m in above equation, we have

Z Y, a‘alm (x|z1, 295 K, a,b)t Z (Z Ynalal’a2 (x — z|x1,x2;k,a,b)z> t".

|
n=0 n=0 m.

Comparing the coeflicients of " on both sides, we get the result (2.9). O
Theorem 2.5. The following summation formula for the Lagrange-based unified

Apostol-type Hermite polynomials HY'(C“‘(“’Q2 (x|w1, 223k, a,b) holds true:

HY(%+7|O‘1’O‘2)(x|x1,x2;k,a b) = Z HY(a‘al’oQ) (2|21, 223 K, a, b)

n, n

2.10) HY,S';’“) (z = = ka.0)
. X : .

m)

Proof. Going back to the generating function (2.3), we have

Z HYTL(%H'%QQ)(JJ\%, To; k,a,b)t"
n=0

21—ktk <« . ) 21—ktk v
N z . —a . —a e v (z—2)t
— <ﬁb€t — (1 —xqt) (1 — xot™) ™2 Gl b e
0 oy Wl00) . zi k,a,b)t™
=> Yoo 2z woi K, a, b)t" > s | )

m)!

Replacing n by n —m in above equation and comparing the coefficients of t* on both
sides, we get the result (2.10). O

Theorem 2.6. The following implicit summation formula for the Lagrange-based

unified Apostol-type Hermite polynomials HY(O‘|al’a2 (x|z1, 203 Ky @, b) holds true:

(2.11)

HY(%|al+ﬂ1’a2+62)(J}|lL’1, To: k. a, b) _ Z HY(fgf,éQZ)($|x17 29k, a, b)hggl’ﬁﬂ(fﬂl, 1‘2).
m=0

Proof. Using definition (2.3), we have

o
> HYTE%‘O‘1+61’Q2+BZ)(1:|:Q,:z:2; k,a,b)t"
n=0
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21_ktk @ . )
= <6bet — ab> eTH(1 — x1t) TP — gqt?) T2

=y HYJ%‘O‘I’”)(ﬂxl,xg; keya, b)t™ > R (2, 2yt
n=0 m=0
Replacing n by n —m in above equation, we have
> HY,E’%|Q1+51’&2+62)(36|331, zo; k, a, b)t"

n=0

=>. >, HYn(ifL,lé%)(ﬂIhb; k,a,b)h{P02) (zy xy)t".

n=0m=0

Comparing the coeflicients of " on both sides, we get the result (2.11). O

Theorem 2.7. There is the following relation between the Apostol-type Stirling num-
bers of second kind and Lagrange-based unified Apostol-type Hermite polynomials

HY(a|a1’a2)(x|x1, 1o:k,a,b):
s (r, o, (g)")

n?/B

n
a™aly” HYn(fyﬁ‘al’ag)(a:]xl, Ta;k,a,b)
r=0

7!
0, forn < ka,
2.12 = a1,
( ) { 2(1_k)°‘h£L_l,;a2)(x|x1, xg), forn > ka,
with o« € Ng = NU {0} and k € N fized.
Proof. By using equation (2.3) and (1.10), we have
> HYé%‘m’O‘Q)(ﬂxl, xo; k, a, b)t"
n=0
21_ktk “ T —« —«
= (ﬂbet —) ¢ H1 — 2qt) ™™ (1 — aot?) 2
2(1—k)atko¢
— . aeﬂft(l o xlt)foa(l o x2t2)fa2
abe ((f) et — 1)
_2(1—k)atkaext(1 _ Z’lt)_al(l _ $2t2)_a2
00 b r ?
ateal 3 S (r,a, (%) ) &
r=0 ’
o0 o0 6 b tr
(Z Hyrf%‘al’az))(ﬂxl,fﬁz; kf>a’b)tn) (ab"‘a! ZS (ﬁa, () ) )
n=0 ’ = a id

00 n
:2(17k)atka Z h%aho&)(ldxl, 213'2)*,

|
n—0 n:
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b
ab®al Z (Z HYna\oa ,02) gjlxl,xQ,k a, b)S (r,a7 <B> ) 1) m

a 7!
lk th agz) |I1 x2) "
T (n—ka)l
By comparing the coefficients of %, we obtain the desired result (2.12). 0]

Theorem 2.8. There is the following relation between the Apostol-type Stirling num-
bers of second kind and Lagrange-based unified Apostol-type Hermite polynomials

HY,S%|QI’Q2)(95|3:1, xo; k,a,b):
|0 0 S ) ) 7b7
V! Z gy e x!xl,xz;k,a,b)w
r!
0, forn < kv,
2.13 = _
(2.13) { 2007, Y ) () 2k, a,b), forn > ke,

with v € Ny and k € N fized.
Proof. From (2.3) and (1.10), we have

ZHY(O‘ Ylar,az) (x|z1, x93 K, a, b)E"

ol-kk \oTT )
= (Bbet — ab> e (1 — x1t) M (1 — aot®) ™2

ol-kth \@ » (Bt —ab\?
- (ﬁbet —) ¢ H1 — 2pt) (1 — aqt?) ™2 ik |

9(1=k)y Z Hyn(jg_ﬂal’w)(ﬂxl, zo: k. a, b)tn—i-kv
n=0

b
D D

rl

Comparing the coefficients of t" on both sides, we get the desired result (2.13). O

Theorem 2.9. The following implicit summation formula involving the Lagrange-ba-
sed unified Apostol-type Hermite polynomials yY.\ °‘|O‘1 0‘2)(x|x1,x2; k,a,b) and

Lagrange-based unified Apostol-type polynomials an o) (z|x1, 223k, a,b) holds true:
(214
Z Yn(om1 o2) (x|xy, 295k, a,b) ( = Z gna‘zng) (xly, w25k, a b)Ll)

m!

Proof. We first start with the generating function (2.3). On multiplying both the
sides by (1 — yt)~7 and interpreting the result using (2.4) and series expansion of
(1 —yt)™7, we get the required result (2.14). O
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3. LAGRANGE-BASED UNIFIED APOSTOL-TYPE MILLER-LEE POLYNOMIALS

The definitions (2.3) and (2.4) can be exploited in a number of ways and provide a
useful tool to frame known and new generating functions in the following way.
As a first example, we set & = ag =0, &y =m+ 1, 1 = 1 in (2.3) to get

el —t)"m 1 ZG(’” 3wt < 1,
where G™(z) are called the Miller-Lee polynomials (see [4, page 21, (1.11)]).

Another example is the deﬁmtion of Lagrange-based Apostol-type Hermite-Miller-

Lee polynomials y H G " alal ) (p|a1, 29; k, a, b) given by the following generating func-

tion

(3.1)
1Rtk \O (1 gyt) (1 — aat?) (m,ala ) &
<6bet_ab> e (1 —¢)mt! = ZYHG T (@l w2 K, 0, 0)

which for o« = 0 reduces to
(1 — xyt) 701 (1 — aot?) ™2 (mlon.a tn
(1 —tym+t Z G0 (wlwy, w0)

where G{™102) (2|21, x5) are called the Lagrange-based Hermite-Miller-Lee polyno-
mials.
Putting oy = ay = 0 into (3.1) gives

o1 k’tk @ et 00 (m.) m
(32) (ﬂbet _ CLb> (1 —t)m+1 :nz::OYGn,B (.’L‘, kua’7 b)ﬁv

where yGfZg’a)(x; k,a,b) are called the Apostol-type Miller-Lee polynomials.

Theorem 3.1. The following relationship between Lagrange-based unified Apostol-type

(alai, az)(

Hermite polynomials 1Y, 5 x|z, 95k, a,b), Apostol-type Miller-Lee polynomials
vG, 3 ma) (z:k,a,b) and leler—Lee polynomials G () holds true:

VG sk a,b) =Y (1) VL (k0 )G (@)

(3.3) !} (_O‘QWHY,L(S';Z;LO‘2>(:U|1, 23k, a,b).
— rl
Proof. For 1 =1 and oy =m+ 1 in (2.3) and using (3.2) we have
21fk’tk’ @ (ma

=(1— x2t2)°‘2 Z HYT%lerl’OQ)(xH,xg; k,a,b)t"
n=0
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which on using binomial expansion takes the form

t?’LOO

Z w5 (k. a,) _ZG i (—ao),(x2)"t*

|
—0 r!

Z O‘|m+1a2 (x|1, 293 K, a, b)t"

Replacing n by n — r in above equation, we have

o0 m.a tTL
> G )(xkab ZZanﬁkabG () '
n=0 ! n=0r=0 (n—r).
o 2],
=303 Ryt (o kb
n=0r=0 r
Finally, comparing the coefficients of ", we get (3.3). O

Remark 3.1. Equation (3.3) is obviously a series representation of the Apostol-type
Miller-Lee polynomials YG,(ZEQ)(:U; k,a,b) linking Lagrange-based unified Apostol-type
Hermite polynomials and Miller-Lee polynomials.

Theorem 3.2. The following relationship holds true:
(3.4)

Yn(%laﬁmﬂ’w)(ff+y|$1,I2;k57a b) Z Ynalaw2 (Ylz1, 225k, a b)G(m (x1> -
Proof. On replacing x by  +y and ay by a3 +m + 1, respectively in (2.3), we have

21 ktk €3 . )

. Z Y(a|a1+m+1 az)(x + y’xh To; k}, a, b)tn

which can be written as

Z Y a|a1’a2)<y’$1,$2,k a, b thGm) ( )l’ tr
T

r=0

=3 Y (e k a, b

Now replacing n by n — r in the left hand side of the above equation, we get

Z Z Yna‘al’a2 (ylo1, w25 k, a,b)GI™ ($> it

n=0r=0 1
00

=3 wY ) (g ylay, ok, a, b)E"
n=0

Finally, comparing the coefficients of ¢, we get the result (3.4). O
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Theorem 3.3. The following relationship holds true:

1 () (mlasaz)
;Yn—r,ﬂ(l{:?CL?b)HGr o <x|$1,x2) (n — 7")'

(3.5) =Y ()l Y5 (w1, 203 K, 0, ).
Proof. For a; =m+1 and x; =1 in (2.3), we have

217Kk \® t 1 2 Z | +1,
T —m— —a (alm+1,a2)
(M) (& (1 —t) (1 i) t 2 = .I"l xg,k a, b)

Multiplying both sides by (1 — z1¢)~**, we have
- « " - mjo,0 r
Z()Yn{[}(k, a.b) ;}Heg l0102) (|0, o )1

=7(1 —z1t)™ ™ > HY(%WH’M)(J:H, Ta; k,a, b)t"

n,
n=0
(alm+1,02)
—ZalTxl |ZHn (z|1, x9; K, a, b)t"
Now replacing n by n — r in the above equation, we get

tn
Yn 5(k,a,b) gGmere2) (g0 o
%Y T

tn
_Z Z () TleYna‘mH 22) (x|1,x2;k:,a,b)—‘.
r!

n=0r=0

Comparing the coefficients of t™ on both sides, we get the result (3.5). O

4. LAGRANGE-BASED UNIFIED APOSTOL-TYPE LAGUERRE POLYNOMIALS

In this section, we shall be interested in the connection between the Lagrange-based
(a]an,a2) (

unified Apostol-type Hermite polynomials Y, 5 x|z1, x9; k,a,b) and Laguerre
polynomials L™ ().

For 2o =0, 2y = —1, &1 = —m and ap, = 0 in equation (2.3), we have

2171€tk «a

where HY(O“ (g — 1,0:k,a,b) = LYn(j'é‘m (x k,a,b) are called the generalized
Laguerre- based unified Apostol -type polynomials.
When a =0 in (4.1), Lfla‘ﬁm (x; k,a,b) reduces to ordinary Laguerre polynomials

L) (1) as follows (see [19])

Z (@) (1—1t)""exp (1—_xtt> :
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Theorem 4.1. The following relationship between Lagrange-based unified Apostol-type
Hermite polynomials HY(CY‘Q1 a2)(x|x1,x2;k:,a,b) and Laguerre polynomials L™ (x)
holds true:

z:HYna‘O‘1 ) (g|ay, wa: k, a, b) LI ()

« m Ne’ 1
(4.2) _Z AT At | Dz +y| - 1,x2;k,a,b)ﬁ.
Proof. Replacing x by x + y and setting z; = —1, &y = —m in (2.3), we have

o1 ktk @ 0 oo
(6”” TN 4 )™ (1 — apt?) ™02 = 3 Y YT (@ + y| - 1wk, a, b)E"
e —a =0 ’

Multiplying both sides (1 — z1¢)~**, we have

21 ktk a
(66 t b) ($+y) (1 + t> (1 - xlt)_al(]‘ - x2t2)_a2
e —a

=(1 — ayt)™™ Z HYn(fé'_m’aQ)(x +y| — 1, 29; k, a, b)t"

n=0
> HYn(Ofé‘a1 o2) (z|z1, T3 Ky @, D)™ Z LM (y)t"
n—O r=0
Z Z Y(al m.02) (x+y|—1,29: k,a,b)t"

r=0

Replacing n by n — r in above equation, we have

Z Z:HYTL(O‘IQ1 02) (z|x1, 05k, a b)L _r)(y)t”

n=0r=0
= (a| maz) t"
:ZZ( T‘leY (x—i_y’ —1,.%2;]{,@,17)*.

n=0r=0 rl
Comparing the coefficients of ¢” on both sides, we get (4.2). O
Theorem 4.2. The following relationship holds true:

me 1

(4.3) ZY (@i k, a,b) L k)(y)(n_k), nYp )" @+ y| = 1,0k, a,b).
Proof. Replacing x by x + y and setting xr1 = —1, a1 = —m and ay = 0 in equation

(2.3), we have

21kt a(+ \ 0)

ZYn(%)x kab ZL’” " Z aV T @+ y| 1,05k, a,b)t"
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Replacing n by n — k in the left hand side of the above equation, we have

= = e m—k " - a|—m,0 n
> Yn(—gc,,@(x; k,a, b)qu )(y)(n ! => HY,l(ﬂ' )(x +y| —1,0;k,a,b)t
n=0 k=0 : n=0

Comparing the coefficients of ¢" on both sides, we get (4.3). O

Theorem 4.3. The following relationship holds true:

23 V5t (wlay, wai by a,b) (= P L (g )
(4.4) :HYn(%' m+o“’a2)(x — ylz1, 295k, a,b).
Proof. Replacing oy by —m + oy and = — = — y in (2.3), we have

21 ktk @
(Bb t b) e y)t(l — 2y t)" (1 — at®)
et —a

Z HY(O;" e OLQ)(:E - y|$1a T2; k7 a, b)tn

n=0
SO YT (e wor ka0 S (—a) LT (y )
n=0 k=0

=Y HYn(%Feral’aﬂ(iL‘ — ylx1, xo; ky a, b)t"

Replacing n by n — k in the left hand side of the above equation, we have

o0 n

Z g ) (z|wy, 03k, 4, b) (=20 )L (y fa )"

—Z Yal mta, QQ)(w—y]xl,xQ;k,a, b)t"

Comparing the coefficients of ¢" on both sides, we get (4.4). O
Theorem 4.4. The following relationship holds true:
n Yn(aac B(a:; k,a,b)

(4.5) 3L (y) S = YT (@ 4 y| = 1,05k, a,b).
= (n—k)!
Proof. For 1 = —1, ay = —m, ag = 0, © —> = — y in (2.3), we have
21 ktk « ( 04‘ mO)
<Bbet—ab> 1+t Z Y —y|—1,0,k,a,b)t
ZYn(%)a:k:ab ZL“”’“ Z aV "N @~y — 1,05k, a, b)t"

n=0
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Replacing n by n — k in the left hand side of the above equation, we have

t — a|—m,0)
Y (r; k,a, b) )(—y)i = HYn( [=m. (x —y|—1,0;k,a,b)t"
A B
Finally, replacing y by —y and comparing the coefficients of ¢, we get (4.5). O

Theorem 4.5. The following relationship holds true:
(4.6)

> () e s 0 )Y (g s, b) = Y5O @ g < 1,00k 0, ).

r=0

Proof. Replacing o by o+, * — & + y and setting 1 = —1, oy = —m — k, ap =0
n (2.4), we have
ol—kyk \ @Y N .
(o) e
= Z HYnaﬂ‘ m=k,0) (:1: +yl —1,0;k,a,b)t",
21 ktk @ ot . 21_ktk v . 3
< bet > e (1+t) m ey(l—i-t)
=2 wY, 5T eyl = Lk a b
n=0

1 ktk @ ot . 21—ktk: Y . .
et—ab e (1+t) m ey(l—l-t)

Z OH-’Y\ m— k0($+y|—1,$2;kaa>b)tn

which leads directly to

ZO LY 9™ (5 k, a,b) .Z YOy kv a b)
=S wY, 5O @ 4y = 1,05k, 0, b)e"
n=0

Replacing n by n — r in the left hand side of the above equation, we have

o0 t’n

> (3 (1) it a xS i) &

n=0

Z Y RO (| — 1,0;k, a, b)t"

Now comparing the coefficients of t", we get (4.6). O
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