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SOME NOVEL RESULTS ON THE EXISTENCE AND
UNIQUENESS OF A POSITIVE SOLUTION TO A KIND OF

NONLINEAR FRACTIONAL BOUNDARY VALUE PROBLEMS

ASGHAR AHMADKHANLU1, VEDAT SUAT ERTURK2, AND PUSHPENDRA KUMAR3,4

Abstract. This work investigates a fractional boundary value problem in the sense
of Riemann-Liouville derivative and integral. We derive some novel results for the
necessary and sufficient conditions for the existence and uniqueness of the positive
solution. In this regard, some fixed-point theorems on cones are used. Also, a
convergent successive sequence to find the solution to the problem is introduced.
We derive the numerical scheme for the proposed problems. The correctness of the
proposed results is verified with some illustrative examples.

1. Introduction

Fractional Calculus, which extends integer order calculus to arbitrary order calcu-
lus, has garnered attention from scientists recently. Fractional differential equations
represent physical processes in science and engineering [20, 28, 29, 33]. Some recent
applications of fractional-order operators can be seen in epidemiology [8,18,22,31,35],
ecology [23], mechanics [17], psychology [25], chemical reactor theory [16], etc. Particu-
larly, Fractional-order Boundary Value Problems (FBVPs) have been used to describe
various real-world problems. In [14], the authors derived a Caputo-type boundary
value problem representing a corneal shape model. The authors in [24] proposed
a heat conduction model of fractional-order in terms of the Caputo-type boundary
value problem. In [6], the authors proposed a boundary value problem related to the
dynamics of glucose graph.

Key words and phrases. Fractional boundary value problem, Riemann-Liouville derivative and
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Numerous publications addressing the existence, uniqueness, and multiplicity of
positive solutions to fractional initial and boundary value issues have been written in
recent decades (see [2–4, 7, 9, 10, 13, 30, 32, 40]). Bai in [5] derived positive solutions
of a nonlocal fractional boundary value problem. In [1], the authors derived some
novel simulations on the existence of a unique positive solution for FBVPs. In [34],
an analysis of the existence and uniqueness of positive solutions to a coupled system
of nonlinear FBVPs with anti-periodic boundary conditions has been given. In [26],
the authors produced some novel findings for the existence and uniqueness of positive
solutions to m-point FBVPs. In [21], the same results are produced for multi-point
FBVPs with p-Laplacian operator. There have been some theoretical improvements
in [36] on the existence of a unique positive solution for a class of nonlinear FBVPs
with mixed-type boundary conditions. The positive solution of a nonlinear fractional
q-difference equation with integral boundary conditions has been studied for existence
and uniqueness in [19]. Some existence and stability results for nonlocal FBVPs were
derived by Erturk et al. [15]. Bekri et al. [11] investigated some novel findings on the
existence and uniqueness of a nonlinear q-difference FBVP. In [12], the analyses of
existence and uniqueness on two Caputo-type FBVPs have been given.

In this study, we address the existence of positive solutions for the following FBVP
and the uniqueness of each of those solutions.

Dδ
0+(u(t) + Iϵ

0+Ψ(t, u(t))) + Φ(t, u(t)) = 0,(1.1)
lim
t→0

tδ−3u(t) = lim
t→0

tδ−3u′(t) = u′(1) = 0,

where 2 < δ ≤ ϵ ≤ 3, t ∈ [0, 1] and Dδ
0+ is the standard Riemann-Liouville (R-L)

fractional derivative of order δ and Iϵ
0+ is the R-L fractional integral of order ϵ. Also,

the functions Φ and Ψ have some properties which will be presented later.
This article is put together in the following way. In section 2, some necessary

definitions are presented. Section 3 calculates the Green function of the problem
and presents some properties of this function. In section 4, the main results about
the existence and uniqueness of positive solutions of the proposed FBVP (1.1) are
obtained. Section 5 gives illustrative examples verifying main results with numerical
solutions. In section 6, we conclude our findings.

2. Fundamentals

Here we recall some fundamentals [20,27–29,33] used throughout the study.

Definition 2.1. The Riemann-Liouville (R-L) fractional integral is given by

Iδ
a+f(t) = 1

Γ(δ)

∫ t

a
(t − s)δ−1f(s)ds,

where Γ denotes the Gamma function and a is an arbitrary fixed initial point. The
function f is considered locally integrable and δ is a real or complex number Re (δ) > 0.
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Definition 2.2. The R-L fractional derivative of order δ > 0 of a continuous function
f : (0, +∞) → R is given by

Dδ
a+f(t) = 1

Γ(n − δ) · dn

dtn

∫ t

a
(t − s)n−δ−1f(s)ds,

where n = [δ] + 1, considering right-hand is point-wise defined on (0, +∞).
Lemma 2.1 ([27]). Let u ∈ C(0, 1) ∩ L(0, 1) with a fractional derivative of order
δ > 0 that belongs to C(0, 1) ∩ L(0, 1). Then,

Iδ
0+Dδ

0+u(t) = u(t) + C1t
δ−1 + C2t

δ−2 + · · · + Cntδ−n,

where n = [δ] + 1.

Throughout the paper, let (E, ∥ · ∥) be a real Banach space and θ be a zero of E.
A nonempty closed convex set P is a cone if satisfies the following conditions

i) u ∈ P , λ ≥ 0 implies λu ∈ P ;
ii) u1 ≤ u2 ⇔ u2 − u1 ∈ P .

Also, cone P is a normal cone if there exists N ∈ R such that for all u1, u2 ∈ P with
θ ≤ u1 ≤ u2 we have ∥u1∥ ≤ N∥u2∥ and N is called the normality constant.

For all u1, u2 ∈ E, write u1 ∼ u2 (we say u1 is equivalent with u2) if there exist
constants λ, µ > 0 such that λu1 ≤ u2 ≤ µu1. If h > θ, then Ph = {u ∈ P : u ∼ h}.
It is clear that Ph ⊂ P .
Definition 2.3. Let η ∈ (0, 1). An operator T : P → P is called η-concave if for all
λ ∈ (0, 1) and u ∈ P we have T (λu) ≥ ληT (u). Also an operator T : P → P is called
sub-homogeneous if for all λ > 0 and u ∈ P we have T (λu) ≥ λT (u).

Now we recall some fixed point theorems.
Theorem 2.1 ([39]). Let P be a normal cone in a real Banach space E, T1, T2 : P → P
be an increasing η-concave operator and an increasing sub-homogeneous operator,
respectively. If

i) for some h > θ we have T1h ∈ Ph and T2h ∈ Ph;
ii) for some constant ρ0 and all u ∈ P we have T1u ≥ ρ0T2u,

then the operator T = T1 + T2 has unique fixed point. In the other words, the operator
equation u = T1u + T2u has unique solution u∗ ∈ Ph. Moreover, for any initial value
u0, the succsessive sequence un+1 = T1un + T2un, for n = 0, 1, 2, . . . converges to
the u∗.

Theorem 2.2 ([37]). Let P be a normal cone in real Banach space E, T1, T2 : P → P
are respectively increasing and decrasing operator. Assume

i) for any u ∈ P and λ ∈ (0, 1), there exist φi(λ) ∈ (λ, 1), i = 1, 2 such that

T1(λu) ≥ φ1(λ)T1(u), T2(λu) ≤ 1
φ2(λ)T2(u),

ii) there exists h0 ∈ Ph such that T1h0 + T2h0 ∈ Ph.
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Then, the operator equation u = T1u + T2u has unique solution u∗ ∈ Ph. Moreover,
for any initial values v0, u0 successive sequences

un+1 = T1un + T2vn, vn+1 = T1vn + T2un, n = 0, 1, 2, . . .

converge to u∗ ∈ Ph.

3. Green Function and Bounds

We need to calculate the Green function of a desired operator for applying the
fixed point theorems. In this section, in addition to calculate Green function, we also
outline some properties of it which is used throughout this paper.

Lemma 3.1. Suppose g, h : [0, 1] → [0, +∞) be continuous functions, then the solution
of the FBVP

Dδ
0+ [u(t) + Iϵ

0+g(t)] + h(t) = 0,(3.1)
lim
t→0

tδ−3u(t) = lim
t→0

tδ−3u′(t) = u′(1) = 0,

is expressed by

(3.2) u(t) =
∫ 1

0
G1(t, s)h(s)ds +

∫ 1

0
G2(t, s)g(s)ds,

where

(3.3) G1(t, s) =


tδ−1(1−s)δ−2−(t−s)δ−1

Γ(δ) , 0 ≤ s ≤ t < 1,
tδ−1(1−s)δ−2

Γ(δ) , 0 ≤ t ≤ s ≤ 1,

(3.4) G2(t, s) =


(ϵ−1)tδ−1(1−s)ϵ−2−(δ−1)(t−s)ϵ−1

(δ−1)Γ(ϵ) , 0 ≤ s ≤ t < 1,
(ϵ−1)tδ−1(1−s)ϵ−2

(δ−1)Γ(ϵ) , 0 ≤ t ≤ s ≤ 1.

Proof. Integrating the first equation of (3.1), follows

u(t) + Iϵ
0+g(t) = − 1

Γ(δ)

∫ t

0
(t − s)δ−1h(s)ds + c1t

δ−1 + c2t
δ−2 + c3t

δ−3.

One can easily check that from the boundary conditions limt→0 tδ−3u(t) =
limt→0 tδ−3u′(t) = 0, we have c2 = c3 = 0. By derivation from the above relation, we
have

u′(t) = −ϵ − 1
Γ(ϵ)

∫ t

0
(t − s)ϵ−2g(s)ds − δ − 1

Γ(δ)

∫ t

0
(t − s)δ−2h(s)ds + c1(δ − 1)tδ−2.

Now from the third boundary condition, we have

c1 = ϵ − 1
(δ − 1)Γ(ϵ)

∫ 1

0
(1 − s)ϵ−2g(s)ds + 1

Γ(δ)

∫ 1

0
(1 − s)δ−2h(s)ds.

Hence,

u(t) = − 1
Γ(δ)

∫ t

0
(t − s)δ−1h(s)ds + 1

Γ(δ)

∫ 1

0
tδ−1(1 − s)δ−2h(s)ds
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− 1
Γ(ϵ)

∫ t

0
(t − s)ϵ−1g(s)ds + ϵ − 1

(δ − 1)Γ(ϵ)

∫ 1

0
tδ−1(1 − s)ϵ−2g(s)ds

=
∫ 1

0
G1(t, s)h(s)ds +

∫ 1

0
G2(t, s)g(s)ds. □

Corollary 3.1. Let Φ, Ψ ∈ C([0, 1] × [0, +∞)). Then u is a solution of problem (1.1)
if and only if u is a solution of integral equation

(3.5) u(t) =
∫ 1

0
G1(t, s)Φ(s, u(s))ds +

∫ 1

0
G2(t, s)Ψ(s, u(s))ds.

Lemma 3.2. The functions G1(t, s), G2(t, s) defined by (3.3) and (3.4) have the
following properties:

(a) tδ−1G1(1, s) ≤ G1(t, s) ≤ tδ−1(1−s)δ−2

Γ(δ) ;
(b) tδ−1G2(1, s) ≤ G2(t, s) ≤ tδ−1(ϵ−1)(1−s)ϵ−2

(δ−1)Γ(ϵ) .

Proof. Statement (a) concluded from [38]. We prove the statement (b). For s ≤ t we
have

(δ − 1)Γ(ϵ)G2(t, s) =(ϵ − 1)tδ−1(1 − s)ϵ−2 − (δ − 1)(t − s)ϵ−1

≥(ϵ − 1)tδ−1(1 − s)ϵ−2 − (δ − 1)(t − s)(t − st)ϵ−2

=(ϵ − 1)tδ−1(1 − s)ϵ−2 − (δ − 1)(t − s)tϵ−2(1 − s)ϵ−2

≥tδ−1
[
(ϵ − 1)(1 − s)ϵ−2 − (δ − 1)(t − s)(1 − s)ϵ−2

]
≥tδ−1

[
(ϵ − 1)(1 − s)ϵ−2 − (δ − 1)(1 − s)ϵ−1

]
=tδ−1(δ − 1)Γ(ϵ)G2(1, s).

Thus, for s ≤ t, we have G2(t, s) ≥ tδ−1G2(1, s). On the other hand, for s > t, we
have

G2(t, s)
G2(1, s) = (ϵ − 1)tδ−1(t − s)ϵ−2

(ϵ − 1)(1 − s)ϵ−2 = tδ−1.

So, for all (t, s) ∈ [0, 1] × [0, 1], we have
G2(t, s) ≥ tδ−1G2(1, s).

The other side of the inequality in the statement (b) is clearly established. □

4. Main Results

In this section, by using Theorem 2.1 and Theorem 2.2, we prove some existence
and uniquness results for the FBVP (1.1). For convenience, we list the following
hypothesis:
(H1) Φ, Ψ ∈ C([0, 1] × [0, +∞)) and they are increasing functions with respect to

the second variable, also Ψ(t, 0) ̸≡ 0;
(H2) for 0 < µ < 1, (t, u) ∈ [0, 1] × [0, +∞), we have Ψ(t, µu) ≥ µΨ(t, u);
(H3) for 0 < µ, η < 1, (t, u) ∈ [0, 1] × [0, +∞), we have Φ(t, µu) ≥ µηΦ(t, u);
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(H4) there exists a constant ρ0 > 0 such that Φ(t, u) ≥ ρ0Ψ(t, u), t ∈ [0, 1], u ≥ 0.

Now we set

A1 =
∫ 1

0
G1(1, s)Φ(s, 0)ds, A2 =

∫ 1

0

(1 − s)δ−2

Γ(s) Φ(s, 1)ds,

B1 =
∫ 1

0
G2(1, s)Ψ(s, 0)ds, B2 =

∫ 1

0

(ϵ − 1)(1 − s)ϵ−2

(δ − 1)Γ(s) Ψ(s, 1)ds.

Theorem 4.1. Assume that (H1)-(H4) hold. Then, fractional boundary value problem
(1.1) has unique positive solution. In fact, the problem has unique solution u in Ph,
with h(t) = tδ−1, t ∈ [0, 1]. Also, for any initial value u0 ∈ Ph, the successive sequence

un+1(t) =
∫ 1

0
G1(t, s)Φ(s, un(s))ds +

∫ 1

0
G2(t, s)Ψ(s, un(s))ds, n = 0, 1, . . . ,

converges to the solution u∗.

Proof. Let P be the cone of all positive functions and Ph ⊂ P . From Corollary 3.1
we know that problem (1.1) has an integral formulation given by

(4.1) u(t) =
∫ 1

0
G1(t, s)Φ(s, u(s))ds +

∫ 1

0
G2(t, s)Ψ(s, u(s))ds,

where G1, G2 are defined by (3.3) and (3.4). We define two operators T1, T2 : P → E
by

(4.2) (T1u)(t) =
∫ 1

0
G1(t, s)Φ(s, u(s))ds, (T2u)(t) =

∫ 1

0
G2(t, s)Ψ(s, u(s))ds.

It is clear that u is the solution of FBVP (1.1) if and if only u = T1u + T2u. From
(H1)-(H2), we know that T1 : P → P and T2 : P → P . In the following, we check
that T1, T2 satisfy all assumptions of Theorem 2.1. This will be done in the following
steps.

Step 1. T1 and T2 are increasing operators.
Let u1, u2 ∈ P and u1 ≤ u2, then for all t ∈ [0, 1] we have u1(t) ≤ u2(t). So, by

(H1),

(T1u1)(t) =
∫ 1

0
G1(t, s)Φ(s, u1(s))ds ≤

∫ 1

0
G1(t, s)Φ(s, u2(s))ds = (T1u2)(t).

By a similar way one can show (T2u1)(t) ≤ (T2u2)(t).
Step 2. T1 is a η-concave and T2 is a sub-homogeneous operator. Let µ ∈ (0, 1) and

u ∈ P , then from (H3), we have

(T1(µu))(t) =
∫ 1

0
G1(t, s)Φ(s, µu(s))ds ≥ µη

∫ 1

0
G1(t, s)Φ(s, u(s))ds = µη(T1u)(t).

So, T1 is a η-concave operator. Now, from (H2) and the same properties for µ, we get

(T2(µu))(t) =
∫ 1

0
G2(t, s)Ψ(s, µu(s))ds ≥ µ

∫ 1

0
G2(t, s)Ψ(s, u(s))ds = µ(T2u)(t).

Hence, we can conclude that T2 is a sub-homogeneous operator.
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Step 3. For h(t) = tδ−1 we have T1h, T2h ∈ Ph.
In view of (H1) and Lemma 3.2, we get

(T1h)(t) =
∫ 1

0
G1(t, s)Φ(s, sδ−1)ds ≤ tδ−1

Γ(δ)

∫ 1

0
(1 − s)δ−2Φ(s, 1)ds,

(T1h)(t) =
∫ 1

0
G1(t, s)Φ(s, sδ−1)ds ≥ tδ−1

∫ 1

0
G1(1, s)Φ(s, 0)ds.

Since A2 ≥ A1 > 0, we can conclude A1h(t) ≤ T1h(t) ≤ A2h(t). Thus, T1h ∈ Ph. By
a similar way

(T2h)(t) =
∫ 1

0
G2(t, s)Ψ(s, sδ−1)ds ≤ tδ−1

∫ 1

0

(ϵ − 1)(1 − s)ϵ−2

(δ − 1)Γ(ϵ) Ψ(s, 1)ds,

(T2h)(t) =
∫ 1

0
G2(t, s)Ψ(s, sδ−1)ds ≥ tδ−1

∫ 1

0
G2(1, s)Ψ(s, 0)ds.

So, T2 ∈ Ph.
Step 4. For some λ > 0 and all u ∈ P , T1u ≥ λT2u.
Let u ∈ P . Since both G1 and G2 are positive constinuous and bounded functions,

there exists a constant such that G1(t, s) ≥ κG2(t, s). Hence, by (H4), we have

(T1u)(t) =
∫ 1

0
G1(t, s)Φ(s, u(s))ds ≥ κ

∫ 1

0
G2(t, s)Φ(s, u(s))ds

≥κρ0

∫ 1

0
G2(t, s)Ψ(s, u(s))ds = λ

∫ 1

0
G2(t, s)Ψ(s, u(s))ds

=λ(T2u)(t),

where λ = κρ0.
Thus, from Step 1–4. we conclude that all conditions of Theorem 2.1 are satisfied

and the operator

(4.3) Tu = T1u + T2u

has a unique fixed-point that is the unique positive solution of the FBVP (1.1). Also,
from Theorem 2.1, we know for any initial value u0 ∈ Ph, the successive sequence
un = T1un−1 + T2un−1, n = 1, 2, . . . converges to u∗ ∈ Ph. In another words, the
successive sequence

un+1(t) =
∫ 1

0
G1(t, s)Φ(s, un(s))ds +

∫ 1

0
G2(t, s)Ψ(t, un(s))ds → u∗, n = 1, 2, . . . ,

as n → +∞. □

Our second result is based on Theorem 2.2. Let us add the following hypothesis to
the previous hypothesis (H1)-(H4).
(H ′1) Φ, Ψ : [0, 1] × [0, +∞) → [0, +∞) are respectively increasing and decreasing

function with respect to the second variable and Φ(t, 0) ̸≡ 0, Ψ(t, 1) ̸≡ 0.
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(H5) For any µ ∈ (0, 1), there exist f(µ), g(µ) ∈ (µ, 1) such that for all t ∈ [0, 1] we
have

Φ(t, µu) ≥ f(µ)Φ(t, u), Ψ(t, µu) ≤ 1
g(µ)Ψ(t, u).

Theorem 4.2. Assume (H ′1) and (H5) hold, then FBVP (1.1) has unique solution
u∗ in Ph with h(t) = tδ−1 , t ∈ [0, 1]. Also, for any initial value problem u0 and v0 in
Ph constructing successively the sequences

un+1(t) =
∫ 1

0
G1(t, s)Φ(s, un(s))ds +

∫ 1

0
G2(t, s)Ψ(s, vn(s))ds, n = 0, 1, . . . ,

vn+1(t) =
∫ 1

0
G1(t, s)Φ(s, vn(s))ds +

∫ 1

0
G2(t, s)Ψ(s, un(s))ds, n = 0, 1, . . . ,

we have un(t) → u∗(t), vn(t) → u∗(t) as n → +∞, where G1(t, s) and G2(t, s) are
given in (3.3) and (3.4).

Proof. Again, we consider the operators defined in (4.3), from (H ′1), (H5), and similar
to the proof of previous theorem, one can show T1 and T2 satisfy the first condition
of Theorem 2.2. So, we need only to verify the second condition of Theorem 2.2. Let
us set

A3 =
∫ 1

0
G1(1, s)Φ(s, 0)ds +

∫ 1

0
G2(1, s)Ψ(s, 1)ds,

B3 =
∫ 1

0

(1 − s)δ−2

Γ(δ) Φ(s, 1)ds +
∫ 1

0

(ϵ − 1)(1 − s)ϵ−2

(δ − 1)Γ(ϵ) Ψ(s, 0)ds.

In view of Lemma 3.2 and (H ′1), (H5), we have

(T1h)(t) + (T2h)(t) =
∫ 1

0
G1(t, s)Φ(s, sδ−1)ds +

∫ 1

0
G2(t, s)Ψ(s, sδ−1)ds

≥tδ−1
[∫ 1

0
G1(1, s)Φ(s, 0)ds +

∫ 1

0
G2(1, s)Ψ(s, 1)ds

]
=tδ−1A3,

(T1h)(t) + (T2h)(t) =
∫ 1

0
G1(t, s)Φ(s, sδ−1)ds +

∫ 1

0
G2(t, s)Ψ(s, sδ−1)ds

≤tδ−1
[∫ 1

0

(1 − s)δ−2

γ(δ) Φ(s, 1)ds +
∫ 1

0

(ϵ − 1)(1 − s)ϵ−2

(δ − 1)Γ(ϵ) Ψ(s, 0)ds

]
=tδ−1B3.

Therefore, A3h(t) ≤ (T1h)(t) + (T2h)(t) ≤ B3h(t) and (T1h)(t) + (T2h)(t) ∈ Ph. Thus,
all conditions of Theorem 2.2 are satisfied and for any initial values v0 and u0 in Ph,
constructing successively the sequences

un+1(t) =
∫ 1

0
G1(t, s)Φ(s, un(s))ds +

∫ 1

0
G2(t, s)Ψ(s, vn(s))ds, n = 0, 1, . . . ,

vn+1(t) =
∫ 1

0
G1(t, s)Φ(s, vn(s))ds +

∫ 1

0
G2(t, s)Ψ(s, un(s))ds, n = 0, 1, . . . ,
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we have un(t) → u∗(t), vn(t) → u∗(t) as n → +∞. □

5. Examples

Example 5.1. Let us consider the following FBVP

D
5
2
0+(u(t) + I

8
3
0+Ψ(t, u(t)) + Φ(t, u(t)) = 0,

lim
t→0

t− 1
2 u(t) = lim

t→0
t− 1

2 u′(t) = u′(1) = 0,(5.1)

where Φ(t, u) = u
1
3 + a t

7
2

Γ( 7
2 ) , Ψ(t, u) = u

1+u
et + (b−a)t

7
2

Γ( 7
2 ) , with b > a > 0. Now

Φ(t, µu) =µ
1
3 u

1
3 + a

t
7
2

Γ(7
2) ≥ µ

1
3

u
1
3 + a

t
7
2

Γ(7
2)

 = µηΦ(t, u),

Ψ(t, µu) = µu

1 + µu
et + (b − a)t 7

2

Γ(7
2) ≥ µ

[(
u

1 + u

)
et + b − a

Γ(7
2) t

7
2

]
.

If we set ρ0 ∈ [0, a/(e + b − a)], then

Φ(t, u) =u
1
3 + a

t
7
2

Γ(7
2) ≥ a

t
7
2

Γ(7
2)(e + b − a)(e + b − a)

≥ρ0

[
u

1 + u
et + b − a

Γ(7
2) t

7
2

]
= ρ0Ψ(t, u).

So, all conditions of Theorem 4.1 are satisfied. Therefore, the problem (5.1) with Φ,
Ψ has positive solution.

Example 5.2. Again we consider FBVP (5.1) with Φ(t, u) = u
1
3 et + α, α > 0 and

Ψ(t, u) = et

1+u
1
4
. It is clear, Φ : [0, 1]× [0, +∞) → [0, +∞) is continuous and increasing

with respect to the second variable and Φ(t, 0) = α > 0, Ψ : [0, 1]× [0, +∞) → [0, +∞)
is continuous and decreasing with respect to the second variable and Ψ(t, 1) = et

2 ̸≡ 0.
Now, if we set f1(µ) = µ

1
3 and f2(µ) = µ

1
4 , then f1(µ), f2(µ) ∈ (µ, 1) for all µ ∈ (0, 1)

and
Φ(t, µu) = µ

1
3 u

1
3 et + α ≥ µ

1
3 (u 1

3 et + α) = f1(µ)Φ(t, u),

Ψ(t, µu) = et

1 + (µu) 1
4

≤ et

µ
1
4 (1 + u

1
4 )

= 1
f2(µ)Ψ(t, u(t)).

Consequently, all conditions of Theorem 4.2 are satisfied. So, problem (5.1) has unique
positive solution in Ph with h(t) = t

3
2 , t ∈ [0, 1].

Example 5.3. Consider the fractional boundary value problem
D2.3

0+ (u(t) + I2.2
0+ Ψ(t, u(t)) + Φ(t, u(t)) = 0,

lim
t→0

t−0.7u(t) = lim
t→0

t−0.8u′(t) = u′(1) = 0,(5.2)
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where Φ(t, u) = 3
√

3u2(t) + t3 + 3 and Ψ(t, u) = 3 cos2 t√
5u2(t)+sin2 t+1

.

Clearly, Φ : [0, 1] × [0, +∞) → [0, +∞) is continuous and increasing with respect to
the second variable and Φ(t, 0) = 3

√
3 > 0, Ψ : [0, 1]×[0, +∞) → [0, +∞) is continuous

and decreasing with respect to the second variable and Ψ(t, 1) ̸≡ 0. Let f1(µ) = µ
2
3

and f2(µ) = µ
1
2 ∈ (µ, 1) for all µ ∈ (0, 1) and

Φ(t, µu(t)) = 3
√

3µ2u2(t) + 3 ≥ 3
√

µ2(3u2(t) + t3 + 3) = µ
2
3 Φ(t, u(t)),

Ψ(t, µu(t)) = 3 cos2 t√
5µ2u2(t) + sin2 t

≤ 3 cos2 t

µ
1
2

√
5u2(t) + sin2 t

= 1
f2(µ)Ψ(t, u(t)).

Consequently, all conditions of Theorem 4.2 are satisfied. So, problem (5.2) has
unique positive solution in Ph with h(t) = t1.3, t ∈ [0, 1].

6. Numerical Solution

Since we have already established the existence and uniqueness of a solution to
(1.1), our focus here will be on its numerical solution. The method is straightforward
to some degree by recalling Theorems 4.1 and 4.2, and the recurrence relation formula
is the equation given in Theorem 4.1, which comes from operator (4.1). The formula
for the recurrence relation can be employed without much difficulty by the initial
trial solution, say, for example, u0(t) ≡ 0, and then the programme iterates to find
sequential un(t) stopping when the maximum difference in two successive iterations
drops below a given tolerance value. The computer algebra system Mathematica is
used to execute this iterative scheme.

The passing from an iteration to the next one is done symbolically and numerically.
The latter happens when, to approximate the integral appearing in the equation given
in Theorem 4.1, cubic spline interpolation is used.

Firstly, we consider Example 5.1 to confirm the validity of the presented numerical
method.

Using the Green’s function method, we have following algorithm.
Step 1. The node points t0, t1, . . . , tM are considered for adequately large number

of M.
Step 2. Cubic spline interpolation is used to obtain un(s)’s.
Step 3. The following approximate solution is obtained by the numerical integration:

un+1(tj) = 1
Γ(δ)

∫ tj

0

[
tδ−1
j (1 − s)δ−2 − (tj − s)δ−1

] [
u1/3

n (s) + a
s7/2

Γ(7/2)

]
ds

+
tδ−1
j

Γ(δ)

∫ 1

tj

(1 − s)δ−2
[
u1/3

n (s) + a
s7/2

Γ(7/2)

]
ds

+ 1
(δ − 1)Γ(ϵ)

∫ t

0

[
(ϵ − 1)tδ−1

j (1 − s)ϵ−2 − (δ − 1)(tj − s)ϵ−1
]
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×
[

un(s)
1 + un(s)es + (b − a)s7/2

Γ(7/2)

]
ds

+
(ϵ − 1)tδ−1

j

(δ − 1)Γ(ϵ)

∫ 1

tj

(1 − s)ϵ−2
[

un(s)
1 + un(s)es + (b − a)s7/2

Γ(7/2)

]
ds, n = 0, 1, . . .

Step 4. Steps 1, 2, 3 are iterated to find consecutive un(u) stopping when |un+1 −
un| < TOL.

The exact solution is unknown infact, but the iteration stopping criteria used is
set |un+1 − un| < 10−10, and then, the numerical solution is obtained. For the step
size of the node points, h = 0.05, the number of iterations, M=20, and TOL = 10−10,
the errors are of order 10−10. The solution curve u(t) is shown graphically in Figure
1 for δ = 2.5 and ϵ = 2.66 when a = 1 and b = 2. For other graphical simulations,
(δ, ϵ)’s are taken as (2.1,2.5), (2.5,2.5), (2.5,2.9), (2.8,2.9), and (3,3). The solution
curves u(t)’s are displayed in Figures 2-6, respectively. For δ = 2.5 and ϵ = 2.66 when
a = 1 and b = 2, the convergence is plotted in Figure 7, and the error is plotted in
Figure 8.

0.2 0.4 0.6 0.8 1.0
t

0.05

0.10

0.15

0.20

0.25

u(t)

Figure 1. Solution curve
u(t) for δ = 2.5 and ϵ = 2.66.
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Figure 2. Solution curve
u(t) for δ = 2.1 and ϵ = 2.5.
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Figure 3. Solution curve
u(t) for δ = 2.5 and ϵ = 2.5.
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Figure 4. Solution curve
u(t) for δ = 2.5 and ϵ = 2.9.
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Figure 5. Solution curve
u(t) for δ = 2.8 and ϵ = 2.9.
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Figure 6. Solution curve
u(t) for δ = 3 and ϵ = 3.
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Figure 7. Convergence
curve n = 5 (horizontal bar),
n = 10 (vertical bar), n = 15
(x) and n = 20 (solid) for
δ = 2.5 and ϵ = 2.66.
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Figure 8. Error curve for
δ = 2.5 and ϵ = 2.66.

Now, let us consider Example 5.2 to confirm the validity of the presented numerical
method. Similar to the previous algorithm, the following solution is obtained:

u(n+1)(tj) = 1
Γ(δ)

∫ tj

0

[
tδ−1
j (1 − s)δ−2 − (tj − s)δ−1

] [
u1/3

n (s)es + α
]

ds

+
tδ−1
j

Γ(δ)

∫ 1

tj

(1 − s)δ−2
[
u1/3

n (s)es + α
]

ds + 1
(δ − 1)Γ(ϵ)

×
∫ t

0

[
(ϵ − 1)tδ−1

j (1 − s)ϵ−2 − (δ − 1)(tj − s)ϵ−1
] [

es

1 + u
1/4
n (s)

]
ds

+
(ϵ − 1)tδ−1

j

(δ − 1)Γ(ϵ)

∫ 1

tj

(1 − s)ϵ−2
[

es

1 + u
1/4
n (s)

]
ds, n = 0, 1, . . .

For the step size of the node points, h = 0.05, the number of iterations, M=15,
and TOL = 10−10, the errors is of order 10−16. The solution curve u(t) is shown
graphically in Figure 9 for δ = 2.5 and ϵ = 2.66 when α = 1. For other graphical
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simulations, (δ, ϵ)’s are taken as (2.1,2.5), (2.5,2.5), (2.5,2.9), (2.8,2.9), and (3,3). The
solution curves u(t)’s are displayed in Figures 10–14, respectively. For δ = 2.5 and
ϵ = 2.66 when α = 1, the convergence is plotted in Figure 15, and the error is plotted
in Figure 16.
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Figure 9. Solution curve
u(t) for δ = 2.5 and ϵ = 2.66.
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Figure 10. Solution curve
u(t) for δ = 2.1 and ϵ = 2.5.
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Figure 11. Solution curve
u(t) for δ = 2.5 and ϵ = 2.5.
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Figure 12. Solution curve
u(t) for δ = 2.5 and ϵ = 2.9.
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Figure 13. Solution curve
u(t) for δ = 2.8 and ϵ = 2.9.
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Figure 14. Solution curve
u(t) for δ = 3 and ϵ = 3.
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Figure 15. Convergence
curve n = 5 (horizontal bar),
n = 10 (vertical bar), n = 15
(x) and n = 20 (solid) for
δ = 2.5 and ϵ = 2.66.
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Figure 16. Error curve for
δ = 2.5 and ϵ = 2.66.

Finally, let us consider Example 5.3 to confirm the validity of the presented numer-
ical method. Similar to the current algorithm, the following solution is obtained:

un+1 (tj) = 1
Γ(δ)

∫ tj

0

[
tδ−1
j (1 − s)δ−2 − (tj − s)δ−1

]
3

√
3u2

n(s) + s3 + 3 ds

+
tδ−1
j

Γ(δ)

∫ 1

tj

(1 − s)δ−2 3
√

3u2
n(s) + s3 + 3 ds

+ 1
(δ − 1)Γ(ϵ)

∫ t

0

[
(ϵ − 1)tδ−1

j (1 − s)ϵ−2 − (δ − 1) (tj − s)ϵ−1
]

×

 3 cos2 s√
5u2

n(s) + sin2 s + 1

 ds

+
(ϵ − 1)tδ−1

j

(δ − 1)Γ(ϵ)

∫ 1

tj

(1 − s)ϵ−2

 3 cos2 s√
5u2

n(s) + sin2 s + 1

 ds, n = 0, 1, . . .

For the step size of the node points, h = 0.05, the number of iterations, M = 10,
and TOL = 10−10, the order of errors is of around 10−10. The solution curve u(t)
is shown graphically in Figure 17 for δ = 2.3 and ϵ = 2.2. For other graphical
simulations, (δ, ϵ)’s are taken as (2.1, 2.5), (2.5, 2.5), (2.5, 2.9), (2.8, 2.9), and (3, 3).
The solution curves u(t)’s are displayed in Figures 18-22, respectively. For δ = 2.3
and ϵ = 2.2, the convergence is plotted in Figure 23, and the error is plotted in Figure
24.

Table 1 shows the numerical results and absolute residual errors of the present
method for M = 10, δ = 2.3 and ϵ = 2.2.



POSITIVE SOLUTION TO NONLINEAR FBVP 627

Table 1. Numerical solution and absolute residual error of Example 5.3 for
M = 10, δ = 2.3 and ϵ = 2.2.

t Numerical solution Absolute residual error
0.0 0
0.1 0.1145872311 4.57641 × 10−11

0.2 0.2543086295 1.02926 × 10−10

0.3 0.3838093159 1.47172 × 10−10

0.4 0.4917811004 1.67472 × 10−10

0.5 0.5736563020 1.63345 × 10−10

0.6 0.6285251227 1.40516 × 10−10

0.7 0.6578210989 1.06733 × 10−10

0.8 0.6644649486 6.91701 × 10−11

0.9 0.6521485611 3.31993 × 10−11

1.0 0.6246825709 2.08899 × 10−12

Figure 17. Solution curve
u(t) for δ = 2.3 and ϵ = 2.2.

Figure 18. Solution curve
u(t) for δ = 2.1 and ϵ = 2.5.

Figure 19. Solution curve
u(t) for δ = 2.5 and ϵ = 2.5.

Figure 20. Solution curve
u(t) for δ = 2.5 and ϵ = 2.9.
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Figure 21. Solution curve
u(t) for δ = 2.8 and ϵ = 2.9.

Figure 22. Solution curve
u(t) for δ = 3 and ϵ = 3.
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Figure 23. Convergence
curve n = 5 (vertical bar),
n = 10 (x) and n = 15
(solid) for δ = 2.3 and ϵ = 2.2.

Figure 24. Error curve for
δ = 2.3 and ϵ = 2.2.

7. Conclusion

In this article, we have considered a class of FBVPs with a Riemann-Liouville
derivative and integral for deriving some novel, necessary, and sufficient conditions
for the existence and uniqueness of the positive solution. We have utilised some
fixed-point theorems on cones. A convergent successive sequence for finding the
solution of the proposed FBVP has been derived. We have verified the validity of the
proposed results by implementing some problems with the derivation of numerical
methodology. The obtained results will be beneficial in proving the existence and
uniqueness of positive solutions while dealing with the proposed FBVPs. In the future,
the researchers can try to model real-life problems using the given fractional boundary
value problem along with its qualitative and quantitative analyses.
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